The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

6001-6020hit(18690hit)

  • Single-Channel Adaptive Noise Canceller for Heart Sound Enhancement during Auscultation

    Yunjung LEE  Pil Un KIM  Jin Ho CHO  Yongmin CHANG  Myoung Nam KIM  

     
    LETTER-Biological Engineering

      Vol:
    E95-D No:10
      Page(s):
    2593-2596

    In this paper, a single-channel adaptive noise canceller (SCANC) is proposed to enhance heart sounds during auscultation. Heart sounds provide important information about the condition of the heart, but other sounds interfere with heart sounds during auscultation. The adaptive noise canceller (ANC) is widely used to reduce noises from biomedical signals, but it is not suitable for enhancing auscultatory sounds acquired by a stethoscope. While the ANC needs two inputs, a stethoscope provides only one input. Other approaches, such as ECG gating and wavelet de-noising, are rather complex and difficult to implement as real-time systems. The proposed SCANC uses a single-channel input based on Heart Sound Inherency Indicator and reference generator. The architecture is simple, so it can be easily implemented in real-time systems. It was experimentally confirmed that the proposed SCANC is efficient for heart sound enhancement and is robust against the heart rate variations.

  • Effect of Multiple Antennas on the Transport Capacity in Large-Scale Ad Hoc Networks

    Won-Yong SHIN  Koji ISHIBASHI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E95-B No:10
      Page(s):
    3113-3119

    A one-dimensional ad hoc network with a single active source–destination pair is analyzed in terms of transport capacity, where each node uses multiple antennas. The analysis is based on using a multi-hop opportunistic routing transmission in the presence of fading. Specifically, the lower and upper bounds on the transport capacity are derived and their scaling law is analyzed as the node density, λ, is assumed to be infinitely large. The lower and upper bounds are shown to have the same scaling (ln λ)1/α, where α denotes the path-loss exponent. We also show that using multiple antennas at each node does not fundamentally change the scaling law.

  • Improvements on Hsiang and Shih's Remote User Authentication Scheme Using Smart Cards

    Jung-Yoon KIM  Hyoung-Kee CHOI  

     
    PAPER-Information Network

      Vol:
    E95-D No:10
      Page(s):
    2393-2400

    We demonstrate how Hsiang and Shih's authentication scheme can be compromised and then propose an improved scheme based on the Rabin cryptosystem to overcome its weaknesses. Furthermore, we discuss the reason why we should use an asymmetric encryption algorithm to secure a password-based remote user authentication scheme using smart cards. We formally prove the security of our proposed scheme using the BAN logic.

  • Construction of Optimal Low Correlation Zone Sequence Sets Based on DFT Matrices

    Chengqian XU  Yubo LI  Kai LIU  Xiaoyu CHEN  

     
    LETTER-Coding Theory

      Vol:
    E95-A No:10
      Page(s):
    1796-1800

    In this paper, we constructed a class of low correlation zone sequence sets derived from the interleaved technique and DFT matrices. When p is a prime such that p > 3, p-ary LCZ sequence sets with parameters LCZ(pn-1,pm-1,(pn-1)/(pm-1),1) are constructed based on a DFT matrix with order pp, which is optimal with respect to the Tang-Fan-Matsufuji bound. When p is a prime such that p ≥ 2, pk-ary LCZ sequence sets with parameters LCZ(pn-1,pk-1,(pn-1)/(pk-1),1) are constructed based on a DFT matrix with order pkpk, which is also optimal. These sequence sets are useful in certain quasi-synchronous code-division mutiple access (QS-CDMA) communication systems.

  • Small Multi-Band Antenna with Tuning Function for Body-Centric Wireless Communications

    Chia-Hsien LIN  Zhengyi LI  Kazuyuki SAITO  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER

      Vol:
    E95-B No:10
      Page(s):
    3074-3080

    The research on body-centric wireless communications (BCWCs) is becoming very hot because of numerous applications, especially the application of E-health systems. Therefore, a small multi-band and low-profile planar inverted-F antenna (PIFA) with tuning function is presented for BCWCs in this paper. In order to achieve multi-band operation, there are two branches in the antenna: the longer branch low frequency band (950–956 MHz), and the shorter branch with a varactor diode embedded for high frequency bands. By supplying different DC voltages, the capacitance of the varactor diode varies, so the resonant frequency can be tuned without changing the dimension of the antenna. While the bias is set at 6 V and 14 V, WiMAX and ISM bands can be covered, respectively. From the radiation patterns, at 950 MHz, the proposed antenna is suitable for on-body communications, and in WiMAX and ISM bands, they are suitable for both on-body and off-body communications.

  • Self-Organizing Incremental Associative Memory-Based Robot Navigation

    Sirinart TANGRUAMSUB  Aram KAWEWONG  Manabu TSUBOYAMA  Osamu HASEGAWA  

     
    PAPER-Information Network

      Vol:
    E95-D No:10
      Page(s):
    2415-2425

    This paper presents a new incremental approach for robot navigation using associative memory. We defined the association as node→action→node where node is the robot position and action is the action of a robot (i.e., orientation, direction). These associations are used for path planning by retrieving a sequence of path fragments (in form of (node→action→node) → (node→action→node) →…) starting from the start point to the goal. To learn such associations, we applied the associative memory using Self-Organizing Incremental Associative Memory (SOIAM). Our proposed method comprises three layers: input layer, memory layer and associative layer. The input layer is used for collecting input observations. The memory layer clusters the obtained observations into a set of topological nodes incrementally. In the associative layer, the associative memory is used as the topological map where nodes are associated with actions. The advantages of our method are that 1) it does not need prior knowledge, 2) it can process data in continuous space which is very important for real-world robot navigation and 3) it can learn in an incremental unsupervised manner. Experiments are done with a realistic robot simulator: Webots. We divided the experiments into 4 parts to show the ability of creating a map, incremental learning and symbol-based recognition. Results show that our method offers a 90% success rate for reaching the goal.

  • A General Construction of Low Correlation Zone Sequence Sets Based on Finite Fields and Balanced Function

    Huijuan ZUO  Qiaoyan WEN  Xiuwen MA  Jie ZHANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E95-A No:10
      Page(s):
    1792-1795

    In this letter, we present a general construction of sequence sets with low correlation zone, which is based on finite fields and the balance property of some functions. The construction is more flexible as far as the partition of parameters is concerned. A simple example is also given to interpret the construction.

  • Online Continuous Scale Estimation of Hand Gestures

    Woosuk KIM  Hideaki KUZUOKA  Kenji SUZUKI  

     
    PAPER-Human-computer Interaction

      Vol:
    E95-D No:10
      Page(s):
    2447-2455

    The style of a gesture provides significant information for communication, and thus understanding the style is of great importance in improving gestural interfaces using hand gestures. We present a novel method to estimate temporal and spatial scale—which are considered principal elements of the style—of hand gestures. Gesture synchronization is proposed for matching progression between spatio-temporally varying gestures, and scales are estimated based on the progression matching. For comparing gestures of various sizes and speeds, gesture representation is defined by adopting turning angle representation. Also, LCSS is used as a similarity measure for reliability and robustness to noise and outliers. Performance of our algorithm is evaluated with synthesized data to show the accuracy and robustness to noise and experiments are carried out using recorded hand gestures to analyze applicability under real-world situations.

  • Application of a Telemedical Tool in an Isolated Island and a Disaster Area of the Great East Japan Earthquake Open Access

    Makoto YOSHIZAWA  Tomoyuki YAMBE  Norihiro SUGITA  Satoshi KONNO  Makoto ABE  Noriyasu HOMMA  Futoshi TAKEI  Katsuhiko YOKOTA  Yoshifumi SAIJO  Shin-ichi NITTA  

     
    INVITED PAPER

      Vol:
    E95-B No:10
      Page(s):
    3067-3073

    The present paper has reported a case study of the “Electronic Doctor's Bag” which is a telemedical tool for home-visit medical services using the mobile communications environment in an isolated island and a disaster area hit by the tsunami. Clinical trials performed for 20 patients around a clinic in Miyako Island indicated that the communication functions of the proposed system were highly evaluated by patients as well as medical staffs. However, the system still has room for further improvement in operability, portability and mobile communication environment. The experience at the shelter in Kesennuma City suggested that mobile healthcare tools such as the proposed system will be strongly required when there are no or only paramedical staffs after leaving of emergency medical staffs.

  • Optimal Distributed Beamforming for Two-User MISO Interference Channel Based on a Game-Theoretic Viewpoint

    Jiamin LI  Dongming WANG  Pengcheng ZHU  Lan TANG  Xiaohu YOU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:10
      Page(s):
    3345-3348

    All points on the Pareto boundary can be obtained by solving the weighted sum rate maximization problem for some weighted coefficients. Unfortunately, the problem is non-convex and difficult to solve without performing an exhaustive search. In this paper, we propose an optimal distributed beamforming strategy for the two-user multiple-input single-output (MISO) interference channel (IC). Through minimizing the interference signal power leaked to the other receiver for fixed useful signal power received at the intended receiver, the original non-convex optimization problem can be converted into a family of convex optimization problems, each which can be solved in distributed manner with only local channel state information at each transmitter. After some conversion, we derive the closed-form solutions to all Pareto optimal points based on a game-theoretic viewpoint which indicates that linear combinations of the maximum-ratio transmit (MRT) and zero-forcing (ZF) beamforming strategies can achieve any point on the Pareto boundary of the rate region for the two-user MISO interference channel, and the only computation involved is to solve a basic quadratic equation. Finally, the result is validated via numerical simulations.

  • Sensing-Based Opportunistic Spectrum Sharing for Cognitive Radio Downlink MIMO Systems

    Liang LI  Ling QIU  Guo WEI  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:10
      Page(s):
    3358-3361

    In this letter we propose a practical sensing-based opportunistic spectrum sharing scheme for cognitive radio (CR) downlink MIMO systems. Multi-antennas are exploited at the secondary transmitter to opportunistically access the primary spectrum and effectively achieve a balance between secondary throughput maximization and mitigation of interference probably caused to primary radio link. We first introduce a brief secondary frame structure, in which a sensing phase is exploited to estimate the effective interference channel. According to the sensing result and taking the interference caused by the primary link into account, we propose an enhanced signal-to-leakage-and-noise ratio (SLNR)-based precoding scheme for the secondary transmitter. Compared to conventional schemes where perfect knowledge of the channels over which the CR transmitter interferes with the primary receiver (PR) is assumed, our proposed scheme shows its superiority and simulation results validate this.

  • Channel Modeling and Performance Analysis of Diversity Reception for Implant UWB Wireless Link

    Jingjing SHI  Daisuke ANZAI  Jianqing WANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E95-B No:10
      Page(s):
    3197-3205

    This paper aims at channel modeling and bit error rate (BER) performance improvement with diversity reception for in-body to on-body ultra wideband (UWB) communication for capsule endoscope application. The channel characteristics are firstly extracted from 3.4 to 4.8 GHz by using finite difference time domain (FDTD) simulations incorporated with an anatomical human body model, and then a two-path impulse response channel model is proposed. Based on the two-path channel model, a spatial diversity reception technique is applied to improve the communication performance. Since the received signal power at each receiver location follows a lognormal distribution after summing the two path components, we investigate two methods to approximate the lognormal sum distribution in the combined diversity channel. As a result, the method matching a short Gauss-Hermite approximation of the moment generating function (MGF) of the lognormal sum with that of a lognormal distribution exhibits high accuracy and flexibility. With the derived probability density function (PDF) for the combined diversity signals, the average BER performances for impulse-radio (IR) UWB with non-coherent detection are investigated to clarify the diversity effect by both theoretical analysis and computer simulation. The results realize an improvement around 10 dB on Eb/No at BER of 10-3 for two-branch diversity reception.

  • Improving Elevation Estimation Accuracy in DOA Estimation: How Planar Arrays Can Be Modified into 3-D Configuration

    Hiroki MORIYA  Koichi ICHIGE  Hiroyuki ARAI  Takahiro HAYASHI  Hiromi MATSUNO  Masayuki NAKANO  

     
    PAPER-DOA

      Vol:
    E95-A No:10
      Page(s):
    1667-1675

    This paper presents a simple 3-D array configuration for high-resolution 2-D Direction-Of-Arrival (DOA) estimation. Planar array structures like Uniform Rectangular Array (URA) or Uniform Circular Array (UCA) often well estimate azimuth angle but cannot well estimate elevation angle because of short antenna aperture in elevation direction. One may put more number of array elements to improve elevation angle estimation accuracy, however it will require very large hardware and software cost. This paper presents a simple 3-D array structure for high-resolution 2-D DOA estimation only by modifying the height of some array elements in a planar array. Based on the analysis of Cramer-Rao Lower Bound (CRLB) formulation and its dependency on the height of array elements, we develop a simple 3-D array structure which improves elevation angle estimation accuracy while preserving azimuth angle estimation accuracy.

  • Finite Virtual State Machines

    Raouf SENHADJI-NAVARRO  Ignacio GARCIA-VARGAS  

     
    LETTER-Computer System

      Vol:
    E95-D No:10
      Page(s):
    2544-2547

    This letter proposes a new model of state machine called Finite Virtual State Machine (FVSM). A memory-based architecture and a procedure for generating FVSM implementations from Finite State Machines (FSMs) are presented. FVSM implementations provide advantages in speed over conventional RAM-based FSM implementations. The results of experiments prove the feasibility of this approach.

  • Improved Histogram Shifting Technique for Low Payload Embedding by Using a Rate-Distortion Model and Optimal Side Information Selection

    Junxiang WANG  Jiangqun NI  Dong ZHANG  Hao LUO  

     
    LETTER-Data Engineering, Web Information Systems

      Vol:
    E95-D No:10
      Page(s):
    2552-2555

    In the letter, we propose an improved histogram shifting (HS) based reversible data hiding scheme for small payload embedding. Conventional HS based schemes are not suitable for low capacity embedding with relatively large distortion due to the inflexible side information selection. From an analysis of the whole HS process, we develop a rate-distortion model and provide an optimal adaptive searching approach for side information selection according to the given payload. Experiments demonstrate the superior performance of the proposed scheme in terms of performance curve for low payload embedding.

  • Multi-Structural Texture Analysis Using Mathematical Morphology

    Lei YANG  Akira ASANO  Liang LI  Chie MURAKI ASANO  Takio KURITA  

     
    PAPER-Image

      Vol:
    E95-A No:10
      Page(s):
    1759-1767

    In this paper, we propose a novel texture analysis method capable of estimating multiple primitives, which are elements repetitively arranged to compose a texture, in multi-structured textures. The approach is based on a texture description model that uses mathematical morphology, called the “Primitive, Grain, and Point Configuration (PGPC)” texture model. The estimation of primitives based on the PGPC texture model involves searching the optimal structuring element for primitives according to a size distribution function and a magnification. The proposed method achieves the following two improvements: (1) the simultaneous estimation of a multiple number of primitives in multi-structured textures with a ranking of primitives on the basis of their significance. and (2) the introduction of flexibility in the process of magnification to obtain a higher degree of fitness of large grains. With a computational combination of different primitives, the method provides an ordered priority to denote the significance of elements. The promising performance of the proposed method is experimentally shown by a comparison with conventional methods.

  • Partial Reconfiguration of Flux Limiter Functions in MUSCL Scheme Using FPGA

    Mohamad Sofian ABU TALIP  Takayuki AKAMINE  Yasunori OSANA  Naoyuki FUJITA  Hideharu AMANO  

     
    PAPER-Computer System

      Vol:
    E95-D No:10
      Page(s):
    2369-2376

    Computational Fluid Dynamics (CFD) is used as a common design tool in the aerospace industry. UPACS, a package for CFD, is convenient for users, since a customized simulator can be built just by selecting desired functions. The problem is its computation speed, which is difficult to enhance by using the clusters due to its complex memory access patterns. As an economical solution, accelerators using FPGAs are hopeful candidate. However, the total scale of UPACS is too large to be implemented on small numbers of FPGAs. For cost efficient implementation, partial reconfiguration which dynamically loads only required functions is proposed in this paper. Here, the MUSCL scheme, which is used frequently in UPACS, is selected as a target. Partial reconfiguration is applied to the flux limiter functions (FLF) in MUSCL. Four FLFs are implemented for Turbulence MUSCL (TMUSCL) and eight FLFs are for Convection MUSCL (CMUSCL). All FLFs are developed independently and separated from the top MUSCL module. At start-up, only required FLFs are selected and deployed in the system without interfering the other modules. This implementation has successfully reduced the resource utilization by 44% to 63%. Total power consumption also reduced by 33%. Configuration speed is improved by 34-times faster as compared to full reconfiguration method. All implemented functions achieved at least 17 times speed-up performance compared with the software implementation.

  • An Efficient Synchronization Scheme for Cooperative WBAN in Wireless Medical Telemetry Systems

    Sekchin CHANG  

     
    LETTER

      Vol:
    E95-B No:10
      Page(s):
    3096-3099

    In this letter, a timing synchronization scheme is proposed for cooperative WBAN which can be utilized in wireless medical telemetry systems. The approach efficiently exploits the cyclic structure of a presented preamble in order to effectively separate the superposition of cooperative signals. Then, each timing-offset and each channel parameter are estimated in the separated signal. The proposed scheme effectively recovers the original data based on the timing-offset estimates and the channel estimates. The simulation results reveal the excellent performance of the suggested method in terms of MSE and PER.

  • Cumulative Differential Nonlinearity Testing of ADCs

    Hungkai CHEN  Yingchieh HO  Chauchin SU  

     
    PAPER-Measurement Technology

      Vol:
    E95-A No:10
      Page(s):
    1768-1775

    This paper proposes a cumulative DNL (CDNL) test methodology for the BIST of ADCs. It analyzes the histogram of the DNL of a predetermined k LSBs distance to determine the DNL and gain error. The advantage of this method over others is that the numbers of required code bins and required samples are significantly reduced. The simulation and measurements of a 12-bit ADC show that the proposed CDNL has an error of less than 5% with only 212 samples, which can only be achieved with 222 samples using the conventional method. It only needs 16 registers to store code bins in this experiment.

  • Batch Logical Protocols for Efficient Multi-Party Computation

    Naoto KIRIBUCHI  Ryo KATO  Tsukasa ENDO  Takashi NISHIDE  Hiroshi YOSHIURA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E95-A No:10
      Page(s):
    1718-1728

    It is becoming more and more important to make use of personal or classified information while keeping it confidential. A promising tool for meeting this challenge is secure multi-party computation (MPC). It enables multiple parties, each given a snippet of a secret s, to compute a function f(s) by communicating with each other without revealing s. However, one of the biggest problems with MPC is that it requires a vast amount of communication. Much research has gone into making each protocol (equality testing, interval testing, etc.) more efficient. In this work, we make a set of multiple protocols more efficient by transforming them into their equivalent batch processing form and propose two protocols: “Batch Logical OR” and “Batch Logical AND.” Using proposed protocols recursively, we also propose “Batch Logical OR-AND” and “Batch Logical AND-OR,” and show arbitrary formula consisting of Boolean protocols, OR gates, and AND gates can be batched. Existing logical OR and logical AND protocols consisting of t equality testing invocations have a communication complexity of O(t), where is the bit length of the secrets. Our batched versions of these protocols reduce it to O( + t). For t interval testing invocations, they reduce both communication and round complexity. Thus they can make the queries on a secret shared database more efficient. For example, the use of the proposed protocols reduces the communication complexity for a query consisting of equality testing and interval testing by approximately 70% compared to the use of the corresponding existing protocols. The concept of the proposed protocols is versatile and can be applied to logical formulae consisting of protocols other than equality testing and interval testing, thereby making them more efficient as well.

6001-6020hit(18690hit)