The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

6141-6160hit(18690hit)

  • Primary Traffic Based Cooperative Multihop Relaying with Preliminary Farthest Relay Selection in Cognitive Radio Ad Hoc Networks

    I-Te LIN  Iwao SASASE  

     
    PAPER-Network

      Vol:
    E95-B No:8
      Page(s):
    2586-2599

    We propose a primary traffic based multihop relaying algorithm with cooperative transmission (PTBMR-CT). It enlarges the hop transmission distances to reduce the number of cognitive relays on the route from the cognitive source (CS) to the cognitive destination (CD). In each hop, from the cognitive nodes in a specified area depending on whether the primary source (PS) transmits data to the primary destination (PD), the cognitive node that is farthest away from the cognitive relay that sends data is selected as the other one that receives data. However, when the PS is transmitting data to the PD, from the cognitive nodes in a specified area, another cognitive node is also selected and prepared to be the cognitive relay that receives data of cooperative transmission. Cooperative transmission is performed if the PS is still transmitting data to the PD when the cognitive relay that receives data of the next hop transmission is being searched. Simulation results show that the average number of cognitive relays is reduced by PTBMR-CT compared to conventional primary traffic based farthest neighbor relaying (PTBFNR), and PTBMR-CT outperforms conventional PTBFNR in terms of the average end-to-end reliability, the average end-to-end throughput, the average required transmission power of transmitting data from the CS to the CD, and the average end-to-end transmission latency.

  • Dynamical Associative Memory: The Properties of the New Weighted Chaotic Adachi Neural Network

    Guangchun LUO  Jinsheng REN  Ke QIN  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E95-D No:8
      Page(s):
    2158-2162

    A new training algorithm for the chaotic Adachi Neural Network (AdNN) is investigated. The classical training algorithm for the AdNN and it's variants is usually a “one-shot” learning, for example, the Outer Product Rule (OPR) is the most used. Although the OPR is effective for conventional neural networks, its effectiveness and adequateness for Chaotic Neural Networks (CNNs) have not been discussed formally. As a complementary and tentative work in this field, we modified the AdNN's weights by enforcing an unsupervised Hebbian rule. Experimental analysis shows that the new weighted AdNN yields even stronger dynamical associative memory and pattern recognition phenomena for different settings than the primitive AdNN.

  • Neuron-Like Responses and Bifurcations of a Generalized Asynchronous Sequential Logic Spiking Neuron Model

    Takashi MATSUBARA  Hiroyuki TORIKAI  

     
    PAPER-Nonlinear Problems

      Vol:
    E95-A No:8
      Page(s):
    1317-1328

    A generalized version of sequential logic circuit based neuron models is presented, where the dynamics of the model is modeled by an asynchronous cellular automaton. Thanks to the generalizations in this paper, the model can exhibit various neuron-like waveforms of the membrane potential in response to excitatory and inhibitory stimulus. Also, the model can reproduce four groups of biological and model neurons, which are classified based on existence of bistability and subthreshold oscillations, as well as their underlying bifurcations mechanisms.

  • An Efficient Conical Area Evolutionary Algorithm for Bi-objective Optimization

    Weiqin YING  Xing XU  Yuxiang FENG  Yu WU  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E95-A No:8
      Page(s):
    1420-1425

    A conical area evolutionary algorithm (CAEA) is presented to further improve computational efficiencies of evolutionary algorithms for bi-objective optimization. CAEA partitions the objective space into a number of conical subregions and then solves a scalar subproblem in each subregion that uses a conical area indicator as its scalar objective. The local Pareto optimality of the solution with the minimal conical area in each subregion is proved. Experimental results on bi-objective problems have shown that CAEA offers a significantly higher computational efficiency than the multi-objective evolutionary algorithm based on decomposition (MOEA/D) while CAEA competes well with MOEA/D in terms of solution quality.

  • Automatic Multi-Stage Clock Gating Optimization Using ILP Formulation

    Xin MAN  Takashi HORIYAMA  Shinji KIMURA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E95-A No:8
      Page(s):
    1347-1358

    Clock gating is supported by commercial tools as a power optimization feature based on the guard signal described in HDL (structural method). However, the identification of control signals for gated registers is hard and designer-intensive work. Besides, since the clock gating cells also consume power, it is imperative to minimize the number of inserted clock gating cells and their switching activities for power optimization. In this paper, we propose an automatic multi-stage clock gating algorithm with ILP (Integer Linear Programming) formulation, including clock gating control candidate extraction, constraints construction and optimum control signal selection. By multi-stage clock gating, unnecessary clock pulses to clock gating cells can be avoided by other clock gating cells, so that the switching activity of clock gating cells can be reduced. We find that any multi-stage control signals are also single-stage control signals, and any combination of signals can be selected from single-stage candidates. The proposed method can be applied to 3 or more cascaded stages. The multi-stage clock gating optimization problem is formulated as constraints in LP format for the selection of cascaded clock-gating order of multi-stage candidate combinations, and a commercial ILP solver (IBM CPLEX) is applied to obtain the control signals for each register with minimum switching activity. Those signals are used to generate a gate level description with guarded registers from original design, and a commercial synthesis and layout tools are applied to obtain the circuit with multi-stage clock gating. For a set of benchmark circuits and a Low Density Parity Check (LDPC) Decoder (6.6k gates, 212 F.F.s), the proposed method is applied and actual power consumption is estimated using Synopsys NanoSim after layout. On average, 31% actual power reduction has been obtained compared with original designs with structural clock gating, and more than 10% improvement has been achieved for some circuits compared with single-stage optimization method. CPU time for optimum multi-stage control selection is several seconds for up to 25k variables in LP format. By applying the proposed clock gating, area can also be reduced since the multiplexors controlling register inputs are eliminated.

  • Network Virtualization Technology to Support Cloud Services Open Access

    Hideo KITAZUME  Takaaki KOYAMA  Toshiharu KISHI  Tomoko INOUE  

     
    INVITED PAPER

      Vol:
    E95-B No:8
      Page(s):
    2530-2537

    Recently, server virtualization technology, which is one of the key technologies to support cloud computing, has been making progress and gaining in maturity, resulting in an increase in the provision of cloud-based services and the integration of servers in enterprise networks. However, the progress in network virtualization technology, which is needed for the efficient and effective construction and operation of clouds, is lagging behind. It is only recently that all the required technical areas have started to be covered. This paper identifies network-related issues in cloud environments, describes the needs for network virtualization, and presents the recent trends in, and application fields of, network virtualization technology.

  • Medical Image Segmentation Using Level Set Method with a New Hybrid Speed Function Based on Boundary and Region Segmentation

    Jonghyun PARK  Soonyoung PARK  Wanhyun CHO  

     
    PAPER-Biological Engineering

      Vol:
    E95-D No:8
      Page(s):
    2133-2141

    This paper presents a new hybrid speed function needed to perform image segmentation within the level-set framework. The proposed speed function uses both the boundary and region information of objects to achieve robust and accurate segmentation results. This speed function provides a general form that incorporates the robust alignment term as a part of the driving force for the proper edge direction of an active contour, an active region term derived from the region partition scheme, and the smoothing term for regularization. First, we use an external force for active contours as the Gradient Vector Flow field. This is computed as the diffusion of gradient vectors of a gray level edge map derived from an image. Second, we partition the image domain by progressively fitting statistical models to the intensity of each region. Here we adopt two Gaussian distributions to model the intensity distribution of the inside and outside of the evolving curve partitioning the image domain. Third, we use the active contour model that has the computation of geodesics or minimal distance curves, which allows stable boundary detection when the model's gradients suffer from large variations including gaps or noise. Finally, we test the accuracy and robustness of the proposed method for various medical images. Experimental results show that our method can properly segment low contrast, complex images.

  • Dynamic Allocation of SPM Based on Time-Slotted Cache Conflict Graph for System Optimization

    Jianping WU  Ming LING  Yang ZHANG  Chen MEI  Huan WANG  

     
    PAPER-Computer System

      Vol:
    E95-D No:8
      Page(s):
    2039-2052

    This paper proposes a novel dynamic Scratch-pad Memory allocation strategy to optimize the energy consumption of the memory sub-system. Firstly, the whole program execution process is sliced into several time slots according to the temporal dimension; thereafter, a Time-Slotted Cache Conflict Graph (TSCCG) is introduced to model the behavior of Data Cache (D-Cache) conflicts within each time slot. Then, Integer Nonlinear Programming (INP) is implemented, which can avoid time-consuming linearization process, to select the most profitable data pages. Virtual Memory System (VMS) is adopted to remap those data pages, which will cause severe Cache conflicts within a time slot, to SPM. In order to minimize the swapping overhead of dynamic SPM allocation, a novel SPM controller with a tightly coupled DMA is introduced to issue the swapping operations without CPU's intervention. Last but not the least, this paper discusses the fluctuation of system energy profit based on different MMU page size as well as the Time Slot duration quantitatively. According to our design space exploration, the proposed method can optimize all of the data segments, including global data, heap and stack data in general, and reduce the total energy consumption by 27.28% on average, up to 55.22% with a marginal performance promotion. And comparing to the conventional static CCG (Cache Conflicts Graph), our approach can obtain 24.7% energy profit on average, up to 30.5% with a sight boost in performance.

  • High ESD Breakdown-Voltage InP HBT Transimpedance Amplifier IC for Optical Video Distribution Systems

    Kimikazu SANO  Munehiko NAGATANI  Miwa MUTOH  Koichi MURATA  

     
    PAPER-III-V High-Speed Devices and Circuits

      Vol:
    E95-C No:8
      Page(s):
    1317-1322

    This paper is a report on a high ESD breakdown-voltage InP HBT transimpedance amplifier IC for optical video distribution systems. To make ESD breakdown-voltage higher, we designed ESD protection circuits integrated in the TIA IC using base-collector/base-emitter diodes of InP HBTs and resistors. These components for ESD protection circuits have already existed in the employed InP HBT IC process, so no process modifications were needed. Furthermore, to meet requirements for use in optical video distribution systems, we studied circuit design techniques to obtain a good input-output linearity and a low-noise characteristic. Fabricated InP HBT TIA IC exhibited high human-body-model ESD breakdown voltages (±1000 V for power supply terminals, ±200 V for high-speed input/output terminals), good input-output linearity (less than 2.9-% duty-cycle-distortion), and low noise characteristic (10.7 pA/ averaged input-referred noise current density) with a -3-dB-down higher frequency of 6.9 GHz. To the best of our knowledge, this paper is the first literature describing InP ICs with high ESD-breakdown voltages.

  • Multi-Battery Scheduling for Battery-Powered DVS Systems

    Peng OUYANG  Shouyi YIN  Leibo LIU  Shaojun WEI  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E95-B No:7
      Page(s):
    2278-2285

    More and more mobile devices adopt multi-battery and dynamic voltage scaling policy (DVS) to reduce the energy consumption and extend the battery runtime. However, since the nonlinear characteristics of the multi-battery are not considered, the practical efficiency is not good enough. In order to reduce the energy consumption and extend the battery runtime, this paper proposes an approach based on the battery characteristics to implement the co-optimization of the multi-battery scheduling and dynamic voltage scaling on multi-battery powered systems. In this work, considering the nonlinear discharging characteristics of the existing batteries, we use the Markov process to depict the multi-battery discharging behavior, and build a multi-objective optimal model to denote the energy consumption and battery states, then propose a binary tree based algorithm to solve this model. By means of this method, we get an optimal and applicable scheme about multi-battery scheduling and dynamic voltage scaling. Experimental results show that this approach achieves an average improvement in battery runtime of 17.5% over the current methods in physical implementation.

  • Introduction to Latest RF ATE with Low Test Cost Solutions Open Access

    Masayuki KIMISHIMA  

     
    INVITED PAPER

      Vol:
    E95-C No:7
      Page(s):
    1147-1153

    This paper describes latest RF Automated Test Equipment (RF ATE) technologies that include device under test (DUT) connections, a calibration method, and an RF test module mainly focusing on low cost of test (COT). Most important respect for low COT is how achieve a number of simultaneous measurements and short test time as well as a plain calibration. We realized these respects by a newly proposed calibration method and a drastically downsized RF test module with multiple resources and high throughput. The calibration method is very convenient for RF ATE. Major contribution for downsizing of the RF test module is RF circuit technology in form of RF functional system in package (RF-SIPs), resulting in very attractive test solutions.

  • Training Convergence in Range-Based Cooperative Positioning with Stochastic Positional Knowledge

    Ziming HE  Yi MA  Rahim TAFAZOLLI  

     
    LETTER-Information Theory

      Vol:
    E95-A No:7
      Page(s):
    1200-1204

    This letter investigates the training convergence in range-based cooperative positioning with stochastic positional knowledge. Firstly, a closed-form of squared position-error bound (SPEB) is derived with error-free ranging. Using the derived closed-form, it is proved that the SPEB reaches its minimum when at least 2 out of N (> 2) agents send training sequences. Finally, numerical results are provided to elaborate the theoretical analysis with zero-mean Gaussian ranging errors.

  • Route Determination Method for Fast Network Restoration in Functionally Distributed Transport Networking

    Kouji SUGISONO  Hirofumi YAMAZAKI  Hideaki IWATA  Atsushi HIRAMATSU  

     
    PAPER-Network

      Vol:
    E95-B No:7
      Page(s):
    2315-2322

    A packet network architecture called “functionally distributed transport networking” is being studied, where control elements (CEs) are separated from the forwarding elements (FEs) of all routers in a network, and a centralized CE manages the control functions for all FEs. A crucial issue to be addressed in this network architecture is the occurrence of bottlenecks in the CE performance, and rapid network restoration after failures is the main problem to be solved. Thus, we propose here a fast backup route determination method suitable for this network architecture, and we also show the practicality of this architecture. Most failures can be categorized as single-node or single-link failures. The proposed method prepares backup routes for all possible single-node failures in advance and computes backup routes for single-link failures after the failure occurs. The number of possible single-node failures is much less than that of possible single-link failures, and the preparation of backup routes for single-node failures is practical under the memory requirements. Two techniques are used in computing backup routes for single-link failures in order to reduce the computation time. One is to calculate only the routes affected by the link failure. The other is to use an algorithm to compute backup routes for single-link failures based on preplanned backup routes for single-node failures. To demonstrate the practicality of our method, we evaluated the amount of memory and computation time needed to prepare backup routes for all single-node failures, and we carried out simulations with various network topologies to evaluate the route computation time required for a single-link failure.

  • Security Condition for Exact Localization in Wireless Ad Hoc Networks

    Jin Seok KIM  Dae Hyun YUM  Sung Je HONG  Jong KIM  Pil Joong LEE  

     
    LETTER-Network

      Vol:
    E95-B No:7
      Page(s):
    2459-2462

    As deployment of wireless ad hoc networks for location-based services increases, accurate localization of mobile nodes is becoming more important. Localization of a mobile node is achieved by estimating its distances from a group of anchor nodes. If some anchors are malicious and colluding, localization accuracy cannot be guaranteed. In this article, we present the security conditions for exact localization in the presence of colluding malicious anchors. We first derive the minimum number of truthful anchors that are required for exact localization in 2-D Euclidean space where some anchors may be collinear. Second, we extend our security condition to 3-D localization where some anchors may be coplanar.

  • Reduction in Mutual Coupling Characteristics of Slot-Coupled Planar Antenna due to Rectangular Elements

    Huiling JIANG  Ryo YAMAGUCHI  Keizo CHO  

     
    PAPER-Antennas and Propagation

      Vol:
    E95-B No:7
      Page(s):
    2368-2376

    High frequency bands such as the 3-GHz band have received much attention as frequency resources for broadband mobile communication systems. Radio Frequency (RF) integrated antennas are considered to be useful as base station antennas in decreasing the feeding loss that is otherwise inevitable in high frequency bands and they ensure sufficient power for broadband transmission. One problem in actualizing RF integrated antennas is miniaturizing the duplexer, which is generally large, among the RF circuitry components. To downsize the duplexer, we consider separately locating the transmitter (Tx) and receiver (Rx) antennas. To suppress further the mutual coupling between the Tx and Rx antennas, we investigate a filter integrated antenna configuration. In this paper, we consider an aperture coupled patch antenna as the base antenna configuration and propose a new filter integrated antenna that comprises multiple rectangular elements installed between the coupling slot and radiation element of the Rx antenna. The simulation and measurement results confirm that the new antenna reduces the mutual coupling in the transmission frequency band up to 5.7 dB compared to the conventional slot coupled patch antenna configuration.

  • Accurate Image Expansion Method Using Range Points Based Ellipse Fitting for UWB Imaging Radar

    Yoriaki ABE  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E95-B No:7
      Page(s):
    2424-2432

    Ultra-wideband (UWB) pulse radars have a definite advantage in high-range resolution imaging, and are suitable for short-range measurements, particularly at disaster sites or security scenes where optical sensors are rarely suitable because of dust or strong backlighting. Although we have already proposed an accurate imaging algorithm called Range Points Migration (RPM), its reconstructible area is too small to identify the shape of an object if it is far from the radar and the size of the aperture is inadequate. To resolve this problem, this paper proposes a novel image expansion method based on ellipse extrapolation; it enhances extrapolation accuracy by deriving direct estimates of the observed range points distributed in the data space. Numerical validation shows that the proposed method accurately extrapolates part of the target boundary, even if an extremely small region of the target boundary is obtained by RPM.

  • MU-MIMO Precoding Methods for Reducing the Transmit Normalization Factor by Perturbing Data of the Codebook

    Hyunwook YANG  Seungwon CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:7
      Page(s):
    2405-2413

    In this paper, we present an algorithm for reducing the transmit normalization factor by perturbing the transmit signal in a Multi-User Multiple Input Multiple Output (MU-MIMO) system which uses the channel inverse matrix as its precoding matrix. A base station must normalize unnormalized transmit signals due to the limitation of the constant transmit power. This paper defines the norm of the unnormalized transmit signal as the transmit normalization factor used to normalize the transmit signal. Recalling that the transmit normalization factor consists of a combination of the singular values from the channel inverse matrix, we provide a codebook that successively reduces the coefficients of these singular values. Through computer simulations, the proposed algorithm is compared to sphere encoding in terms of the Bit Error Rate (BER) and the outage probability in a MU-MIMO signal environment. Sphere encoding is known to be an optimal solution amongst the perturbation methods that reduce the transmit normalization factor [1]. This work demonstrates that the proposed algorithm is has very good performance, comparable to that of sphere encoding, while its computational load is nearly 200 times less. Since the codebook in our algorithm depends only on the given channel, the difference in the computational complexity becomes even greater when the channel state is not changed, because the codebook can be reused. Furthermore, the codebook exhibits the characteristic of robustness to the maximum Doppler shift.

  • Discovery of Predicate-Oriented Relations among Named Entities Extracted from Thai Texts

    Nattapong TONGTEP  Thanaruk THEERAMUNKONG  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E95-D No:7
      Page(s):
    1932-1946

    Extracting named entities (NEs) and their relations is more difficult in Thai than in other languages due to several Thai specific characteristics, including no explicit boundaries for words, phrases and sentences; few case markers and modifier clues; high ambiguity in compound words and serial verbs; and flexible word orders. Unlike most previous works which focused on NE relations of specific actions, such as work_for, live_in, located_in, and kill, this paper proposes more general types of NE relations, called predicate-oriented relation (PoR), where an extracted action part (verb) is used as a core component to associate related named entities extracted from Thai Texts. Lacking a practical parser for the Thai language, we present three types of surface features, i.e. punctuation marks (such as token spaces), entity types and the number of entities and then apply five alternative commonly used learning schemes to investigate their performance on predicate-oriented relation extraction. The experimental results show that our approach achieves the F-measure of 97.76%, 99.19%, 95.00% and 93.50% on four different types of predicate-oriented relation (action-location, location-action, action-person and person-action) in crime-related news documents using a data set of 1,736 entity pairs. The effects of NE extraction techniques, feature sets and class unbalance on the performance of relation extraction are explored.

  • A 60 GHz-Band 3-Dimensional System-in-Package Transmitter Module with Integrated Antenna Open Access

    Noriharu SUEMATSU  Satoshi YOSHIDA  Shoichi TANIFUJI  Suguru KAMEDA  Tadashi TAKAGI  Kazuo TSUBOUCHI  

     
    INVITED PAPER

      Vol:
    E95-C No:7
      Page(s):
    1141-1146

    A low cost, ultra small Radio Frequency (RF) transceiver module with integrated antenna is one of the key technologies for short range millimeter-wave wireless communication. This paper describes a 60 GHz-band transmitter module with integrated dipole antenna. The module consists of three pieces of low-cost organic resin substrate. These substrates are vertically stacked by employing Cu ball bonding 3-dimensional (3-D) system-in-package (SiP) technology and the MMIC's are mounted on each organic substrates by using Au-stud bump bonding (SBB) technique. The planer dipole antenna is fabricated on the top of the stacked organic substrate to avoid the influence of the grounding metal on the base substrate. At 63 GHz, maximum actual gain of 6.0 dBi is obtained for fabricated planar dipole antenna. The measured radiation patterns are agreed with the electro-magnetic (EM) simulated result, therefore the other RF portion of the 3-D front-end module, such as flip chip mounted IC's on the top surface of the module, does not affect the antenna characteristics. The results show the feasibility of millimeter-wave low cost, ultra small antenna integrated module using stacked organic substrates.

  • Large-Scale Cooperative Dissemination of Governmental Information in Emergency – An Experiment and Future Strategies Open Access

    Katsuhiro HORIBA  Keiko OKAWA  Jun MURAI  

     
    INVITED PAPER

      Vol:
    E95-B No:7
      Page(s):
    2191-2199

    On the 11th of March, 2011, a massive earthquake hit the northeast region of Japan. The government of Japan needed to publish information regarding the earthquake and its influences. However, their capacity of Web services overflowed. They called the industry and academia for help for providing stable information service to the people. Industry and academia formed a team to answer the call and named themselves the “EQ project”. This paper describes how the EQ Project was organized and operated, and gives analyses of the statistics. An academic organization took the lead in the EQ Project. Ten organizations which consisted of commercial IT industry and academics specialized in Internet technology, were participating in the EQ Project and they structured the three clusters based on their relationships and technological approach. In WIDE Cluster, one of three clusters in the structure of EQ, the peak number of file accesses per day was over 90 thousand, the mobile browsers was 3.4% and foreign languages (translated contents) were referred 35%. We have also discussed the future information distribution strategies in emergency situation based on the experiences of the EQ Project, and proposed nine suggestions to the MEXT as a future strategy.

6141-6160hit(18690hit)