The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

6161-6180hit(18690hit)

  • Research on Characteristics of Field Uniformity in Reverberation Chamber Using Two TX Antennas

    Jung-Hoon KIM  Tae-Heon JANG  Sung-Kuk LIM  Songjun LEE  Sung-Il YANG  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E95-B No:7
      Page(s):
    2386-2392

    This paper presents a method to improve field uniformity using two TX antennas in a reverberation chamber with less steps of a stirrer. A mode-stirred reverberation chamber (MSRC) is considered as an alternative to the semi-anechoic chamber for an electromagnetic compatibility test because it provides a large test volume, a statistically uniform field, and a high maximum electric field. To improve field uniformity, we introduce two transmitting antennas for excitation in an MSRC, and predict statistical distribution of the complex reflection coefficients (scattering parameters). To prove the validation of our theory and the reliability of measurement results, three kinds of stirrers with different shape and sizes were fabricated and their efficiencies were measured in an MSRC, and then field uniformities have been investigated for 1–3 GHz frequency within the maximum number of independent samples that stirrers can provide. The measurement results show that the average received power is about 1.5 times as high as when using one transmitting antenna, and field uniformity is improved. Use of two transmitting antennas in an MSRC is regarded as a useful method to improve field uniformity at less stirrer steps, for radiated immunity tests.

  • A Delta-Sigma Modulator Using a Non-uniform Quantizer Adjusted for the Probability Density of Input Signals

    Toru KITAYABU  Mao HAGIWARA  Hiroyasu ISHIKAWA  Hiroshi SHIRAI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E95-B No:7
      Page(s):
    2257-2265

    A novel delta-sigma modulator that employs a non-uniform quantizer whose spacing is adjusted by reference to the statistical properties of the input signal is proposed. The proposed delta-sigma modulator has less quantization noise compared to the one that uses a uniform quantizer with the same number of output values. With respect to the quantizer on its own, Lloyd proposed a non-uniform quantizer that is best for minimizing the average quantization noise power. The applicable condition of the method is that the statistical properties of the input signal, the probability density, are given. However, the procedure cannot be directly applied to the quantizer in the delta-sigma modulator because it jeopardizes the modulator's stability. In this paper, a procedure is proposed that determine the spacing of the quantizer with avoiding instability. Simulation results show that the proposed method reduces quantization noise by up to 3.8 dB and 2.8 dB with the input signal having a PAPR of 16 dB and 12 dB, respectively, compared to the one employing a uniform quantizer. Two alternative types of probability density function (PDF) are used in the proposed method for the calculation of the output values. One is the PDF of the input signal to the delta-sigma modulator and the other is an approximated PDF of the input signal to the quantizer inside the delta-sigma modulator. Both approaches are evaluated to find that the latter gives lower quantization noise.

  • Automatic Road Area Extraction from Printed Maps Based on Linear Feature Detection

    Sebastien CALLIER  Hideo SAITO  

     
    PAPER-Segmentation

      Vol:
    E95-D No:7
      Page(s):
    1758-1765

    Raster maps are widely available in the everyday life, and can contain a huge amount of information of any kind using labels, pictograms, or color code e.g. However, it is not an easy task to extract roads from those maps due to those overlapping features. In this paper, we focus on an automated method to extract roads by using linear features detection to search for seed points having a high probability to belong to roads. Those linear features are lines of pixels of homogenous color in each direction around each pixel. After that, the seeds are then expanded before choosing to keep or to discard the extracted element. Because this method is not mainly based on color segmentation, it is also suitable for handwritten maps for example. The experimental results demonstrate that in most cases our method gives results similar to usual methods without needing any previous data or user input, but do need some knowledge on the target maps; and does work with handwritten maps if drawn following some basic rules whereas usual methods fail.

  • A Novel Steganographic Method with Four-Pixel Differencing and Exploiting Modification Direction

    Xin LIAO  Qiaoyan WEN  Jie ZHANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E95-A No:7
      Page(s):
    1189-1192

    In this letter, a novel steganographic method with four-pixel differencing and exploiting modification direction is proposed. Secret data are embedded into each four-pixel block by adaptively applying exploiting modification direction technique. The difference value of the four-pixel block is used to judge whether the pixels in edge areas can tolerate larger changes than those in smooth areas. The readjustment guarantees to extract the secret data exactly and to minimize the embedding distortion. Since the proposed method processes non-overlapping 22 pixels blocks instead of two consecutive pixels, the features of edge can be considered sufficiently. Compared with the previous method, experimental results show that the proposed method provides better performance, i.e., larger embedding capacity and better image quality.

  • Homogeneous Superpixels from Markov Random Walks

    Frank PERBET  Bjorn STENGER  Atsuto MAKI  

     
    PAPER-Segmentation

      Vol:
    E95-D No:7
      Page(s):
    1740-1748

    This paper presents a novel algorithm to generate homogeneous superpixels from Markov random walks. We exploit Markov clustering (MCL) as the methodology, a generic graph clustering method based on stochastic flow circulation. In particular, we introduce a graph pruning strategy called compact pruning in order to capture intrinsic local image structure. The resulting superpixels are homogeneous, i.e. uniform in size and compact in shape. The original MCL algorithm does not scale well to a graph of an image due to the square computation of the Markov matrix which is necessary for circulating the flow. The proposed pruning scheme has the advantages of faster computation, smaller memory footprint, and straightforward parallel implementation. Through comparisons with other recent techniques, we show that the proposed algorithm achieves state-of-the-art performance.

  • Interference Mitigation Techniques for OFDMA-Based Digital Duplexing Systems

    Chang-Hwan PARK  Han-Seong KIM  Yong-Soo CHO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:7
      Page(s):
    2477-2480

    In OFDMA-based digital duplexing (DD) systems, the effective channel impulse response (CIR) is lengthened due to time difference of arrivals (TDoAs) from adjacent subscriber stations (SSs). In this letter, a time-domain shortening filter (TSF) is proposed to shorten the effective CIR by maximizing signal-to-interference ratio for pulse shortening (SIRPS). A time-domain window (TW) is also proposed to reduce the effect of inter-carrier interference (ICI) due to CFO in OFDMA-based DD systems, by maximizing the signal-to-interference and noise ratio for window (SINRW).

  • An Improved GPS/RFID Integration Method Based on Sequential Iterated Reduced Sigma Point Kalman Filter

    Jing PENG  Falin WU  Ming ZHU  Feixue WANG  Kefei ZHANG  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E95-B No:7
      Page(s):
    2433-2441

    In this paper, an improved GPS/RFID integration method based on Sequential Iterated Reduced Sigma Point Kalman Filter (SIRSPKF) is proposed for vehicle navigation applications. It is applied to improve the accuracy, reliability and availability of satellite positioning in the areas where the satellite visibility is limited. An RFID system is employed to assist the GPS system in achieving high accuracy positioning. Further, to reduce the measurement noise and decrease the computational complexity caused by the integrated GPS/RFID, SIRSPKF is investigated as the dominant filter for the proposed integration. Performances and computational complexities of different integration scenarios with different filters are compared in this paper. A field experiment shows that both accuracy and availability of positioning can be improved significantly by this low-cost GPS/RFID integration method with the reduced computational load.

  • ML Frame Synchronization for OFDM Systems Using a Known Pilot and Cyclic Prefixes

    Heon HUH  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E95-B No:7
      Page(s):
    2296-2301

    Orthogonal frequency-division multiplexing (OFDM) is a popular air interface technology that is adopted as a standard modulation scheme for 4G communication systems owing to its excellent spectral efficiency. For OFDM systems, synchronization problems have received much attention along with peak-to-average power ratio (PAPR) reduction. In addition to frequency offset estimation, frame synchronization is a challenging problem that must be solved to achieve optimal system performance. In this paper, we present a maximum likelihood (ML) frame synchronizer for OFDM systems. The synchronizer exploits a synchronization word and cyclic prefixes together to improve the synchronization performance. Numerical results show that the performance of the proposed frame synchronizer is better than that of conventional schemes. The proposed synchronizer can be used as a reference for evaluating the performance of other suboptimal frame synchronizers. We also modify the proposed frame synchronizer to reduce the implementation complexity and propose a near-ML synchronizer for time-varying fading channels.

  • Suppression of Polarization Dependent Loss by Using a Single Birefringent Fiber for Low-Coherence Signal

    Mitsuhiro TATEDA  Kei OZAWA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E95-B No:7
      Page(s):
    2302-2305

    Some optical components have polarization dependent loss (PDL), which degrades the performance of optical measurement systems. Various PDL suppression methods have been proposd, most of them have rather complicated structures. In this paper we propose a new simple method for PDL suppression, in which a single birefringent element is concatenated to a PDL device with their birefringent axes offset by π/4. The effectiveness of the proposed method is verified by experiments, that is, polarization dependent loss variation amplitude V of a device relative to its average loss is reduced from 90% to 2% by using a 2 m long PANDA fiber for an LED light source whose central wavelength λ0 and spectral width Δλ are 847 nm and 55 nm, respectively. Furthermore, for an SLD light source with λ0=1539 nm and Δλ=71 nm, V as much as 80% is reduced to 2% by using the same PANDA fiber.

  • Localization of Passive RFID Tags by Using Broad-Type Multi-Sensing-Range (B-MSR) Method

    Manato FUJIMOTO  Tomotaka WADA  Atsuki INADA  Emi NAKAMORI  Yuki ODA  Kouichi MUTSUURA  Hiromi OKADA  

     
    PAPER-Measurement Technology

      Vol:
    E95-A No:7
      Page(s):
    1164-1174

    The radio frequency identification (RFID) system has attracting attention as a new identification source that achieves a ubiquitous environment. Each RFID tag has a unique ID code, and is attached on an object whose information it contains. A user reads the unique ID code using RFID readers and obtains information about the object. One of the important applications of RFID technology is the indoor position estimation of RFID tags. It can be applied to navigation systems for people in complex buildings. In this paper, we propose an effective position estimation method named Broad-type Multi-Sensing-Range (B-MSR) method to improve the estimation error of the conventional methods using sensor model. A new reader antenna with two flexible antenna elements is introduced into B-MSR. The distance between two flexible antenna elements can be adjusted. Thus, two kinds of system parameters can be controlled, the distance between two antenna elements and the transmission power of the RFID reader. In this paper, four sensing ranges are settled by controlling the values of two parameters. The performance evaluation shows four characteristics of B-MSR. Firstly, it reduces the initial estimation error. Secondly, it reduces the moving distance. Thirdly, it reduces the number of different sensing points. Fourthly, it shortens the required estimation time.

  • A 120-GHz Transmitter and Receiver Chipset with 9-Gbps Data Rate Using 65-nm CMOS Technology

    Ryuichi FUJIMOTO  Mizuki MOTOYOSHI  Kyoya TAKANO  Uroschanit YODPRASIT  Minoru FUJISHIMA  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1154-1162

    The design and measured results of a 120-GHz transmitter and receiver chipset are described in this paper. A simple on-off keying (OOK) modulation is adopted for low power consumption. The proposed transmitter and receiver are fabricated using 65-nm CMOS technology. The current consumption of the transmitter and receiver are 19.2 mA and 48.2 mA respectively. A 9-Gbps PRBS is successfully transferred from the transmitter to the receiver with the bit error rate less than 10-9.

  • An Improved Hybrid LUT-Based Architecture for Low-Error and Efficient Fixed-Width Squarer

    Van-Phuc HOANG  Cong-Kha PHAM  

     
    LETTER-Digital Signal Processing

      Vol:
    E95-A No:7
      Page(s):
    1180-1184

    In this paper, an improved hybrid LUT-based architecture for low-error and efficient fixed-width squarer circuits is presented in which LUT-based and conventional logic circuits are employed together to achieve the good trade-off between hardware complexity and performance. By exploiting the mathematical identities and hybrid architecture, the mean error and mean squarer error of the proposed squarer are reduced by up to 40%, compared with the best previous method presented in literature. Moreover, the proposed method can improve the speed and reduce the area of the squarer circuit. The implementation and chip measurement results in 0.18-µm CMOS technology are also presented and discussed.

  • Nonlinear Least-Squares Time-Difference Estimation from Sub-Nyquist-Rate Samples

    Koji HARADA  Hideaki SAKAI  

     
    PAPER-Digital Signal Processing

      Vol:
    E95-A No:7
      Page(s):
    1117-1124

    In this paper, time-difference estimation of filtered random signals passed through multipath channels is discussed. First, we reformulate the approach based on innovation-rate sampling (IRS) to fit our random signal model, then use the IRS results to drive the nonlinear least-squares (NLS) minimization algorithm. This hybrid approach (referred to as the IRS-NLS method) provides consistent estimates even for cases with sub-Nyquist sampling assuming the use of compactly-supported sampling kernels that satisfies the recently-developed nonaliasing condition in the frequency domain. Numerical simulations show that the proposed NLS-IRS method can improve performance over the straight-forward IRS method, and provides approximately the same performance as the NLS method with reduced sampling rate, even for closely-spaced time delays. This enables, given a fixed observation time, significant reduction in the required number of samples, while maintaining the same level of estimation performance.

  • A Wide Range CMOS Power Amplifier with Improved Group Delay Variation and Gain Flatness for UWB Transmitters

    Rohana SAPAWI  Ramesh K. POKHAREL  Haruichi KANAYA  Keiji YOSHIDA  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1182-1188

    This paper presents the design and implementation of 0.9–4.8 GHz CMOS power amplifier (PA) with improved group delay variation and gain flatness at the same time for UWB transmitters. This PA design employs a two-stage cascade common source topology, a resistive shunt feedback technique and inductive peaking to achieve high gain flatness, and good input matching. Based on theoretical analysis, the main design factor for group delay variation is identified. The measurement results indicate that the proposed PA design has an average gain of 10.2 ± 0.8 dB while maintaining a 3-dB bandwidth of 0.57 to 5.8 GHz, an input return loss |S11| less than -4.4 dB, and an output return loss |S22| less than -9.2 dB over the frequency range of interest. The input 1 dB compression point at 2 GHz was -9 dBm while consumes 30 mW power from 1.5 V supply voltage. Moreover, excellent phase linearity (i.e., group delay variation) of ±125 ps was achieved across the whole band.

  • Identification Schemes from Key Encapsulation Mechanisms

    Hiroaki ANADA  Seiko ARITA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E95-A No:7
      Page(s):
    1136-1155

    We propose a generic conversion from a key encapsulation mechanism (KEM) to an identification (ID) scheme. The conversion derives the security for ID schemes against concurrent man-in-the-middle (cMiM) attacks from the security for KEMs against adaptive chosen ciphertext attacks on one-wayness (one-way-CCA2). Then, regarding the derivation as a design principle of ID schemes, we develop a series of concrete one-way-CCA2 secure KEMs. We start with El Gamal KEM and prove it secure against non-adaptive chosen ciphertext attacks on one-wayness (one-way-CCA1) in the standard model. Then, we apply a tag framework with the algebraic trick of Boneh and Boyen to make it one-way-CCA2 secure based on the Gap-CDH assumption. Next, we apply the CHK transformation or a target collision resistant hash function to exit the tag framework. And finally, as it is better to rely on the CDH assumption rather than the Gap-CDH assumption, we apply the Twin DH technique of Cash, Kiltz and Shoup. The application is not “black box” and we do it by making the Twin DH technique compatible with the algebraic trick. The ID schemes obtained from our KEMs show the highest performance in both computational amount and message length compared with previously known ID schemes secure against concurrent man-in-the-middle attacks.

  • Route Determination Method for Fast Network Restoration in Functionally Distributed Transport Networking

    Kouji SUGISONO  Hirofumi YAMAZAKI  Hideaki IWATA  Atsushi HIRAMATSU  

     
    PAPER-Network

      Vol:
    E95-B No:7
      Page(s):
    2315-2322

    A packet network architecture called “functionally distributed transport networking” is being studied, where control elements (CEs) are separated from the forwarding elements (FEs) of all routers in a network, and a centralized CE manages the control functions for all FEs. A crucial issue to be addressed in this network architecture is the occurrence of bottlenecks in the CE performance, and rapid network restoration after failures is the main problem to be solved. Thus, we propose here a fast backup route determination method suitable for this network architecture, and we also show the practicality of this architecture. Most failures can be categorized as single-node or single-link failures. The proposed method prepares backup routes for all possible single-node failures in advance and computes backup routes for single-link failures after the failure occurs. The number of possible single-node failures is much less than that of possible single-link failures, and the preparation of backup routes for single-node failures is practical under the memory requirements. Two techniques are used in computing backup routes for single-link failures in order to reduce the computation time. One is to calculate only the routes affected by the link failure. The other is to use an algorithm to compute backup routes for single-link failures based on preplanned backup routes for single-node failures. To demonstrate the practicality of our method, we evaluated the amount of memory and computation time needed to prepare backup routes for all single-node failures, and we carried out simulations with various network topologies to evaluate the route computation time required for a single-link failure.

  • MU-MIMO Precoding Methods for Reducing the Transmit Normalization Factor by Perturbing Data of the Codebook

    Hyunwook YANG  Seungwon CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:7
      Page(s):
    2405-2413

    In this paper, we present an algorithm for reducing the transmit normalization factor by perturbing the transmit signal in a Multi-User Multiple Input Multiple Output (MU-MIMO) system which uses the channel inverse matrix as its precoding matrix. A base station must normalize unnormalized transmit signals due to the limitation of the constant transmit power. This paper defines the norm of the unnormalized transmit signal as the transmit normalization factor used to normalize the transmit signal. Recalling that the transmit normalization factor consists of a combination of the singular values from the channel inverse matrix, we provide a codebook that successively reduces the coefficients of these singular values. Through computer simulations, the proposed algorithm is compared to sphere encoding in terms of the Bit Error Rate (BER) and the outage probability in a MU-MIMO signal environment. Sphere encoding is known to be an optimal solution amongst the perturbation methods that reduce the transmit normalization factor [1]. This work demonstrates that the proposed algorithm is has very good performance, comparable to that of sphere encoding, while its computational load is nearly 200 times less. Since the codebook in our algorithm depends only on the given channel, the difference in the computational complexity becomes even greater when the channel state is not changed, because the codebook can be reused. Furthermore, the codebook exhibits the characteristic of robustness to the maximum Doppler shift.

  • Accurate Image Expansion Method Using Range Points Based Ellipse Fitting for UWB Imaging Radar

    Yoriaki ABE  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E95-B No:7
      Page(s):
    2424-2432

    Ultra-wideband (UWB) pulse radars have a definite advantage in high-range resolution imaging, and are suitable for short-range measurements, particularly at disaster sites or security scenes where optical sensors are rarely suitable because of dust or strong backlighting. Although we have already proposed an accurate imaging algorithm called Range Points Migration (RPM), its reconstructible area is too small to identify the shape of an object if it is far from the radar and the size of the aperture is inadequate. To resolve this problem, this paper proposes a novel image expansion method based on ellipse extrapolation; it enhances extrapolation accuracy by deriving direct estimates of the observed range points distributed in the data space. Numerical validation shows that the proposed method accurately extrapolates part of the target boundary, even if an extremely small region of the target boundary is obtained by RPM.

  • Reduction in Mutual Coupling Characteristics of Slot-Coupled Planar Antenna due to Rectangular Elements

    Huiling JIANG  Ryo YAMAGUCHI  Keizo CHO  

     
    PAPER-Antennas and Propagation

      Vol:
    E95-B No:7
      Page(s):
    2368-2376

    High frequency bands such as the 3-GHz band have received much attention as frequency resources for broadband mobile communication systems. Radio Frequency (RF) integrated antennas are considered to be useful as base station antennas in decreasing the feeding loss that is otherwise inevitable in high frequency bands and they ensure sufficient power for broadband transmission. One problem in actualizing RF integrated antennas is miniaturizing the duplexer, which is generally large, among the RF circuitry components. To downsize the duplexer, we consider separately locating the transmitter (Tx) and receiver (Rx) antennas. To suppress further the mutual coupling between the Tx and Rx antennas, we investigate a filter integrated antenna configuration. In this paper, we consider an aperture coupled patch antenna as the base antenna configuration and propose a new filter integrated antenna that comprises multiple rectangular elements installed between the coupling slot and radiation element of the Rx antenna. The simulation and measurement results confirm that the new antenna reduces the mutual coupling in the transmission frequency band up to 5.7 dB compared to the conventional slot coupled patch antenna configuration.

  • Security Condition for Exact Localization in Wireless Ad Hoc Networks

    Jin Seok KIM  Dae Hyun YUM  Sung Je HONG  Jong KIM  Pil Joong LEE  

     
    LETTER-Network

      Vol:
    E95-B No:7
      Page(s):
    2459-2462

    As deployment of wireless ad hoc networks for location-based services increases, accurate localization of mobile nodes is becoming more important. Localization of a mobile node is achieved by estimating its distances from a group of anchor nodes. If some anchors are malicious and colluding, localization accuracy cannot be guaranteed. In this article, we present the security conditions for exact localization in the presence of colluding malicious anchors. We first derive the minimum number of truthful anchors that are required for exact localization in 2-D Euclidean space where some anchors may be collinear. Second, we extend our security condition to 3-D localization where some anchors may be coplanar.

6161-6180hit(18690hit)