The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

7501-7520hit(20498hit)

  • Design of High-Performance CMOS Level Converters Considering PVT Variations

    Jinn-Shyan WANG  Yu-Juey CHANG  Chingwei YEH  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E94-C No:5
      Page(s):
    913-916

    CMOS SoCs can reduce power consumption while maintaining performance by adopting voltage scaling (VS) technologies. The operating speed of the level converter (LC) strongly affects the effectiveness of VS technologies. However, PVT variations can cause serious problems to the LC, because the state-of-the-art LC designs do not give enough attention to this issue. In this work, we proposed to analyze the impact of PVT variations on the performance of the LC using a previously developed heuristic sizing methodology. Based on the evaluation results from different operating corners with different offset voltages and temperatures, we proposed a variation-tolerant LC that achieves both high performance and low energy with a high tolerability for PVT variations.

  • Iterative Minimum Mean Square Error Interference Alignment Scheme for the MIMO X Channel

    Hui SHEN  Bin LIN  Yi LUO  Feng LIU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:5
      Page(s):
    1348-1354

    In this paper, we propose a new interference alignment (IA) scheme that jointly designs the linear transmitter and receiver for the 2-user MIMO X channel system, using minimum total mean square error criterion, subject to each transmitter power constraint. We show that transmitters and receivers under such criteria could be realized through a joint iterative algorithm. Considering the imperfection of channel state information (CSI), we also extend the minimum mean square error interference alignment schemes for the MIMO X channel with CSI estimation error. A robust iterative algorithm which is insensitve to CSI estimation error is proposed. Simulation results are also provided to demonstrate the proposed algorithm.

  • Interaction of Bis-diethylaminosilane with a Hydroxylized Si (001) Surface for SiO2 Thin-Film Growth Using Density Functional Theory

    Seung-Bin BAEK  Dae-Hee KIM  Yeong-Cheol KIM  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    771-774

    We studied the interaction of Bis-diethylaminosilane (SiH2[N(C2H5)2]2, BDEAS) with a hydroxylized Si (001) surface for SiO2 thin-film growth using density functional theory (DFT). BDEAS was adsorbed on the Si surface and reacted with the H atom of hydroxyl (-OH) to produce the di-ethylaminosilane (-SiH2[N(C2H5)2], DEAS) group and di-ethylamine (NH(C2H5)2, DEA). Then, DEAS was able to react with another H atom of -OH to produce DEA and to form the O-(SiH2)-O bond at the inter-dimer, inter-row, or intra-dimer site. Among the three different sites, the intra-dimer site was the most probable when it came to forming the O-(SiH2)-O bond.

  • Translation of State Machines from Equational Theories into Rewrite Theories with Tool Support

    Min ZHANG  Kazuhiro OGATA  Masaki NAKAMURA  

     
    PAPER-Specification Translation

      Vol:
    E94-D No:5
      Page(s):
    976-988

    This paper presents a strategy together with tool support for the translation of state machines from equational theories into rewrite theories, aiming at automatically generating rewrite theory specifications. Duplicate effort can be saved on specifying state machines both in equational theories and rewrite theories, when we incorporate the theorem proving facilities of CafeOBJ with the model checking facilities of Maude. Experimental results show that efficiencies of the generated specifications by the proposed strategy are significantly improved, compared with those that are generated by three other existing translation strategies.

  • On Array Calibration Technique for Multipath Reference Waves

    Hiroyoshi YAMADA  Hiroshi SAKAI  Yoshio YAMAGUCHI  

     
    PAPER-Antennas and Antenna Measurement

      Vol:
    E94-B No:5
      Page(s):
    1201-1206

    High resolution direction-of-arrival (DOA) estimation algorithm for array antennas becomes popular in these days. However, there are several error factors such as mutual coupling among the elements in actual array. Hence array calibration is indispensable to realize intrinsic performance of the algorithm. In the many applications, it is preferable that the calibration can be done in the practical environment in operation. In such a case, the incident wave becomes coherent multipath wave. Calibration of array in the multipath environment is a hard problem, even when DOA of elementary waves is known. To realize array calibration in the multipath environment will be useful for some applications even if reference signals are required. In this report, we consider property of reference waves in the multipath environment and derive a new calibration technique by using the multipath coherent reference waves. The reference wave depends on not only the DOA but also complex amplitude of each elementary wave. However, the proposed technique depends on the DOA only. This is the main advantage of the technique. Simulation results confirm the effectiveness of the proposed technique.

  • Adaptive Array Antenna Using On-Off and CMA Algorithms for Microwave RFID Readers Open Access

    Tanawut TANTISOPHARAK  Akkarat BOONPOONGA  Chuwong PHONGCHAROENPANICH  Phaophak SIRISUK  Monai KRAIRIKSH  

     
    INVITED PAPER

      Vol:
    E94-B No:5
      Page(s):
    1153-1160

    This paper proposes an adaptive antenna using a combination of on-off and CMA algorithms. With the proposed technique, the on-off algorithm is first employed to search for a desired signal direction in which maximum received power is achieved. Then, interference is suppressed by performing CMA. Simulations are conducted according to the potential application of the proposed adaptive antenna. The simulation results show the SINR improvement implying that the proposed adaptive antenna can be applied to microwave RFID systems in order to resolve reader collision. Furthermore, the proposed adaptive antenna is implemented and then experimented. The experimental results verify that the proposed adaptive antenna can reduce interference resulting in the collision problem.

  • Priority-Based STDMA Scheduling Algorithm to Enhance Throughput and Fairness in Wireless Mesh Networks

    Nguyen H. TRAN  Choong Seon HONG  Sungwon LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:5
      Page(s):
    1355-1365

    The aggregate throughput of wireless mesh networks (WMNs) can be significantly improved by equipping the mesh routers with multiple radios tuned to orthogonal channels. Not only the links using orthogonal channels can be activated at a time, but some links in the same channel also can be activated concurrently if the Signal-to-Interference-and-Noise Ratio (SINR) at their receivers is not lower than the threshold, which is the spatial-reuse characteristic. STDMA is considered as one of the medium access schemes that can exploit spatial reuse to improve network throughput. Past studies have shown that optimizing the performance of STDMA is NP-Hard. Therefore, we propose a STDMA-based scheduling algorithm that operates in a greedy fashion for WMNs. We show that the proposed algorithm enhances not only the throughput but also the fairness by capturing the essence of spatial-reuse approach of STDMA and giving medium access opportunities to each network element based on its priority. We furthermore validate our algorithm through theoretical analysis and extensive simulations and the results show that our algorithm can outperform state-of-the-art alternatives.

  • A Comparison of MIMO Detection Algorithms with Channel Coding in Frequency Selective Fading Channel Environments

    Jin REN  Sukhui LEE  Seokhyun YOON  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:5
      Page(s):
    1476-1482

    Recent works on MIMO receiver design were mainly focused on sphere decoding, which provides a trade-off between the performance and complexity by suitably choosing the “radius” or the number of candidates in the search space. Meanwhile, another approach, called poly-diagonalization and trellis detection, has been proposed to compromise the complexity and performance. In this paper, we compare various MIMO receiver algorithms in terms of both performance and complexity. The performance is evaluated in a frequency selective fading channel environment on the basis of orthogonal frequency division multiplexing with channel coding, for which the generation of soft decision values is crucial. The simulations show that the poly-diagonalization approach matches the performance of sphere decoding at similar computational complexity.

  • Tight Upper Bound on the Bit Error Rate of Rotation Code

    Hyun-Seok RYU  Jun-Seok LEE  Chung-Gu KANG  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E94-B No:5
      Page(s):
    1438-1441

    We provide a BER analysis of the well-known rotation code, which has been applied to various transmission schemes, such as coordinate-interleaved design (CID) for space-time block codes and trans-modulation or constellation rearrangement for a cooperative relay system. An upper bound on the BER of the rotation code under a fading channel is derived. It turns out to be much tighter than the existing one, which relies on the Chernoff bound. More specifically, the proposed bound is virtually identical to simulation result when Eb/No is larger than 4 dB.

  • A Parallel Timing Adjustment Algorithm for High Speed Wireless Burst Communication

    Xiaofeng WAN  Yu ZHANG  Zhixing YANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:5
      Page(s):
    1472-1475

    A zig-zag Gardner algorithm with parallel architecture is presented in this letter. This algorithm performs timing adjustment in each individual burst independently for high speed wireless burst communication with a short guard. Over sampling data are stored in RAM initially and read forward and backward alternately later. The proposed algorithm has distinct symmetric characteristic in the forward and backward process, which makes the alternate sequences achieve nearly the same effect as a continuous sequence. The performance of the proposed algorithm is very close to the theoretical curve.

  • An Improved Ant Colony Algorithm for the Vehicle Routing Problem in Time-Dependent Networks

    Yongqiang LIU  Qing CHANG  Huagang XIONG  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E94-B No:5
      Page(s):
    1506-1510

    Vehicle routing is an important combinatorial optimization problem. In real transport networks,the travel speed and travel time of roads have large time-variability and randomness. The study of vehicle routing problem in time-dependent network has even more practical value than static network VRP problem. This paper combines the features of time-dependent networks and gives the mathematical models of the time-dependent vehicle routing problem. On this basis, the traditional ant colony optimization algorithm is improved. A new path transfer strategy of ants and new dynamic pheromone update strategy applicable to time-dependent network are proposed. Based on these strategies, the improved ant colony algorithm is given for solving the vehicle routing problem in time-dependent networks. The simulation results show that the algorithm can effectively solve the vehicle routing problem in time-dependent network and has better computational efficiency and convergence speed.

  • Performance-Aware Hybrid Algorithm for Mapping IPs onto Mesh-Based Network on Chip

    Guang SUN  Shijun LIN  Depeng JIN  Yong LI  Li SU  Yuanyuan ZHANG  Lieguang ZENG  

     
    PAPER-Computer System

      Vol:
    E94-D No:5
      Page(s):
    1000-1007

    Network on Chip (NoC) is proposed as a new intra-chip communication infrastructure. In current NoC design, one related problem is mapping IP cores onto NoC architectures. In this paper, we propose a performance-aware hybrid algorithm (PHA) for mesh-based NoC to optimize performance indexes such as latency, energy consumption and maximal link bandwidth. The PHA is a hybrid algorithm, which integrates the advantages of Greedy Algorithm, Genetic Algorithm and Simulated Annealing Algorithm. In the PHA, there are three features. First, it generates a fine initial population efficiently in a greedy swap way. Second, effective global parallel search is implemented by genetic operations such as crossover and mutation, which are implemented with adaptive probabilities according to the diversity of population. Third, probabilistic acceptance of a worse solution using simulated annealing method greatly improves the performance of local search. Compared with several previous mapping algorithms such as MOGA and TGA, simulation results show that our algorithm enhances the performance by 30.7%, 23.1% and 25.2% in energy consumption, latency and maximal link bandwidth respectively. Moreover, simulation results demonstrate that our PHA approach has the highest convergence speed among the three algorithms. These results show that our proposed mapping algorithm is more effective and efficient.

  • Blind Minimum Interference Symbol Synchronization for OFDM Systems in Long ISI Channels

    Wen-Long CHIN  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E94-B No:4
      Page(s):
    1066-1069

    This letter introduces a blind minimum interference symbol synchronization for orthogonal frequency-division multiplexing (OFDM) systems based on the cyclic prefix (CP). The basic idea of our contribution is to obtain an estimate of the channel-tap powers from the correlation characteristics of the CP. Based on the estimate of the channel-tap powers, a minimum interference metric is proposed. The proposed algorithm has low complexity and can be used to cope with long inter-symbol-interference (ISI) channels with length up to twice the CP length.

  • A GA-Based X-Filling for Reducing Launch Switching Activity toward Specific Objectives in At-Speed Scan Testing

    Yuta YAMATO  Xiaoqing WEN  Kohei MIYASE  Hiroshi FURUKAWA  Seiji KAJIHARA  

     
    PAPER-Dependable Computing

      Vol:
    E94-D No:4
      Page(s):
    833-840

    Power-aware X-filling is a preferable approach to avoiding IR-drop-induced yield loss in at-speed scan testing. However, the ability of previous X-filling methods to reduce launch switching activity may be unsatisfactory, due to low effect (insufficient and global-only reduction) and/or low scalability (long CPU time). This paper addresses this reduction quality problem with a novel GA (Genetic Algorithm) based X-filling method, called GA-fill. Its goals are (1) to achieve both effectiveness and scalability in a more balanced manner and (2) to make the reduction effect of launch switching activity more concentrated on critical areas that have higher impact on IR-drop-induced yield loss. Evaluation experiments are being conducted on both benchmark and industrial circuits, and the results have demonstrated the usefulness of GA-fill.

  • 100 Gb/s Ethernet Inverse Multiplexing Based on Aggregation at the Physical Layer

    Kenji HISADOME  Mitsuhiro TESHIMA  Yoshiaki YAMADA  Osamu ISHIDA  

     
    PAPER

      Vol:
    E94-B No:4
      Page(s):
    904-909

    We propose a packet-based inverse multiplexing method to allow scalable network access with a bigger-pipe physical interface. The method is based on aggregation at the physical layer (APL) that fragments an original packet-flow and distributes the fragments among an adequate numbers of physical links or networks. It allows us to share wavelengths and/or bandwidth resources in optical networks. Its technical feasibility at the speed of newly standardized 100 Gb/s Ethernet (100 GbE) is successfully evaluated by implementing the inverse multiplexing logic functions on a prototype board. We demonstrate super-high-definition video streaming and huge file transfer by transmitting 100 GbE MAC frames over multiple 10 GbE physical links via inverse multiplexing.

  • Subchannel Allocation with Nash Bargaining Solutions for Delay Sensitive Traffic in OFDMA Networks

    Hui DENG  Xiaoming TAO  Youzheng WANG  Jianhua LU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:4
      Page(s):
    1110-1113

    Efficient resource allocation for delay-sensitive traffic, such as telephony and video streaming, in Orthogonal Frequency Division Multiple Access (OFDMA) networks is needed to increase system performance. In our system, users try to achieve a low queuing delay and buffer space usage by competing for transmission over the subchannels. We formulate this problem as a bargaining game and use the Nash Bargaining Solution (NBS) to realize a fair and efficient subchannel allocation for the users. Simulation results show performance improvements, with regard to packet dropping and delay distribution, over other algorithms.

  • Ultra-High-Definition Television and Its Optical Transmission Open Access

    Kimiyuki OYAMADA  Tsuyoshi NAKATOGAWA  Madoka NAKAMURA  

     
    INVITED PAPER

      Vol:
    E94-B No:4
      Page(s):
    876-883

    'Super Hi-Vision' (SHV) is promising as a future form of television. It is an ultra-high definition TV system that has 16 times the number of pixels of HDTV and employs a 22.2 multichannel sound system. It offers superior presence and gives the impression of reality. The information bitrates of the current prototypes range from 24 to 72 Gbit/s, and a fiber optic transmission system is needed to transfer even just one channel. This paper describes the optical transmission technologies that have been developed for SHV inter-equipment connects and links between outdoor sites and broadcasting stations.

  • A Simple and Speedy Routing with Reduced Resource Information in Large-Capacity Optical WDM Networks

    Yusuke HIROTA  Hideki TODE  Koso MURAKAMI  

     
    PAPER

      Vol:
    E94-B No:4
      Page(s):
    884-893

    This paper discusses a simple and speedy routing method in large-capacity optical Wavelength Division Multiplexing (WDM) networks. The large-capacity WDM network is necessary to accommodate increasing traffic load in future. In this large-capacity WDM network, each link has many fibers and a huge amount of optical data can be transmitted through these fibers simultaneously. Optical path is configured for transmitting optical data by wavelength reservation including routing and wavelength assignment (RWA). Since traditional RWA methods have to treat much information about available wavelengths in each fiber, it is difficult to resolve RWA problem on time. In other words, the electrical processing becomes the bottleneck in the large-capacity WDM network. Therefore, a simple and speedy RWA method is necessary for the large-capacity WDM network. In this paper, we propose the simple and effective RWA method which considers reduced information as Network Map. The objective is to improve the network performance by using multiple fibers effectively. The complex processing is not suitable for data transmission because the switching operation must be done in very short time for one request. In addition to this, it is not practical to collect detailed network information frequently. The proposed wavelength assignment method assigns wavelength more uniformly than traditional method, and therefore, the proposed routing method can select routes without considering detailed information about each wavelength state. The proposed routing method needs only local information and reduced network information. This paper shows that the proposed routing method can get suitable solution for large-capacity optical WDM networks through computer simulations. The proposed RWA method drastically improves the loss probability against other simple RWA methods. This paper also describes two types of optical switches with tunable or fixed wavelength conversions. The wavelength converters with relatively low technology becomes effective with the proposed RWA method in the large-capacity WDM network. This paper reveals that complex routing methods are not necessary for large-capacity optical WDM networks.

  • Theoretical Performance Analysis of an Image-Band Interference Canceller with Deterministic Imbalance Estimation

    Satoshi DENNO  Ke LIU  Tatsuo FURUNO  Masahiro MORIKURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:4
      Page(s):
    968-977

    It is known that a heterodyne multimode receiver implemented with a single RF (Radio Frequency) receiver suffers from image-band interference due to imbalance, i.e. the phase error and the gain imbalance of the RF Hilbert transformer. The blind image band interference canceler with deterministic imbalance estimation that has been proposed mitigates the image-band interference. This performance of the image-band interference canceler is analyzed theoretically in this paper. As a result, it is revealed that estimation accuracy of the deterministic imbalance estimation is improved slightly as the imbalance becomes greater. In addition, it is also shown that the deterministic estimation achieves better performance as the power of image-band interference increases. The performance is confirmed by computer simulation.

  • Highly Energy Efficient Layer-3 Network Architecture Based on Service Cloud and Optical Aggregation Network

    Hidetoshi TAKESHITA  Daisuke ISHII  Satoru OKAMOTO  Eiji OKI  Naoaki YAMANAKA  

     
    PAPER

      Vol:
    E94-B No:4
      Page(s):
    894-903

    The Internet is an extremely convenient network and has become one of the key infrastructures for daily life. However, it suffers from three serious problems; its structure does not suit traffic centralization, its power consumption is rapidly increasing, and its round-trip time (RTT) and delay jitter are large. This paper proposes an extremely energy efficient layer-3 network architecture for the future Internet. It combines the Service Cloud with the Cloud Router and application servers, with the Optical Aggregation Network realized by optical circuit switches, wavelength-converters, and wavelength-multiplexers/demultiplexers. User IP packets are aggregated and transferred through the Optical Aggregation Network to Cloud transparently. The proposed network scheme realizes a network structure well suited to traffic centralization, reduces the power consumption to 1/20-1/30 compared to the existing Internet, reduces the RTT and delay jitter due to its simplicity, and offers easy migration from the existing Internet.

7501-7520hit(20498hit)