The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

8201-8220hit(20498hit)

  • The Effect of Corpus Size on Case Frame Acquisition for Predicate-Argument Structure Analysis

    Ryohei SASANO  Daisuke KAWAHARA  Sadao KUROHASHI  

     
    PAPER-Natural Language Processing

      Vol:
    E93-D No:6
      Page(s):
    1361-1368

    This paper reports the effect of corpus size on case frame acquisition for predicate-argument structure analysis in Japanese. For this study, we collect a Japanese corpus consisting of up to 100 billion words, and construct case frames from corpora of six different sizes. Then, we apply these case frames to syntactic and case structure analysis, and zero anaphora resolution, in order to investigate the relationship between the corpus size for case frame acquisition and the performance of predicate-argument structure analysis. We obtained better analyses by using case frames constructed from larger corpora; the performance was not saturated even with a corpus size of 100 billion words.

  • 3-Hop Cooperative Diversity Using Quasi-Orthogonal Space-Time Block Code

    Tomoya YAMAOKA  Yoshitaka HARA  Noriyuki FUKUI  Hiroshi KUBO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1636-1640

    We propose 3-hop cooperative diversity using QOSTBC (Quasi-Orthogonal Space-Time Block Code), which offers 3-hop cooperative diversity without signal separation in relay nodes. The key of our proposed scheme is encoding signal sequence in different signal unit according to relay stage. This letter explains details of the proposed scheme and shows that it offers interference reduction among streams and space diversity gain by result of simulations.

  • A Performance/Energy Analysis and Optimization of Multi-Core Architectures with Voltage Scaling Techniques

    Jeong-Gun LEE  Wook SHIN  Suk-Jin KIM  Eun-Gu JUNG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:6
      Page(s):
    1215-1225

    In this paper, we develop asymptotic analysis and simulation models to better understand the characteristics of performance and energy consumption in a multi-core processor design in which dynamic voltage scaling is used. Our asymptotic model is derived using Amdahl's law, Rent's rule and power equations to derive the optimum number of cores and their voltage levels. Our model can predict the possible impact of different multi-core processor configurations on the performance and energy consumption for given workload characteristics (e.g. available parallelism) and process technology parameters (e.g. ratios of dynamic and static energies to total energy). Through the asymptotic analysis and optimization based on the models, we can observe an asymptotic relationship between design parameters such as "the number of cores," "core size" and "voltage scaling strategies" of a multi-core architecture with regards to performance and energy consumption at an initial phase of the design.

  • MIMO-OC Scheme to Suppress Co-channel Interference

    Wei Jiong ZHANG  Xi Lang ZHOU  Rong Hong JIN  

     
    LETTER-Digital Signal Processing

      Vol:
    E93-A No:6
      Page(s):
    1244-1247

    In this letter, we present a multiple-input multiple-output (MIMO) optimal combining (OC) scheme based on alternate iteration. With the channel state information (CSI) of co-channel interferers (CCIs), this algorithm can be used in flat fading and frequency selective channels to suppress CCIs. Compared with the optimal transceiver of MIMO maximal ratio combining (MRC) systems, results of simulation show that this scheme improves the uplink transmission performance significantly.

  • Incremental Digital Content Object Delivering in Distributed Systems

    Lung-Pin CHEN  I-Chen WU  William CHU  Jhen-You HONG  Meng-Yuan HO  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E93-D No:6
      Page(s):
    1512-1520

    Deploying and managing content objects efficiently is critical for building a scalable and transparent content delivery system. This paper investigates the advanced incremental deploying problem of which the objects are delivered in a successive manner. Recently, the researchers show that the minimum-cost content deployment can be obtained by reducing the problem to the well-known network flow problem. In this paper, the maximum flow algorithm for a single graph is extended to the incremental growing graph. Based on this extension, an efficient incremental content deployment algorithm is developed in this work.

  • Design of Multicarrier OFDM Modulator/Demodulator Based on Discrete Hartley Transform

    Muh-Tian SHIUE  Chin-Kuo JAO  Pei-Shin CHEN  

     
    PAPER-Communication Theory and Signals

      Vol:
    E93-A No:6
      Page(s):
    1016-1023

    In this paper, a novel orthogonal frequency-division multiplexing (OFDM) modulator/demodulator based on real-valued discrete Hartley transform (DHT) is presented and implemented for the IEEE 802.11a/g wireless local area network (LAN). Instead of the conventional complex-valued fast Fourier transform (FFT) for OFDM systems, the proposed architecture employs two real-valued fast DHT (FHT) kernels and one post processing unit. By taking advantage of the real-valued operation of FHT, this approach reduces the number of multiplications compared with the radix-2 FFT. The proposed DHT-based modulator/demodulator was designed and fabricated in 0.18-µm CMOS technology with a core area of 928935 µm2. The average power consumption is about 20.16 mW at 20 MHz and 1.8 V supply voltage. Measurement results of the integrated circuit illustrate its superior chip area and power consumption.

  • NPN-Representatives of a Set of Optimal Boolean Formulas

    Hideaki FUKUHARA  Eiji TAKIMOTO  Kazuyuki AMANO  

     
    PAPER-Circuit Complexity

      Vol:
    E93-A No:6
      Page(s):
    1008-1015

    For an arbitrary set B of Boolean functions satisfying a certain condition, we give a general method of constructing a class CB of read-once Boolean formulas over the basis B that has the following property: For any F in CB, F can be transformed to an optimal formula (i.e., a simplest formula over the standard basis {AND, OR, NOT}) by replacing each occurrence of a basis function h ∈ B in F with an optimal formula for h. For a particular set of basis functions B* = {AND,OR,NOT,XOR,MUX}, we give a canonical form representation for CB* so that the set of canonical form formulas consists of only NPN-representatives in CB*.

  • Evolution Analysis of Parallel Concatenated Coded IDMA Systems

    Hao WANG  Shi CHEN  Xiaokang LIN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1620-1623

    The bit-error-rate (BER) performance predicted by the semi-analytical evolution technique proposed by Li Ping et al. becomes inaccurate for parallel concatenated coded interleave-division multiple-access (PCC-IDMA) systems. To solve this problem, we develop a novel evolution technique of such systems. Numerical results show that the predicted performance agrees well with the simulation results, and that this technique is useful for system optimization.

  • Predicting Analog Circuit Performance Based on Importance of Uncertainties

    Jin SUN  Kiran POTLURI  Janet M. WANG  

     
    PAPER-Electronic Circuits

      Vol:
    E93-C No:6
      Page(s):
    893-904

    With the scaling down of CMOS devices, process variation is becoming the leading cause of CMOS based analog circuit failures. For example, a mere 5% variation in feature size can trigger circuit failure. Various methods such as Monte-Carlo and corner-based verification help predict variation caused problems at the expense of thousands of simulations before capturing the problem. This paper presents a new methodology for analog circuit performance prediction. The new method first applies statistical uncertainty analysis on all associated devices in the circuit. By evaluating the uncertainty importance of parameter variability, it approximates the circuit with only components that are most critical to output results. Applying Chebyshev Affine Arithmetic (CAA) on the resulting system provides both performance bounds and probability information in time domain and frequency domain.

  • Energy-Efficient Distributed Spatial Join Processing in Wireless Sensor Networks

    Min Soo KIM  Jin Hyun SON  Ju Wan KIM  Myoung Ho KIM  

     
    PAPER-Spatial Databases

      Vol:
    E93-D No:6
      Page(s):
    1447-1458

    In the area of wireless sensor networks, the efficient spatial query processing based on the locations of sensor nodes is required. Especially, spatial queries on two sensor networks need a distributed spatial join processing among the sensor networks. Because the distributed spatial join processing causes lots of wireless transmissions in accessing sensor nodes of two sensor networks, our goal of this paper is to reduce the wireless transmissions for the energy efficiency of sensor nodes. In this paper, we propose an energy-efficient distributed spatial join algorithm on two heterogeneous sensor networks, which performs in-network spatial join processing. To optimize the in-network processing, we also propose a Grid-based Rectangle tree (GR-tree) and a grid-based approximation function. The GR-tree reduces the wireless transmissions by supporting a distributed spatial search for sensor nodes. The grid-based approximation function reduces the wireless transmissions by reducing the volume of spatial query objects which should be pushed down to sensor nodes. Finally, we compare naive and existing approaches through extensive experiments and clarify our approach's distinguished features.

  • A Note on a Sampling Theorem for Functions over GF(q)n Domain

    Yoshifumi UKITA  Tomohiko SAITO  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    PAPER-Coding Theory

      Vol:
    E93-A No:6
      Page(s):
    1024-1031

    In digital signal processing, the sampling theorem states that any real valued function f can be reconstructed from a sequence of values of f that are discretely sampled with a frequency at least twice as high as the maximum frequency of the spectrum of f. This theorem can also be applied to functions over finite domain. Then, the range of frequencies of f can be expressed in more detail by using a bounded set instead of the maximum frequency. A function whose range of frequencies is confined to a bounded set is referred to as bandlimited function. And a sampling theorem for bandlimited functions over Boolean domain has been obtained. Here, it is important to obtain a sampling theorem for bandlimited functions not only over Boolean domain (GF(2)n domain) but also over GF(q)n domain, where q is a prime power and GF(q) is Galois field of order q. For example, in experimental designs, although the model can be expressed as a linear combination of the Fourier basis functions and the levels of each factor can be represented by GF(q), the number of levels often take a value greater than two. However, the sampling theorem for bandlimited functions over GF(q)n domain has not been obtained. On the other hand, the sampling points are closely related to the codewords of a linear code. However, the relation between the parity check matrix of a linear code and any distinct error vectors has not been obtained, although it is necessary for understanding the meaning of the sampling theorem for bandlimited functions. In this paper, we generalize the sampling theorem for bandlimited functions over Boolean domain to a sampling theorem for bandlimited functions over GF(q)n domain. We also present a theorem for the relation between the parity check matrix of a linear code and any distinct error vectors. Lastly, we clarify the relation between the sampling theorem for functions over GF(q)n domain and linear codes.

  • Discriminating Semantic Visual Words for Scene Classification

    Shuoyan LIU  De XU  Songhe FENG  

     
    PAPER-Pattern Recognition

      Vol:
    E93-D No:6
      Page(s):
    1580-1588

    Bag-of-Visual-Words representation has recently become popular for scene classification. However, learning the visual words in an unsupervised manner suffers from the problem when faced these patches with similar appearances corresponding to distinct semantic concepts. This paper proposes a novel supervised learning framework, which aims at taking full advantage of label information to address the problem. Specifically, the Gaussian Mixture Modeling (GMM) is firstly applied to obtain "semantic interpretation" of patches using scene labels. Each scene induces a probability density on the low-level visual features space, and patches are represented as vectors of posterior scene semantic concepts probabilities. And then the Information Bottleneck (IB) algorithm is introduce to cluster the patches into "visual words" via a supervised manner, from the perspective of semantic interpretations. Such operation can maximize the semantic information of the visual words. Once obtained the visual words, the appearing frequency of the corresponding visual words in a given image forms a histogram, which can be subsequently used in the scene categorization task via the Support Vector Machine (SVM) classifier. Experiments on a challenging dataset show that the proposed visual words better perform scene classification task than most existing methods.

  • IP-MAC: A Distributed MAC for Spatial Reuse in Wireless Networks

    Md. Mustafizur RAHMAN  Choong Seon HONG  Sungwon LEE  JangYeon LEE  Jin Woong CHO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1534-1546

    The CSMA/CA driven MAC protocols withhold packet transmissions from exposed stations when they detect carrier signal above a certain threshold. This is to avoid collisions at other receiving stations. However, this conservative scheme often exposes many stations unnecessarily, and thus minimizes the utilization of the spatial spectral resource. In this paper, we demonstrate that remote estimation of the status at the active receivers is more effective at avoiding collisions in wireless networks than the carrier sensing. We apply a new concept of the interference range, named as n-tolerant interference range, to guarantee reliable communications in the presence of n (n≥ 0) concurrent transmissions from outside the range. We design a distributed interference preventive MAC ( IP-MAC ) using the n-tolerant interference range that enables parallel accesses from the noninterfering stations for an active communication. In IP-MAC, an exposed station goes through an Interference Potentiality Check (IPC) to resolve whether it is potentially interfering or noninterfering to the active communication. During the resolve operation, IPC takes the capture effect at an active receiver into account with interfering signals from a number of possible concurrent transmissions near that receiver. The performance enhancement offered by IP-MAC is studied via simulations in different environments. Results reveal that IP-MAC significantly improves network performance in terms of throughput and delay.

  • A CFAR Circuit with Multiple Detection Cells for Automotive UWB Radars

    Satoshi TAKAHASHI  

     
    PAPER-Sensing

      Vol:
    E93-B No:6
      Page(s):
    1574-1582

    Future high-resolution short-range automotive radar will have a higher false alarm probability than the conventional low-resolution radar has. In a high-resolution radar, the reception signal becomes sensitive to the difference between intended and unintended objects. However, automotive radars must distinguish targets from background objects that are the same order of size; it leads to an increase in the false alarm probability. In this paper, a CFAR circuit for obtaining the target mean power, as well as the background mean power, is proposed to reduce the false alarm probability for high-resolution radars working in automotive environments. The proposed method is analytically evaluated with use of the characteristic function method. Spatial correlation is also considered in the evaluation, because the sizes of the both target and background objects approach the dimension of several range cells. Result showed the proposed CFAR with use of two alongside range cells could reduce the ratio of 6.4 dB for an example of an automotive situation.

  • Improvement on Diversity Gain with Filter Bandwidth Enlargement in Fractional Sampling OFDM Receiver

    Toshiya SHINKAI  Haruki NISHIMURA  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1526-1533

    A diversity scheme with Fractional Sampling (FS) in an OFDM receiver has been investigated recently. Through FS, it is possible to separate multipath components and obtain diversity gain in OFDM systems. Enlargement of the bandwidth of the total frequency response between transmit and receive baseband filters allows the FS scheme to achieve path diversity. However, the transmit filter has to be designed according to the spectrum mask of the wireless standards such as IEEE802.11a/g to avoid interference to the other communication systems and the frequency response of the composite channel including the transmit and receive filters has often been set to minimal bandwidth to eliminate adjacent channel signals. In order to achieve the maximum signal-to-noise ratio (SNR), the same filter is commonly used in the transmitter and the receiver. In this paper, the trade-off among the SNR deterioration, adjacent channel interference, and the diversity gain due to the enlargement of the bandwidth of the receive filter is investigated. Numerical results from computer simulations indicate that the BER performance with wider bandwidth in the receiver shows better performance than that with the minimal bandwidth for maximizing the SNR in certain conditions.

  • Analysis of Hu-Huang-Fan Practical Hierarchical Identity-Based Encryption Scheme

    Jong Hwan PARK  Dong Hoon LEE  

     
    LETTER-Cryptography and Information Security

      Vol:
    E93-A No:6
      Page(s):
    1269-1273

    Recently, Hu et al. have suggested a fully secure hierarchical identity-based encryption (HIBE) scheme that achieves constant size ciphertext and tight security reduction. Their construction was based on Gentry's IBE scheme that supports their security proof. In this paper, we show that their security proof is incorrect. We point out the difference between Gentry's proof and that of Hu et al., and we show that the security of Hu et al.'s HIBE scheme cannot be reduced to their claimed complexity assumption.

  • An Ultra Low Power and Variation Tolerant GEN2 RFID Tag Front-End with Novel Clock-Free Decoder

    Sung-Jin KIM  Minchang CHO  SeongHwan CHO  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    785-795

    In this paper, an ultra low power analog front-end for EPCglobal Class 1 Generation 2 RFID tag is presented. The proposed RFID tag removes the need for high frequency clock and counters used in conventional tags, which are the most power hungry blocks. The proposed clock-free decoder employs an analog integrator with an adaptive current source that provides a uniform decoding margin regardless of the data rate and a link frequency extractor based on a relaxation oscillator that generates frequency used for backscattering. A dual supply voltage scheme is also employed to increase the power efficiency of the tag. In order to improve the tolerance of the proposed circuit to environmental variations, a self-calibration circuit is proposed. The proposed RFID analog front-end circuit is designed and simulated in 0.25 µm CMOS, which shows that the power consumption is reduced by an order magnitude compared to the conventional RFID tags, without losing immunity to environmental variations.

  • Efficient Analyzing General Dominant Relationship Based on Partial Order Models

    Zhenglu YANG  Lin LI  Masaru KITSUREGAWA  

     
    PAPER-Information Retrieval

      Vol:
    E93-D No:6
      Page(s):
    1394-1402

    Skyline query is very important because it is the basis of many applications, e.g., decision making, user-preference queries. Given an N-dimensional dataset D, a point p is said to dominate another point q if p is better than q in at least one dimension and equal to or better than q in the remaining dimensions. In this paper, we study a generalized problem of skyline query that, users are more interested in the details of the dominant relationship in a dataset, i.e., a point p dominates how many other points and whom they are. We show that the existing framework proposed in can not efficiently solve this problem. We find the interrelated connection between the partial order and the dominant relationship. Based on this discovery, we propose a new data structure, ParCube, which concisely represents the dominant relationship. We propose some effective strategies to construct ParCube. Extensive experiments illustrate the efficiency of our methods.

  • Question Answering for the Operation of Software Applications: A Document Retrieval Approach

    Atsushi FUJII  Seiji TAKEGATA  

     
    PAPER-Natural Language Processing

      Vol:
    E93-D No:6
      Page(s):
    1369-1377

    Reflecting the rapid growth of information technology, the configuration of software applications such as word processors and spreadsheets is both sophisticated and complicated. It is often difficult for users to identify relevant functions in the online manual for a target application. In this paper, we propose a method for question answering that finds functions related to the user's request. To enhance our method, we addressed two "mismatch" problems. The first problem is associated with a mismatch in vocabulary, where the same concept is represented by different words in the manual and in the user's question. The second problem is associated with a mismatch in function. Although the user may have a hypothetical function for a purpose in mind, this purpose can sometimes be accomplished by other functions. To resolve these mismatch problems, we extract terms related to software functions from the Web, so that the user's question can be matched to the relevant function with high accuracy. We demonstrate the effectiveness of our method experimentally.

  • An Arbitrary Digital Power Noise Generator Using 65 nm CMOS Technology

    Tetsuro MATSUNO  Daisuke FUJIMOTO  Daisuke KOSAKA  Naoyuki HAMANISHI  Ken TANABE  Masazumi SHIOCHI  Makoto NAGATA  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    820-826

    An arbitrary noise generator (ANG) is based on time-series charging of divided parasitic capacitance (TSDPC) and emulates power supply noise generation in a CMOS digital circuit. A prototype ANG incorporates an array of 32 x 32 6-bit TSDPC cells along with a 128-word vector memory and occupies 2 x 2 mm2 in a 65 nm 1.2 V CMOS technology. Digital noise emulation of functional logic cores such as register arrays is demonstrated with chip-level waveform monitoring at power supply, ground, as well as substrate nodes.

8201-8220hit(20498hit)