The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

8181-8200hit(20498hit)

  • Efficient Provider Authentication for Bidirectional Broadcasting Service

    Go OHTAKE  Goichiro HANAOKA  Kazuto OGAWA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E93-A No:6
      Page(s):
    1039-1051

    Provider authentication is necessary in bidirectional broadcasting services, and a digital signature scheme is often used to prevent an adversary from attempting impersonation. The cost of secure signing key management is extremely high. In addition, the key has to be updated very often, since it is frequently used. The result is that the verification key also has to be updated very often, and its redistribution cost is huge. These costs are real and substantive problems, especially when the number of users is large. In this paper, we propose a system that dramatically reduces these costs. In the system, the signing key is updated, but the corresponding verification key does not have to be updated. This means that the signing key can be updated without any cost for redistributing the verification key and that the system is secure against the threat of signing key leakage, since the key can be frequently updated. Moreover, we propose a new key management method that divides a conventional key management server's role into two. The use of a key-insulated signature (KIS) scheme enables low-cost and more secure key management with two servers. Finally, to make a bidirectional broadcasting service more secure even if the signing key is leaked, we developed a new strong KIS scheme. We performed an experiment that assessed the cost of our strong KIS scheme and found that it is sufficiently low. Accordingly, a provider authentication system employing this scheme would be more efficient and would have lower key redistribution and network costs in comparison with conventional authentication systems.

  • An Arbitrary Digital Power Noise Generator Using 65 nm CMOS Technology

    Tetsuro MATSUNO  Daisuke FUJIMOTO  Daisuke KOSAKA  Naoyuki HAMANISHI  Ken TANABE  Masazumi SHIOCHI  Makoto NAGATA  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    820-826

    An arbitrary noise generator (ANG) is based on time-series charging of divided parasitic capacitance (TSDPC) and emulates power supply noise generation in a CMOS digital circuit. A prototype ANG incorporates an array of 32 x 32 6-bit TSDPC cells along with a 128-word vector memory and occupies 2 x 2 mm2 in a 65 nm 1.2 V CMOS technology. Digital noise emulation of functional logic cores such as register arrays is demonstrated with chip-level waveform monitoring at power supply, ground, as well as substrate nodes.

  • Evolution of Cellular Automata toward a LIFE-Like Rule Guided by 1/f Noise

    Shigeru NINAGAWA  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E93-D No:6
      Page(s):
    1489-1496

    There is evidence in favor of a relationship between the presence of 1/f noise and computational universality in cellular automata. To confirm the relationship, we search for two-dimensional cellular automata with a 1/f power spectrum by means of genetic algorithms. The power spectrum is calculated from the evolution of the state of the cell, starting from a random initial configuration. The fitness is estimated by the power spectrum with consideration of the spectral similarity to the 1/f spectrum. The result shows that the rule with the highest fitness over the most runs exhibits a 1/f type spectrum and its transition function and behavior are quite similar to those of the Game of Life, which is known to be a computationally universal cellular automaton. These results support the relationship between the presence of 1/f noise and computational universality.

  • Stochastic Sparse-Grid Collocation Algorithm for Steady-State Analysis of Nonlinear System with Process Variations

    Jun TAO  Xuan ZENG  Wei CAI  Yangfeng SU  Dian ZHOU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:6
      Page(s):
    1204-1214

    In this paper, a Stochastic Collocation Algorithm combined with Sparse Grid technique (SSCA) is proposed to deal with the periodic steady-state analysis for nonlinear systems with process variations. Compared to the existing approaches, SSCA has several considerable merits. Firstly, compared with the moment-matching parameterized model order reduction (PMOR) which equally treats the circuit response on process variables and frequency parameter by Taylor approximation, SSCA employs Homogeneous Chaos to capture the impact of process variations with exponential convergence rate and adopts Fourier series or Wavelet Bases to model the steady-state behavior in time domain. Secondly, contrary to Stochastic Galerkin Algorithm (SGA), which is efficient for stochastic linear system analysis, the complexity of SSCA is much smaller than that of SGA for nonlinear case. Thirdly, different from Efficient Collocation Method, the heuristic approach which may result in "Rank deficient problem" and "Runge phenomenon," Sparse Grid technique is developed to select the collocation points needed in SSCA in order to reduce the complexity while guaranteing the approximation accuracy. Furthermore, though SSCA is proposed for the stochastic nonlinear steady-state analysis, it can be applied to any other kind of nonlinear system simulation with process variations, such as transient analysis, etc.

  • End-to-End Reference QoS Architecture for 802.11 WLAN Open Access

    Hoang NGUYEN  Raoul RIVAS  Klara NAHRSTEDT  

     
    INVITED PAPER

      Vol:
    E93-B No:6
      Page(s):
    1350-1358

    With the big success of 802.11 wireless networks, there have been many proposals addressing end-to-end QoS guarantees in 802.11 WLAN. However, we have found that current end-to-end QoS architectures lack of one or more important properties such as cross-layer interaction, end-to-end integration, reconfigurability and modularity. In this work, we present an end-to-end reference QoS architecture for 802.11 WLAN that encapsulates in an unifying fashion software-based QoS components (mechanisms, algorithms, services), proposed in the literature. To show the usefulness and correctness of the reference architecture, we present three case studies of end-to-end QoS architectures addressing different QoS requirements such as bandwidth and delay with different approaches such as differentiated services and integrated services. We will give an architectural comparison and performance evaluation of these architectures. We believe the reference QoS architectures can help QoS designers to understand the importance and the complexity of various QoS components during the design phase and thus choose these QoS components appropriately.

  • NPN-Representatives of a Set of Optimal Boolean Formulas

    Hideaki FUKUHARA  Eiji TAKIMOTO  Kazuyuki AMANO  

     
    PAPER-Circuit Complexity

      Vol:
    E93-A No:6
      Page(s):
    1008-1015

    For an arbitrary set B of Boolean functions satisfying a certain condition, we give a general method of constructing a class CB of read-once Boolean formulas over the basis B that has the following property: For any F in CB, F can be transformed to an optimal formula (i.e., a simplest formula over the standard basis {AND, OR, NOT}) by replacing each occurrence of a basis function h ∈ B in F with an optimal formula for h. For a particular set of basis functions B* = {AND,OR,NOT,XOR,MUX}, we give a canonical form representation for CB* so that the set of canonical form formulas consists of only NPN-representatives in CB*.

  • A Note on a Sampling Theorem for Functions over GF(q)n Domain

    Yoshifumi UKITA  Tomohiko SAITO  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    PAPER-Coding Theory

      Vol:
    E93-A No:6
      Page(s):
    1024-1031

    In digital signal processing, the sampling theorem states that any real valued function f can be reconstructed from a sequence of values of f that are discretely sampled with a frequency at least twice as high as the maximum frequency of the spectrum of f. This theorem can also be applied to functions over finite domain. Then, the range of frequencies of f can be expressed in more detail by using a bounded set instead of the maximum frequency. A function whose range of frequencies is confined to a bounded set is referred to as bandlimited function. And a sampling theorem for bandlimited functions over Boolean domain has been obtained. Here, it is important to obtain a sampling theorem for bandlimited functions not only over Boolean domain (GF(2)n domain) but also over GF(q)n domain, where q is a prime power and GF(q) is Galois field of order q. For example, in experimental designs, although the model can be expressed as a linear combination of the Fourier basis functions and the levels of each factor can be represented by GF(q), the number of levels often take a value greater than two. However, the sampling theorem for bandlimited functions over GF(q)n domain has not been obtained. On the other hand, the sampling points are closely related to the codewords of a linear code. However, the relation between the parity check matrix of a linear code and any distinct error vectors has not been obtained, although it is necessary for understanding the meaning of the sampling theorem for bandlimited functions. In this paper, we generalize the sampling theorem for bandlimited functions over Boolean domain to a sampling theorem for bandlimited functions over GF(q)n domain. We also present a theorem for the relation between the parity check matrix of a linear code and any distinct error vectors. Lastly, we clarify the relation between the sampling theorem for functions over GF(q)n domain and linear codes.

  • Energy-Efficient Distributed Spatial Join Processing in Wireless Sensor Networks

    Min Soo KIM  Jin Hyun SON  Ju Wan KIM  Myoung Ho KIM  

     
    PAPER-Spatial Databases

      Vol:
    E93-D No:6
      Page(s):
    1447-1458

    In the area of wireless sensor networks, the efficient spatial query processing based on the locations of sensor nodes is required. Especially, spatial queries on two sensor networks need a distributed spatial join processing among the sensor networks. Because the distributed spatial join processing causes lots of wireless transmissions in accessing sensor nodes of two sensor networks, our goal of this paper is to reduce the wireless transmissions for the energy efficiency of sensor nodes. In this paper, we propose an energy-efficient distributed spatial join algorithm on two heterogeneous sensor networks, which performs in-network spatial join processing. To optimize the in-network processing, we also propose a Grid-based Rectangle tree (GR-tree) and a grid-based approximation function. The GR-tree reduces the wireless transmissions by supporting a distributed spatial search for sensor nodes. The grid-based approximation function reduces the wireless transmissions by reducing the volume of spatial query objects which should be pushed down to sensor nodes. Finally, we compare naive and existing approaches through extensive experiments and clarify our approach's distinguished features.

  • Numerical Analyses for Contact Resistance due to Constriction Effect of Current Flowing through Multi-Spot Construction

    Shigeru SAWADA  Terutaka TAMAI  Yasuhiro HATTORI  Kazuo IIDA  

     
    PAPER-Electromechanical Devices and Components

      Vol:
    E93-C No:6
      Page(s):
    905-911

    Constriction resistance is calculated by numerical analysis using Laplace's equations for electric potential of steady state in many cases of contact spot dispersion-status. The results show that contact resistance does not increase beyond 1.5 times even if the total real contact area is about 15% of the apparent contact area. When real contact area is at least about 60% of the apparent contact area, the contact resistance is approximately the same as the constriction resistance acquired from the apparent contact area. When the real contact area is about 50% of the apparent contact area, the contact resistance is approximately constant without regard to the contact shape and contact-point dispersion layout. Therefore, it is proved that contact resistance can be practically calculated using apparent contact area instead of real contact area when there are many contact points caused by metal to metal contact.

  • Sensor Localization Based on AOA-Assisted NLOS Identification

    Takahiro ASO  Teruyuki MIYAJIMA  

     
    LETTER-Communication Theory and Signals

      Vol:
    E93-A No:6
      Page(s):
    1274-1276

    In ubiquitous sensor networks, the estimation accuracy of a node location is limited due to the presence of non-line-of-sight (NLOS) paths. To mitigate the NLOS effects, this letter proposes a simple algorithm where NLOS identification is carried out using angle-of-arrival (AOA). Simulation results show that the use of AOA improves NLOS identification rates and location estimation accuracy.

  • A Neural Recording Amplifier with Low-Frequency Noise Suppression

    Takeshi YOSHIDA  Yoshihiro MASUI  Ryoji EKI  Atsushi IWATA  Masayuki YOSHIDA  Kazumasa UEMATSU  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    849-854

    To detect neural spike signals, low-power neural signal recording frontend circuits must amplify neural signals with below 100 µV amplitude and a few hundred Hz frequency while suppressing a large DC offset voltage, 1/f noise of MOSFETs, and induced noise of AC power supply. To overcome the problem of unwanted noise at such a low signal level, a low-noise neural signal detection amplifier with low-frequency noise suppression scheme was developed utilizing a new autozeroing technique. A test chip was designed and fabricated with a mixed signal 0.18-µm CMOS technology. The voltage gain of 39 dB at the bandwidth of the neural signal and the gain reduction of 20 dB at AC supply noise of 60 Hz were obtained. The input equivalent noise and power dissipation were 90 nV/root-Hz and 90 µW at a supply voltage of 1.5 V, respectively.

  • Detecting Hijacked Sites by Web Spammer Using Link-Based Algorithms

    Young-joo CHUNG  Masashi TOYODA  Masaru KITSUREGAWA  

     
    PAPER-Information Retrieval

      Vol:
    E93-D No:6
      Page(s):
    1414-1421

    In this paper, we propose a method for finding web sites whose links are hijacked by web spammers. A hijacked site is a trustworthy site that points to untrustworthy sites. To detect hijacked sites, we evaluate the trustworthiness of web sites, and examine how trustworthy sites are hijacked by untrustworthy sites in their out-neighbors. The trustworthiness is evaluated based on the difference between the white and spam scores that calculated by two modified versions of PageRank. We define two hijacked scores that measure how likely a trustworthy site is to be hijacked based on the distribution of the trustworthiness in its out-neighbors. The performance of those hijacked scores are compared using our large-scale Japanese Web archive. The results show that a better performance is obtained by the score that considers both trustworthy and untrustworthy out-neighbors, compared with the one that only considers untrustworthy out-neighbors.

  • Error Analysis and Numerical Stabilization of the Fast H Filter

    Tomonori KATSUMATA  Kiyoshi NISHIYAMA  Katsuaki SATOH  

     
    PAPER-Digital Signal Processing

      Vol:
    E93-A No:6
      Page(s):
    1153-1162

    The fast H∞ filter is developed by one of the authors, and its practical use in industries is expected. This paper derives a linear propagation model of numerical errors in the recursive variables of the fast H∞ filter, and then theoretically analyzes the stability of the filter. Based on the analyzed results, a numerical stabilization method of the fast H∞ filter is proposed with the error feedback control in the backward prediction. Also, the effectiveness of the stabilization method is verified using numerical examples.

  • A 5 GHz Band Low Noise and Wide Tuning Range Si-CMOS VCO with a Novel Varactors Pair Circuit

    Tuan Thanh TA  Suguru KAMEDA  Tadashi TAKAGI  Kazuo TSUBOUCHI  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    755-762

    In this paper, a fully integrated 5 GHz voltage controlled oscillator (VCO) is presented. The VCO is designed with 0.18 µm silicon complementary metal oxide semiconductor (Si-CMOS) process. To achieve low phase noise, a novel varactors pair circuit is proposed to cancel effects of capacitance fluctuation that makes harmonic currents which increase phase noise of VCO. The VCO with the proposed varactor circuit has tuning range from 5.1 GHz to 6.1 GHz (relative value of 17.9%) and phase noise of lower than -110.8 dBc/Hz at 1 MHz offset over the full tuning range. Figure-of-merit-with-tuning-range (FOMT) of the proposed VCO is -182 dBc/Hz.

  • A Signal Detection Circuit for 8b/10b 2.5 Gb/s Serial Data Communication System in 90 nm CMOS

    Kozue SASAKI  Hiroki SATO  Akira HYOGO  Keitaro SEKINE  

     
    BRIEF PAPER

      Vol:
    E93-C No:6
      Page(s):
    864-866

    This paper presents a CMOS signal detection circuit for 2.5 Gb/s serial data communication system over FR-4 backplane. This overcomes characteristics deviation of full-wave rectifier-based simple power detection circuits due to data pattern and temperature by using an edge detector and a sample-hold circuit.

  • Accelerating Smith-Waterman Algorithm for Biological Database Search on CUDA-Compatible GPUs

    Yuma MUNEKAWA  Fumihiko INO  Kenichi HAGIHARA  

     
    PAPER-Parallel and Distributed Architecture

      Vol:
    E93-D No:6
      Page(s):
    1479-1488

    This paper presents a fast method capable of accelerating the Smith-Waterman algorithm for biological database search on a cluster of graphics processing units (GPUs). Our method is implemented using compute unified device architecture (CUDA), which is available on the nVIDIA GPU. As compared with previous methods, our method has four major contributions. (1) The method efficiently uses on-chip shared memory to reduce the data amount being transferred between off-chip video memory and processing elements in the GPU. (2) It also reduces the number of data fetches by applying a data reuse technique to query and database sequences. (3) A pipelined method is also implemented to overlap GPU execution with database access. (4) Finally, a master/worker paradigm is employed to accelerate hundreds of database searches on a cluster system. In experiments, the peak performance on a GeForce GTX 280 card reaches 8.32 giga cell updates per second (GCUPS). We also find that our method reduces the amount of data fetches to 1/140, achieving approximately three times higher performance than a previous CUDA-based method. Our 32-node cluster version is approximately 28 times faster than a single GPU version. Furthermore, the effective performance reaches 75.6 giga instructions per second (GIPS) using 32 GeForce 8800 GTX cards.

  • Execution Assurance for Massive Computing Tasks

    Ting WANG  Ling LIU  

     
    INVITED PAPER

      Vol:
    E93-D No:6
      Page(s):
    1343-1351

    Consider a client who intends to perform a massive computing task comprsing a number of sub-tasks, while both storage and computation are outsourced by a third-party service provider. How could the client ensure the integrity and completeness of the computation result? Meanwhile, how could the assurance mechanism incur no disincentive, e.g., excessive communication cost, for any service provider or client to participate in such a scheme? We detail this problem and present a general model of execution assurance for massive computing tasks. A series of key features distinguish our work from existing ones: a) we consider the context wherein both storage and computation are provided by untrusted third parties, and client has no data possession; b) we propose a simple yet effective assurance model based on a novel integration of the machineries of data authentication and computational private information retrieval (cPIR); c) we conduct an analytical study on the inherent trade-offs among the verification accuracy, and the computation, storage, and communication costs.

  • 3-Hop Cooperative Diversity Using Quasi-Orthogonal Space-Time Block Code

    Tomoya YAMAOKA  Yoshitaka HARA  Noriyuki FUKUI  Hiroshi KUBO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1636-1640

    We propose 3-hop cooperative diversity using QOSTBC (Quasi-Orthogonal Space-Time Block Code), which offers 3-hop cooperative diversity without signal separation in relay nodes. The key of our proposed scheme is encoding signal sequence in different signal unit according to relay stage. This letter explains details of the proposed scheme and shows that it offers interference reduction among streams and space diversity gain by result of simulations.

  • Improved Global Soft Decision Incorporating Second-Order Conditional MAP in Speech Enhancement

    Jong-Mo KUM  Joon-Hyuk CHANG  

     
    LETTER-Speech and Hearing

      Vol:
    E93-D No:6
      Page(s):
    1652-1655

    In this paper, we propose a novel method based on the second-order conditional maximum a posteriori (CMAP) to improve the performance of the global soft decision in speech enhancement. The conventional global soft decision scheme is found through investigation to have a disadvantage in that the global speech absence probability (GSAP) in that scheme is adjusted by a fixed parameter, which could be a restrictive assumption in the consecutive occurrences of speech frames. To address this problem, we devise a method to incorporate the second-order CMAP in determining the GSAP, which is clearly different from the previous approach in that not only current observation but also the speech activity decisions of the previous two frames are exploited. Performances of the proposed method are evaluated by a number of tests in various environments and show better results than previous work.

  • MIMO-OC Scheme to Suppress Co-channel Interference

    Wei Jiong ZHANG  Xi Lang ZHOU  Rong Hong JIN  

     
    LETTER-Digital Signal Processing

      Vol:
    E93-A No:6
      Page(s):
    1244-1247

    In this letter, we present a multiple-input multiple-output (MIMO) optimal combining (OC) scheme based on alternate iteration. With the channel state information (CSI) of co-channel interferers (CCIs), this algorithm can be used in flat fading and frequency selective channels to suppress CCIs. Compared with the optimal transceiver of MIMO maximal ratio combining (MRC) systems, results of simulation show that this scheme improves the uplink transmission performance significantly.

8181-8200hit(20498hit)