The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

19601-19620hit(20498hit)

  • Mechanical Stress Analysis of Trench Isolation Using a Two-Dimensional Simulation

    Satoshi MATSUDA  Nobuyuki ITOH  Chihiro YOSHINO  Yoshiroh TSUBOI  Yasuhiro KATSUMATA  Hiroshi IWAI  

     
    PAPER-Process Simulation

      Vol:
    E77-C No:2
      Page(s):
    124-128

    Junction leakage current of trench isolation devices is strongly influenced by trench configuration. The origin of the leakage current is the mechanical stress that is generated by the differential thermal expansion between the Si substrate and the SiO2 filled isolation trench during the isolation forming process. A two-dimensional mechanical stress simulation was used to analyze trench-isolated devices. The simulated distribution and magnitude of stress were found to agree with Raman spectroscopic measurements of actual devices. The stress in the deeper regions between deep trenches is likely to increase greatly as the size of devices diminishes, so it is important to reduce this stress and thus suppress junction leakage current.

  • Numerical Analysis of a Symmetric Nonlinear Directional Coupler

    Hiroshi MAEDA  Kiyotoshi YASUMOTO  

     
    PAPER-Opto-Electronics

      Vol:
    E77-C No:2
      Page(s):
    298-302

    The power transfer characteristics of a symmetric nonlinear directional coupler (NLDC) are analyzed rigorously using the beam propagation method based on the finite difference scheme. The NLDC consists of two linear waveguides separated by a Kerr-like nonlinear gap layer. The change of nonlinear refractive index along the coupler is precisely evaluated by making use of the second-order iteration procedure with respect to a small propagation length. For the incidence of TE0 mode of the isolated linear waveguide, the highly accurate numerical results are obtained for the behavior of power transfer, and the coupling length and critical power for optical switching. The dependencies of the coupling length and critical power on the width of the gap layer and the input power levels are discussed, compared with those predicted by the coupled-mode approximations.

  • Two-Dimensional Modeling of Self-Aligned Silicide Processes with the General-Purpose Process Simulator OPUS

    Kazuhiko KAI  Shigeki KURODA  Kenji NISHI  

     
    PAPER-Process Simulation

      Vol:
    E77-C No:2
      Page(s):
    129-133

    A two-dimensional self-aligned silicide (SALICIDE) model has been developed using the general-purpose process simulator OPUS. A new two-dimensional growth model is proposed. Utilizing a newly-difined effective silicide thickness, the model accounts both silicon-diffusion and metal-diffusion limited silicide growth. Silicide lateral-growth along a sidewall spacer is successfully simulated for Si-diffusion limited silicide growth. Complete MOSFET process simulation with a SALICIDE process is demonstrated for the first time.

  • Supply and Removal Characteristics of Oil in Optical Waveguide for Automated Optical Main-Distributing-Frame System

    Naoyuki TAMARU  Mitsuhiro MAKIHARA  Shuichiro INAGAKI  Akira NAGAYAMA  Kunihiko SASAKURA  

     
    PAPER

      Vol:
    E77-B No:2
      Page(s):
    209-217

    We studied the supply and removal of oil to and from a thin groove and the consequent insertion loss, aiming at matrix optical waveguide switches that utilize optical reflection and transmission effects at the groove. A robot precisely controlled the position of the removal nozzle and the supply needle by a vision servo. The optimum position for the removal nozzle was at the entrance of the groove to a circular oil pool, and the positioning margin was 10-15µm around the optimum position. The on-off ratio of the switching light power at the optimum position was about 30dB. The removal time was proportional to the kinetic viscosity of the oil, and the optimum height of the removal nozzle was independent of the kinetic viscosity of the oil. An analysis of the insertion loss revealed that the main factor in the loss at the reflection is the tilt of the groove wall.

  • Photonic Space-Division Switching Technologies for Broadband Networks

    Masahiko FUJIWARA  Tsuyotake SAWANO  

     
    INVITED PAPER

      Vol:
    E77-B No:2
      Page(s):
    110-118

    The photonic Space-Division (SD) switching network is attractive for constructing flexible broadband networks. This paper first describes possible applications of the network. A broadband STM switching system, Digital Cross-connect System (DCS) and Video signal distribution switch, especially for HDTV signals, are attractive near term applications. Recent activities on photonic SD switching network developments aiming at these application are also reviewed. A 128 line prototype switching system has been developed. This system utilizes LiNbO3 photonic switch matrices, semiconductor traveling wave amplifiers (TWAs) and three dimensional optical interconnections for multi stage switching networks. It is confirmed that the system has been operating in providing 150Mb/s TV phone services and 600Mb/s HDTV distribution services with high stability. An experimental optical Digital Crossconnect System (optical DCS) has also been demonstrated. Line failure restoration operation at 2.4Gb/s has been successfully demonstrated. These experimental demonstrations prove that practical photonic switching systems are feasible with current technologies.

  • Optical Parallel Interconnection Based on Group Multiplexing and Coding Technique

    Tetsuo HORIMATSU  Nobuhiro FUJIMOTO  Kiyohide WAKAO  Mitsuhiro YANO  

     
    PAPER

      Vol:
    E77-C No:1
      Page(s):
    35-41

    A transmission data format for high-speed optical parallel interconnections is proposed and a 4-channel transmitter and receiver link module operating at up to 1.2 Gb/s per channel is demonstrated. The data format features "Group Multiplexing and Coding." In this scheme, input several tens channels are multiplexed and coded in group into reduced channels, resulting in burst-mode compatible, skew-free transmission, and low power-consumption of a link module. Experiments with fabricated modules comfirm that our data coding in multichannel optical transmission is promising for use in high-speed interconnections in information and switching systems.

  • Parallel Photonic Devices and Concepts Good for Optical Interconnects

    Kenichi IGA  

     
    INVITED PAPER

      Vol:
    E77-C No:1
      Page(s):
    9-14

    In this paper, we present some novel concepts and photonic devices for use in optical interconnects. First, we review the progress of surface emitting lasers while featuring materials and performances including thresholds, power output, RIN, linewidth, and so on. Advanced technology for aiming at spontaneous emission control, photon recycling, polarization control, wavelength tuning, integration etc. will be considered. Then we touch on some other possible devices for optical interconnects. Lastly, we discuss on lightwave subsystems applying these devices and concepts.

  • Crosstalk Characteristic of Monolithically Integrated Receiver Arrays

    Yuji AKAHORI  Mutsuo IKEDA  Atsuo KOHZEN  Yoshio ITAYA  

     
    PAPER

      Vol:
    E77-C No:1
      Page(s):
    42-49

    The crosstalk characteristics of a long-wavelength monolithically integrated photoreceiver array are analyzed. The device consists of an array of transimpedance photoreceivers fabricated on a semi-insulating InP substrate. The distance between the photodetectors is large enough to suppress the photonic crosstalk. Therefore, the crosstalk of the device is mainly due to signal propagation from the channels through the power line shared by each channel on the chip. This crosstalk is inevitable to the photoreceiver arrays which employ common power lines. The magnitude of the crosstalk largely depends on the impedance of the power-supply circuit outside the chip. The crosstalk spectrum often has a peak and recess structure. The crosstalk peak at the edge of the operating band-width is due to the resonance characteristic of the transimpedance amplifier. The other peak and recess structures on the spectrum are due to the resonance phenomena of on-chip and off-chip capacitors and inductance on the power-supply line outside the chip. This crosstalk can be reduced by using on-chip bypass capacitance and dumping resistance. However, the resonance due to the capacitance and inductance on the power-supply circuit outside the chip can't be controlled by the on-chip components. Therefore, an optimized design for the power supply circuit outside the chip is also indispensable for suppressing crosstalk.

  • Reforming the National Research Institutions in Japan

    Nobuyoshi FUGONO  

     
    INVITED PAPER

      Vol:
    E77-B No:1
      Page(s):
    1-4

    It is recognized in Japan that reformation of the national research institutions is urgently necessary. Present situation and constraints are shown and the action items are discussed.

  • On Claw Free Families

    Wakaha OGATA  Kaoru KUROSAWA  

     
    PAPER

      Vol:
    E77-A No:1
      Page(s):
    72-80

    This paper points out that there are two types of claw free families with respect to a level of claw freeness. We formulate them as weak claw free families and strong claw free families. Then, we present sufficient conditions for each type of claw free families. (A similar result is known for weak claw free families.) They are represented as some algebraic forms of one way functions. A new example of strong claw free families is also given.

  • A Combined Fast Adaptive Filter Algorithm with an Automatic Switching Method

    Youhua WANG  Kenji NAKAYAMA  

     
    PAPER-Adaptive Signal Processing

      Vol:
    E77-A No:1
      Page(s):
    247-256

    This paper proposes a new combined fast algorithm for transversal adaptive filters. The fast transversal filter (FTF) algorithm and the normalized LMS (NLMS) are combined in the following way. In the initialization period, the FTF is used to obtain fast convergence. After converging, the algorithm is switched to the NLMS algorithm because the FTF cannot be used for a long time due to its numerical instability. Nonstationary environment, that is, time varying unknown system for instance, is classified into three categories: slow time varying, fast time varying and sudden time varying systems. The NLMS algorithm is applied to the first situation. In the latter two cases, however, the NLMS algorithm cannot provide a good performance. So, the FTF algorithm is selected. Switching between the two algorithms is automatically controlled by using the difference of the MSE sequence. If the difference exceeds a threshold, then the FTF is selected. Other wise, the NLMS is selected. Compared with the RLS algorithm, the proposed combined algorithm needs less computation, while maintaining the same performance. Furthermore, compared with the FTF algorithm, it provides numerically stable operation.

  • Kanji Laboratory: An Environmental ICAI System for Kanji Learning

    Toshihiro HAYASHI  Yoneo YANO  

     
    PAPER

      Vol:
    E77-D No:1
      Page(s):
    80-88

    Kanji Laboratory is a kanji learning ICAI system. In this paper, we describe the development of Kanji Laboratory, which is designed for foreigners who are learning Japanese kanji. We have developed Kanji Laboratory under the guidelines of environmental ICAI systems, based on a kanji learning method focusing on kanji radicals. Kanji Laboratory consists of a knowledge base, a learning environment and an advisor module. The knowledge base can well-handle the knowledge of Joyo Kanji (1,945 characters). Each one is related with its radicals via their inherited attributes. In addition, this knowledge base system can search kanji knowledge quickly. The learning environment has the following features: (1) Students can construct a kanji by combining radicals and disassemble the kanji into radicals and strokes. (2) Students can use electronic tools, such as a kanji dictionary, which support kanji learning. In this way, students can learn kanji and the relations with its radicals effectively. With regard to the advisor, although it occurs that students fall in plateaus of learning in environmental CAI, the advisor module is designed to give well-timed advice to students, avoiding those plateaus, based on the observation of their learning actions.

  • Barrier Metal Effect on Electro- and Stress-Migration

    Tetsuaki WADA  

     
    PAPER-Failure Physics and Failure Analysis

      Vol:
    E77-A No:1
      Page(s):
    180-186

    A new effect of barrier metal laid under 1st aluminum layer on electromigration has been found in interconnect vias. This effect can be explained by Si nodules at vias. Stress induced open failure occurred at viaholes and depends on the size of the vias. Stress-migration at vias can be prevented by TiN barrier metal between 1st and 2nd metals. Reliability of electro- and stress-migration at interconnect vias can be explosively improved by using TiN barrier metal.

  • Interconnection Architecture Based on Beam-Steering Devices

    Hideo ITOH  Seiji MUKAI  Hiroyoshi YAJIMA  

     
    INVITED PAPER

      Vol:
    E77-C No:1
      Page(s):
    15-22

    Beam-steering devices are attractive for spatial optical interconnections. Those devices are essential not only for fixed connecting routed optical interconnections, but for flexible connecting routed optical interconnections. The flexible connecting routed optical interconections are more powerful than the conventional fixed connecting routed ones. Structures and characteristics of beam-steering devices, a beam-scanning laser diode and a fringe-shifting laser diode, are reported for those interconnections. Using these lasers, the configurations of several optical interconnections, such as optical buses and optical data switching links as examples of fixed and flexible connecting routed optical interconnections are discussed.

  • Abnormal Epitaxial Layer of AlGaAs/GaAs Solar Cells for Space Applications

    Sumio MATSUDA  Masato UESUGI  Susumu YOSHIDA  

     
    PAPER-Failure Physics and Failure Analysis

      Vol:
    E77-A No:1
      Page(s):
    150-157

    We found degraded output power due to discoloration of an abnormal epitaxial layer caused by supercooling of residual melt in liquid phase epitaxy (LPE) process of AlGaAs/GaAs heteroface solar cells developed to improve conversion efficiency of solar cells for satellites. We studied the discoloration mechanism and found effective methods for obtaning a good epitaxial layer. Using these results, we manufactured about 80,000 pieces of solar cells and employed them in the Japanese domestic Communication Satellite-3 (CS-3) launched by National Space Development Agency of Japan (NASDA). Five years after launch, these solar cells are still supplying the output power than predicted. This paper describes reliability improvements for the surface of epitaxial layer and successful results aftes 5 years of space operation.

  • Pure Optical Parallel Array Logic System--An Optical Parallel Computing Architecture--

    Tsuyoshi KONISHI  Jun TANIDA  Yoshiki ICHIOKA  

     
    PAPER

      Vol:
    E77-C No:1
      Page(s):
    30-34

    We propose an optical computing architecture called pure optical parall array logic system (P-OPALS) as an instance of sophisticated optical computing system. On the P-OPALS, high density images can be processed in parallel using the optical system with high resolving power. We point out problems on the way to develop the P-OPALS and propose logical foundation of the P-OPALS called single-input optical array logic (S-OAL) as a solution of those problems. Based on the proposed architecture, an experimental system of the P-OPALS is constructed by using three optical techniques: birefringent encoding, selectable discrete correlator, and birefringent decoding. To show processing capability of the P-OPALS, some basic parallel operations are demonstrated. The results obtained indicate that image consisting of 300 100 pixels can be processed in parallel on the experimental P-OPALS. Finally, we estimate potential capability of the P-OPALS.

  • Optical Interconnections in Switching System

    Ken-ichi YUKIMATSU  Yoshihiro SHIMAZU  

     
    INVITED PAPER

      Vol:
    E77-C No:1
      Page(s):
    2-8

    This paper describes the use of optical interconnections in switching systems and discusses our recent achievements in this area. Switching system interconnections are classified based on their application layers. The evolution of optical interconnections in switching systems in discussed in terms of such system requirements as cost, size, and throughput. Recent achievements are discussed: an optical inter-module connector, a free-space digital switch, and a large-capacity optically intra-connected ATM switch.

  • Via Electromigration Characteristics in Aluminum Based Multilevel Interconnection

    Takahisa YAMAHA  Masaru NAITO  Tadahiko HOTTA  

     
    PAPER-Failure Physics and Failure Analysis

      Vol:
    E77-A No:1
      Page(s):
    187-194

    Via electromigration (EM) performance of aluminum based metallization (AL) systems has been investigated for vias chains of 1500-4000 vias of 1.0 micron diameter. The results show that via EM lifetime can not be enhanced by a simple increase of M2 step coverage in AL/AL vias because the EM induced voids are formed at AL/AL via interface where electrons flow from Ml to M2 even in the case of very poor M2 step coverage. The voids are induced by the boundary layer in AL/AL vias, where a temperature gradient causes discontinuity of aluminum atoms flux. The failure location is not moved though via EM lifetime can be improved by controlling stress in passivation, sputter etch removal thickness and grain size of the first metal. Next, the effect of the boundary layer are eliminated by depositing titanium under the second aluminum or depositing WSi on the first aluminum. In the both cases, via EM lifetime are improved and the failure locations are changed. Especially WSi layer suppresses the voids formation rather than titanium. Models for the failure mechanism in each metallization system are further discussed.

  • Four-Channel Reciever optoelectronic Integrated Circuit Arrays for Optical Interconnections

    Hideki HAYASHI  Goro SASAKI  Hiroshi YANO  Naoki NISHIYAMA  Michio MURATA  

     
    PAPER

      Vol:
    E77-C No:1
      Page(s):
    23-29

    Ultrahigh speed and low crosstalk four-channel receiver optoelectronic integrated circuit (OEIC) arrays comprising GaInAs pin PDs and A1InAs/GaInAs HEMTs have been successfully fabricated on an InP substrate. These arrays were designed to have good crosstalk characteristics which are the most critical issue in array devices. The resistive-load OEIC arrays exhibited high speed operation up to 5 Gb/s and low crosstalk of less than -38 dB between whole adjacent channels over entire frequency range below 4.0 GHz. The average sensitivity of resistive-load OEIC arrays was -18.5 dBm at 3 Gb/s for a bit-error-rate of 10-9 over four channels. Good uniformity of device characteristics was obtained over 2-inch InP wafer. These results suggest that receiver OEIC arrays are quite promising for the application to high-speed multi-channel optical interconnections.

  • A Current-Mode Implementation of a Chaotic Neuron Model Using a SI Integrator

    Nobuo KANOU  Yoshihiko HORIO  Kazuyuki AIHARA  Shogo NAKAMURA  

     
    LETTER-Nonlinear Circuits and Systems

      Vol:
    E77-A No:1
      Page(s):
    335-338

    This paper presents an improved current-mode circuit for implementation of a chaotic neuron model. The proposed circuit uses a switched-current integrator and a nonlinear output function circuit, which is based on an operational transconductance amplifier, as building blocks. Is is shown by SPICE simulations and experiments using discrete elements that the proposed circuit well replicates the behavior of the chaotic neuron model.

19601-19620hit(20498hit)