Takuto YOSHIOKA Kana YAMASAKI Takuya SAWADA Kensaku FUJII Mitsuji MUNEYASU Masakazu MORIMOTO
In this paper, we propose a step size control method capable of quickly canceling acoustic echo even when double talk continues from the echo path change. This method controls the step size by substituting the norm of the difference vector between the coefficient vectors of a main adaptive filter (Main-ADF) and a sub-adaptive filter (Sub-ADF) for the estimation error provided by the former. Actually, the number of taps of Sub-ADF is limited to a quarter of that of Main-ADF, and the larger step size than that applied to Main-ADF is given to Sub-ADF; accordingly the norm of the difference vector quickly approximates to the estimation error. The estimation speed can be improved by utilizing the norm of the difference vector for the step size control in Main-ADF. We show using speech signals that in single talk the proposed method can provide almost the same estimation speed as the method whose step size is fixed at the optimum one and verify that even in double talk the estimation error, quickly decreases.
Yong XIE Gang ZENG Yang CHEN Ryo KURACHI Hiroaki TAKADA Renfa LI
In modern automobiles, Controller Area Network (CAN) has been widely used in different sub systems that are connected by using gateway. While a gateway is necessary to integrate different electronic sub systems, it brings challenges for the analysis of Worst Case Response Time (WCRT) for CAN messages, which is critical from the safety point of view. In this paper, we first analyzed the challenges for WCRT analysis of messages in gateway-interconnected CANs. Then, based on the existing WCRT analysis method proposed for one single CAN, a new WCRT analysis method that uses two new definitions to analyze the interfering delay of sporadically arriving gateway messages is proposed for non-gateway messages. Furthermore, a division approach, where the end-to-end WCRT analysis of gateway messages is transformed into the similar situation with that of non-gateway messages, is adopted for gateway messages. Finally, the proposed method is extended to include CANs with different bandwidths. The proposed method is proved to be safe, and experimental results demonstrated its effectiveness by comparing it with a full space searching based simulator and applying it to a real message set.
Zheng-qiang WANG Ling-ge JIANG Chen HE
This letter investigates price-based power control for cognitive radio networks (CRNs) with interference cancellation. The base station (BS) of the primary users (PUs) will admit secondary users (SUs) to access by pricing their interference power under the interference power constraint (IPC). We give the optimal price for BS to maximize its revenue and the optimal interference cancellation order to minimize the total transmit power of SUs. Simulation results show the effectiveness of the proposed pricing scheme.
Atsushi FUJIOKA Fumitaka HOSHINO Tetsutaro KOBAYASHI Koutarou SUZUKI Berkant USTAOLU Kazuki YONEYAMA
In this paper, we propose an identity-based authenticated key exchange (ID-AKE) protocol that is secure in the identity-based extended Canetti-Krawczyk (id-eCK) model in the random oracle model under the gap Bilinear Diffie-Hellman assumption. The proposed ID-AKE protocol is the most efficient among the existing ID-AKE protocols that is id-eCK secure, and it can be extended to use in asymmetric pairing.
This paper examines two-pass authenticated key exchange (AKE) protocols that are secure without the NAXOS technique under the gap Diffie-Hellman assumption in the random oracle model: FHMQV [18], KFU1 [21], SMEN- [13], and UP [17]. We introduce two protocol, biclique DH protocol and multiplied biclique DH protocol, to analyze the subject protocols, and show that the subject protocols use the multiplied biclique DH protocol as internal protocols. The biclique DH protocol is secure, however, the multiplied biclique DH protocol is insecure. We show the relations between the subject protocols from the viewpoint of how they overcome the insecurity of the multiplied biclique DH protocol: FHMQV virtually executes two multiplied biclique DH protocols in sequence with the same ephemeral key on two randomized static keys. KFU1 executes two multiplied biclique DH protocols in parallel with the same ephemeral key. UP is a version of KFU1 in which one of the static public keys is generated with a random oracle. SMEN- can be thought of as a combined execution of two multiplied biclique DH protocols. In addition, this paper provides ways to characterize the AKE protocols and defines two parameters: one consists of the number of static keys, the number of ephemeral keys, and the number of shared secrets, and the other is defined as the total sum of these numbers. When an AKE protocol is constructed based on some group, these two parameters indicate the number of elements in the group, i.e., they are related to the sizes of the storage and communication data.
Suyue LI Jian XIONG Peng CHENG Lin GUI Youyun XU
One major challenge to implement orthogonal frequency division multiplexing (OFDM) systems over doubly selective channels is the non-negligible intercarrier interference (ICI), which significantly degrades the system performance. Existing solutions to cope with ICI include zero-forcing (ZF), minimum mean square error (MMSE) and other linear or nonlinear equalization methods. However, these schemes fail to achieve a satisfactory tradeoff between performance and computational complexity. To address this problem, in this paper we propose two novel nonlinear ICI cancellation techniques, which are referred to as parallel interference cancelation (PIC) and hybrid interference cancelation (HIC). Taking advantage of the special structure of basis expansion model (BEM) based channel matrices, our proposed schemes enjoy low computational complexity and are capable of cancelling ICI effectively. Moreover, since the proposed schemes can flexibly select different basis functions and be independent of the channel statistics, they are applicable to practical OFDM based systems such as DVB-T2 over doubly selective channels. Theoretical analysis and simulation results both confirm their performance-complexity advantages in comparison with some existing methods.
Chao DONG Li GAO Ying HONG Chengpeng HAO
Dichotomous coordinate descent (DCD) iterations method has been proposed for adaptive feedback cancellation, which uses a fixed number of iterations and a fixed amplitude range. In this paper, improved DCD algorithms are proposed, which substitute the constant number of iterations and the amplitude range with a variable number of iterations(VI) and/or a variable amplitude range(VA). Thus VI-DCD, VA-DCD and VIA-DCD algorithms are obtained. Computer simulations are used to compare the performance of the proposed algorithms against original DCD algorithm, and simulation results demonstrate that significant improvements are achieved in the convergence speed and accuracy. Another notable conclusion by further simulations is that the proposed algorithms achieve superior performance with a real speech segment as the input.
Gia Khanh TRAN Rindranirina RAMAMONJISON Kei SAKAGUCHI Kiyomichi ARAKI
MIMO two-way multi-hop networks are considered in which the radio resource is fully reused in all multi-hop links to increase spectrum efficiency while the adjacent interference signals are cancelled by MIMO processing. In addition, the nodes in the multi-hop network optimize their transmit powers to mitigate the remaining overreach interference. Our main contribution in this paper is to investigate an efficient relay placement method with power allocation in such networks. We present two formulations, namely QoS-constrained optimization and SINR balancing, and solve them using a sequential geometric programming method. The proposed algorithm takes advantage of convex optimization to find an efficient configuration. Simulation results show that relay placement has an important impact on the effectiveness of power allocation to mitigate the interference. Particularly, we found that an uniform relay location is optimal only in power-limited scenarios. With optimal relay locations, significant end-to-end rate gain and power consumption reduction are achieved by SINR balancing and QoS-constrained optimization, respectively. Furthermore, the optimal number of hops is investigated in power or interference-limited scenarios.
Katsuya FUJIWARA Hideo FUJIWARA
In this paper, we introduce generalized feed-forward shift registers (GF2SR) to apply them to secure and testable scan design. Previously, we introduced SR-equivalents and SR-quasi-equivalents which can be used in secure and testable scan design, and showed that inversion-inserted linear feed-forward shift registers (I2LF2SR) are useful circuits for the secure and testable scan design. GF2SR is an extension of I2LF2SR and the class is much wider than that of I2LF2SR. Since the cardinality of the class of GF2SR is much larger than that of I2LF2SR, the security level of scan design with GF2SR is much higher than that of I2LF2SR. We consider how to control/observe GF2SR to guarantee easy scan-in/out operations, i.e., state-justification and state-identification problems are considered. Both scan-in and scan-out operations can be overlapped in the same way as the conventional scan testing, and hence the test sequence for the proposed scan design is of the same length as the conventional scan design. A program called WAGSR (Web Application for Generalized feed-forward Shift Registers) is presented to solve those problems.
Changyong PAN Linglong DAI Zhixing YANG
Time domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) has higher spectral efficiency than the standard cyclic prefix OFDM (CP-OFDM) OFDM by replacing the random CP with the known training sequence (TS), which could be also used for synchronization and channel estimation. However, TDS-OFDM requires suffers from performance loss over fading channels due to the iterative interference cancellation has to be used to remove the mutual interferences between the TS and the useful data. To solve this problem, the novel TS based OFDM transmission scheme, referred to as the unified time-frequency OFDM (UTF-OFDM), is proposed in which the time-domain TS and the frequency-domain pilots are carefully designed to naturally avoid the interference from the TS to the data without any reconstruction. The proposed UTF-OFDM based flexible frame structure supports effective channel estimation and reliable channel equalization, while imposing a significantly lower complexity than the TDS-OFDM system at the cost of a slightly reduced spectral efficiency. Simulation results demonstrate that the proposed UTF-OFDM substantially outperforms the existing TDS-OFDM, in terms of the system's achievable bit error rate.
Guo-Ming SUNG Ying-Tzu LAI Yueh-Hung HOU
This paper presents a fully differential third-order (2-1) switched-current (SI) cascaded delta-sigma modulator (DSM), with an analog error cancellation logic circuit, and a digital decimation filter that is fabricated using 0.18-µm CMOS technology. The 2-1 architecture with only the quantizer input being fed into the second stage is introduced not only to reduce the circuit complexity, but also to be implemented easily using the switched-current approach. Measurements reveal that the dominant error is the quantization error of the second one-bit quantizer (e2). This error can be eliminated using an analog error cancellation logic circuit. In the proposed differential sample-and-hold circuit, low input impedance is presented with feedback and width-length adjustment in SI feedback memory cell (FMC); and that a coupled differential replicate (CDR) common-mode feedforward circuit (CMFF) is used to compensate the error of the current mirror. Also, measurements indicate that the signal-to-noise ratio (SNR), dynamic range (DR), effective number of bits (ENOB), power consumption and chip size are 67.3 dB, 69 dB, 10.9 bits, 12.3 mW, and 0.200.21 mm2, respectively, with a bandwidth of 40 kHz, a sampling rate of 10.24 MHz, an OSR of 128 and a supply voltage of 1.8 V.
Hidenori OTSUKA Masako NAGAMURA Akie KANEKO Koichi KUTSUZAWA Toshiya SAKATA
A two-dimensional microarray of ten thousand (100100) chondrocyte-spheroids was successfully constructed with a 100-µm spacing on a micropatterned gold electrodes that were coated with poly(ethylene glycol) (PEG) hydrogels. The PEGylated surface as a cytophobic region was regulated by controlling the gel structure through photolithography. In this way, a PEG hydrogel was modulated enough to inhibit outgrowth of chondrocytes from cell adhering region in the horizontal direction. These structural control of PEG hydrogel was critical for inducing formation of three-dimensional chondrocyte condensations (spheroids) within 24 hours. We report noninvasive monitoring of the cellular functional change at the cell membrane using a chondrocyte-based field effect transistor (FET), which is based on detection of extracellular potential change induced as a result of the interaction between extracellular matrix (ECM) protein secreted from spheroid and substrate at the cell membrane. The interface potential change at the cell membrane/gate insulator interface can be monitored during the uptake of substrate without any labeling materials. Our findings on the time course of the interface potential would provide important information to understand the uptake kinetics for cellular differentiation.
Mark MANULIS Koutarou SUZUKI Berkant USTAOGLU
We propose a security model, referred as g-eCK model, for group key exchange that captures essentially all non-trivial leakage of static and ephemeral secret keys of participants, i.e., group key exchange version of extended Canetti-Krawczyk (eCK) model. Moreover, we propose the first one-round tripartite key exchange (3KE) protocol secure in the g-eCK model under the gap Bilinear Diffie-Hellman (gap BDH) assumption and in the random oracle model.
Suyue LI Jian XIONG Lin GUI Youyun XU Baoyu ZHENG
A simple yet effective time domain correlation channel estimation method is proposed for multiple-input multiple-output (MIMO) systems over dispersive channels. It is known that the inherent co-channel interference (CCI) and inter-symbol interference (ISI) coexist when the signals propagate through MIMO frequency selective channels, which renders the MIMO channel estimation intractable. By elaborately devising the quasi-orthogonal training sequences between multiple antennas which have constant autocorrelation property with different cyclic shifts in the time domain, the interferences induced by ISI and CCI can be simultaneously maintained at a constant and identical value under quasi-static channels. As a consequence, it is advisable to implement the joint ISI and CCI cancelation by solving the constructed linear equation on the basis of the correlation output with optional correlation window. Finally, a general and simplified closed-form expression of the estimated channel impulse response can be acquired without matrix inversion. Additionally, the layered space-time (LST) minimum mean square error (MMSE) (LST-MMSE) frequency domain equalization is briefly described. We also provide some meaningful discussions on the beginning index of the variable correlation window and on the cyclic shift number of m-sequence of other antennas relative to the first antenna. Simulation results demonstrate that the proposed channel estimation approach apparently outperforms the existing schemes with a remarkable reduction in computational complexity.
Network topology significantly affects network cost, path length, link load distribution, and reliability, so we need to consider multiple criteria with different units simultaneously when designing a network's topology. The analytic hierarchy process (AHP) is a technique of balancing multiple criteria in order to reach a rational decision. Using AHP, we can reflect the relative importance of each criterion on the evaluation result; therefore, we have applied it to network topology evaluation in past research. When evaluating network topologies using AHP, we need to construct the set of topology candidates prior to the evaluation. However, the time required to construct this set greatly increases as the network size grows. In this paper, we propose applying a binary partition approach for constructing a topology candidate set with dramatically reduced calculation time. To reduce the calculation time, we introduce an upper limit for the total link length. Although the results of AHP are affected by introducing the upper limit of the total link length, we show that desirable topologies are still selected in AHP.
Chamidu ATUPELAGE Hiroshi NAGAHASHI Masahiro YAMAGUCHI Tokiya ABE Akinori HASHIGUCHI Michiie SAKAMOTO
Histopathology is a microscopic anatomical study of body tissues and widely used as a cancer diagnosing method. Generally, pathologists examine the structural deviation of cellular and sub-cellular components to diagnose the malignancy of body tissues. These judgments may often subjective to pathologists' skills and personal experiences. However, computational diagnosis tools may circumvent these limitations and improve the reliability of the diagnosis decisions. This paper proposes a prostate image classification method by extracting textural behavior using multifractal analysis. Fractal geometry is used to describe the complexity of self-similar structures as a non-integer exponent called fractal dimension. Natural complex structures (or images) are not self-similar, thus a single exponent (the fractal dimension) may not be adequate to describe the complexity of such structures. Multifractal analysis technique has been introduced to describe the complexity as a spectrum of fractal dimensions. Based on multifractal computation of digital imaging, we obtain two textural feature descriptors; i) local irregularity: α and ii) global regularity: f(α). We exploit these multifractal feature descriptors with a texton dictionary based classification model to discriminate cancer/non-cancer tissues of histopathology images of H&E stained prostate biopsy specimens. Moreover, we examine other three feature descriptors; Gabor filter bank, LM filter bank and Haralick features to benchmark the performance of the proposed method. Experiment results indicated that the performance of the proposed multifractal feature descriptor outperforms the other feature descriptors by achieving over 94% of correct classification accuracy.
Youhua SHI Nozomu TOGAWA Masao YANAGISAWA
Scan-based side channel attack on hardware implementations of cryptographic algorithms has shown its great security threat. Unlike existing scan-based attacks, in our work we observed that instead of the secret-related-registers, some non-secret registers also carry the potential of being misused to help a hacker to retrieve secret keys. In this paper, we first present a scan-based side channel attack method on AES by making use of the round counter registers, which are not paid attention to in previous works, to show the potential security threat in designs with scan chains. And then we discussed the issues of secure DFT requirements and proposed a secure scan scheme to preserve all the advantages and simplicities of traditional scan test, while significantly improve the security with ignorable design overhead, for crypto hardware implementations.
Hiroyuki OSADA Mamiko INAMORI Yukitoshi SANADA
A diversity scheme with Fractional Sampling (FS) in OFDM receivers has been investigated recently. FS path diversity makes use of the imaging components of the desired signal transmitted on the adjacent channel. To increase the diversity gain with FS the bandwidth of the transmit signal has to be enlarged. This leads to the reduction of spectrum efficiency. In this paper non-orthogonal access over multiple channels in the frequency domain with iterative interference cancellation (IIC) and FS is proposed. The proposed scheme transmits the imaging component non-orthogonally on the adjacent channel. In order to accommodate the imaging component, it is underlaid on the other desired signal. Through diversity with FS and IIC, non-orthogonal access on multiple channels is realized. Our proposed scheme can obtain diversity gains for non-orthogonal signals modulated with QPSK.
Hsin-De LIN Tzu-Hsien SANG Jiunn-Tsair CHEN
For advanced mobile communication systems that adopt orthogonal frequency-division multiple access (OFDMA) technologies, intercarrier interference (ICI) significantly degrades performance when mobility is high. Standard specifications and concerns about complexity demand low-cost methods with deployment readiness and decent performance. In this paper, novel zero forcing (ZF) and minimum mean-square error (MMSE) equalizers based on per-subcarrier adaptive (PSA) processing and perturbation-based (PB) approximation are introduced. The proposed equalizers strike a good balance between implementation cost and performance; therefore they are especially suitable for OFDMA downlink receivers. Theoretical analysis and simulations are provided to verify our claims.
Ryosuke SUGA Shigenori TAKANO Takenori YASUZUMI Taichi IJUIN Tetsuya TAKATOMI Osamu HASHIMOTO
A can swells due to gas produced from an inner food caused by poor hermetic sealing of the can. This paper presents a measurement for the bottom shape to detect a swelled can by using the millimeter-wave imaging. For get higher spatial resolution and an adjustable focal distance, two collimated beam lenses were applied to the measurement system. First, a configuration of the system was studied with the electrical field intensity and focal distance by using full wave electromagnetic simulation. Next, the bottom shapes of cans with different pressure were evaluated quantitatively using the system. A shape change of 0.5 mm was detected with pressure difference of 50 kPa, and it is reasonable considering actual dimension of the can shape. A potential of the proposed detection method was presented.