The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

7941-7960hit(8214hit)

  • An ASIP Instruction Set Optimization Algorithm with Functional Module Sharing Constraint

    Alauddin Y. ALOMARY  Masaharu IMAI  Nobuyuki HIKICHI  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1713-1720

    One of the most interesting and most analyzed aspects of the CPU design is the instruction set design. How many and which operations to be provided by hardware is one of the most fundamental issues relaing to the instruction set design. This paper describes a novel method that formulates the instruction set design of ASIP (an Application Specific Integrated Processor) using a combinatorial appoach. Starting with the whole set of all possible candidata instructions that represesnt a given application domain, this approach selects a subset that maximizes the performance under the constraints of chip area, power consumption, and functional module sharing relation among operations. This leads to the efficient implementation of the selected instructions. A branch-and-bound algorithm is used to solve this combinatorial optimization problem. This approach selects the most important instructions for a given application as well as optimizing the hardware resources that implement the selected instructions. This approach also enables designers to predict the perfomance of their design before implementing them, which is a quite important feature for producing a quality design in reasonable time.

  • Solder Joint Inspection Using Air Stimulation Speckle Vibration Detection Method and Fluorescence Detection Method

    Takashi HIROI  Kazushi YOSHIMURA  Takanori NINOMIYA  Toshimitsu HAMADA  Yasuo NAKAGAWA  Shigeki MIO  Kouichi KARASAKI  Hideaki SASAKI  

     
    PAPER

      Vol:
    E76-D No:10
      Page(s):
    1144-1152

    The fast and highly reliable method reported here uses two techniques to detect all types of defects, such as unsoldered leads, solder bridges, and misalignes leads in the minute solder joints of high density mounted devices. One technique uses external force applied by an air jet that vibrates or shifts unsoldered leads. The vibration and shift is detected as a change in the speckle pattern produced by laser illumination of the solder joints. The other technique uses fluorescence generated by short-wavelength laser illumination. The fluorescence from a printed circuit board produces a silhouette of the solder joint and this image is processed to detect defects. Experimental results show that this inspection method detects all kinds of defects accurately and with a very low false alarm rate.

  • Morphology Based Thresholding for Character Extraction

    Yasuko TAKAHASHI  Akio SHIO  Kenichiro ISHII  

     
    PAPER

      Vol:
    E76-D No:10
      Page(s):
    1208-1215

    The character binarization method MTC is developed for enhancing the recognition of characters in general outdoor images. Such recognition is traditionally difficult because of the influence of illumination changes, especially strong shadow, and also changes in character, such as apparent character sizes. One way to overcome such difficulties is to restrict objects to be processed by using strong hypotheses, such as type of object, object orientation and distance. Several systems for automatic license plate reading are being developed using such strong hypotheses. However. their strong assumptions limit their applications and complicate the extension of the systems. The MTC method assumes the most reasonable hypotheses possible for characters: they occupy plane areas, consist of narrow lines, and external shadow is considerably larger than character lines. The first step is to eliminate the effect of local brightness changes by enhancing feature including characters. This is achieved by applying mathematical morphology by using a logarithmic function. The enhanced gray-scale image is then binarized. Accurate binarization is achieved because local thresholds are determined from the edges detected in the image. The MTC method yields stable binary results under illumination changes, and, consequently, ensures high character reading rates. This is confirmed with a large number of images collected under a wide variety of weather conditions. It is also shown experimentally that MTC permits stable recognition rate even if the characters vary in size.

  • BEM-: An Arithmetic Boolean Expression Manipulator Using BDDs

    Shin-ichi MINATO  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1721-1729

    Recently, there has been a lot of research on solving combinatorial problems using Binary Decision Diagrams (BDDs), which are very efficient representations of Boolean functions. We have already developed a Boolean Expression Manipulator, which calculates and reduces Boolean expressions quickly based on BDD techniques. This greatly aids our works on developing VLSI CAD systems and solving combinatorial problems. Any combinatorial problem can be described in Boolean expressions; however, arithmetic operations, such as addition, subraction, multiplication, equality and inequality, are also used for describing many practical problems. Arithmetic operations provide simple descriptions of problems in many cases. In this paper, we present an arithmetic Boolean expression manipulator (BEM-), based on BDD techniques. BEM- calculates Boolean expressions containing arithmetic operations and then displays the results in various formats. It can solve problems represented by a set of equalities and inequalities, which are dealt with using 0-1 linear programming. We show the efficient data structure based on BDD representation, algorihms for manipulating Boolean expressions with arithmetic operations, and good formats for displaying the results. Finally we present the specification of BEM- and an example of application to the 8-Queens problem. BEM- is customizable to various applicationa. It has good computation performance in terms of the total time for programming and execution. We expect BEM- to be a helpful tool in research and development on digital systems.

  • Wavelength Demultiplexer Utilizing Stratified Waveguides with a Tapered Buffer Layer

    Kiyoshi KISHIOKA  Heihachiro OCHIAI  

     
    PAPER-Optical Device

      Vol:
    E76-C No:10
      Page(s):
    1491-1497

    In this paper, a novel Y-junction type demultiplexer utilizing a stratified-waveguide configuration in the branching region is proposed for the purpose of improving the extinction ratio. A high extinction ratio of about 20 dB is achieved at 0.6328 µm and 0.83 µm operation wavelengths both for the TE and TM modes. The properties of the new type branchig waveguides which consist of the diffused waveguide and the striploaded waveguide are described to explain the operation principle. Simulation results by the BPM are also shown to check the designed values of the waveguide parameters.

  • State Diagram Matrix for Hierarchical Specification of Reactive System

    Tomohiro MURATA  Kenzou KURIHARA  Ayako ASHIDA  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1591-1597

    Reactive systems respond to internal or external stimuli and act in an event-driven manner. It is generally difficult to specify a complex reactive systems' behavior using conventional state machine formalism. One reason is that actual reactive systems are usually formed by combining plural state-machince that behave concurretly. This paper presents the State Diagram Matrix (SDM) which is a visual and hierarchical formalism of such a reactive system's behavior. SDM has two concepts. The first is matrix plane description on which 3-dimensional state space is projected. The second is state abstraction for hierarchical state-machine definition. Understandability and reliability of control software was improved as a consequence of adopting SDM for specifying disk-subsystem control requirements. The development support functions of SDM using a workstation are also described.

  • Inverse Scattering Analysis Based on the Equivalent Source Method for Perfectly Conducting Cylinders Using Scattered Data of Several Frequencies

    Mario G. FROMOW RANGEL  Akira NOGUCHI  

     
    PAPER-Inverse Problem

      Vol:
    E76-C No:10
      Page(s):
    1456-1460

    The inverse problem we consider in this paper seeks, based on the equivalent source method, to determine the shape of perfectly conducting cylinders from the scattered farfield data obtained by using several incident waves. When incident waves of different frequencies are used, the shape of the scatterer can be reconstructed by employing only a few number of observation points. In the reconstruction problem, to determine the shape of the scatterer, the conjugate gradients method is applied. The general approach is applicable to cylindrical scatterers of arbitrary shape. Results of numerical simulations are presented to support the suggested approach.

  • The lmprovement in Performance-Driven Analog LSI Layout System LIBRA

    Tomohiko OHTSUKA  Nobuyuki KUROSAWA  Hiroaki KUNIEDA  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1626-1635

    The paper presents the improvement of out new approach to optimize the process parameter variation, device heat and wire parasitics for analog LSI design by explicitly incorporating various performance estimations into objective functions for placement and routing. To minimize these objective functions, the placement by the simulated annealing method, and maze routing are effectively modified with the perfomance estimation. The improvement results in the excellent performance driven layout for the large size of analog LSIs.

  • Scattering of Electromagnetic Waves by a Dielectric Grating with Planar Slanted-Fringe

    Tsuneki YAMASAKI  Hirotaka TANAKA  

     
    PAPER-Scattering and Diffraction

      Vol:
    E76-C No:10
      Page(s):
    1435-1442

    The scattering of electromagnetic waves by a dielectric grating with planar slanted-fringe is analyzed using the improved Fourier series expansion method. In the analysis, the slanted grating region is divided into layers to make an assembly of stratified thin modulated index layers. This method can be applied to a wide range of periodic structures and is especially effective in the case of planar slanted grating, because the electromagnetic fields in the each layer can easily be obtained by shifting the solution in the first layer. In this paper, the numerical results are given for grating with rectangular and sinusoidal dielectric profiles, and for TM and TE cases of arbitrary incident angle. The diffraction efficiencies obtained by the presented method are compared with the results by the coupled-wave approach; the influences of the slant angle on the diffraction efficiencies at the Wood's anomaly and at the coupling resonance frequency are also discussed.

  • A Highly Accurate Laser-Sectioning Method for In-Motion Railway Inspection

    Yasuharu JIN  Yuichiro GOTO  Yoshiro NISHIMOTO  Hiroyuki NAITO  Akio IWAKE  

     
    PAPER

      Vol:
    E76-D No:10
      Page(s):
    1181-1189

    As in other fields, the automatization of railway maintenance work is a firm requirement. The authors have developed a system detecting obstacles around a railway for practical railway inspection. The system is based on an original laser-sectioning method and characterized by high accuracy with wide view and in-motion operation. It was confirmed that a static calibration was performed at an accuracy of within 5 mm. Furthermore, a theoretical estimation predicted that dynamic errors can be eliminated within a resolution of 4 mm by means of rail movement detection. In field tests on the Chuo Line, facilities were successfully inspected at speeds up to 40km/h.

  • An Integer Programming Approach to Instruction Set Selection Problem

    Alauddin Y. ALOMARY  Masaharu IMAI  Jun SATO  Nobuyuki HIKICHI  

     
    PAPER-VLSI Design Technology

      Vol:
    E76-A No:10
      Page(s):
    1849-1857

    The performance of ASIPs (Application Specific Integrated Processors) is heavily affected by the design of their instruction set architecture. In order to maximize the performance of ASIP, it is essential to design an architecture that has an optimum instruction set. This paper descibes a new method that automates the design of optimum instruction set of ASIP. This method solves the Instruction set implementation Method Selection Problem(IMSP). IMSP is to be solved in the instruction set architecture design. Frse, the IMSP is formalized as an integer programming problem, which is to maximize the perfomance of the CPU under the constraints of chip area and power consumption. Then, a branch-and-bound algorithm to solve IMSP is described. According to the experimental results, the proposed algorithm is quite effective and efficient in solving the IMSP. The presented method automates a complex part of the ASIP chip design and is also a good design tool that enables designer to predict the performance of their design before completion.

  • Prciseness of Discrete Time Verification

    Shinji KIMURA  Shunsuke TSUBOTA  Hiromasa HANEDA  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1755-1759

    The discrete time analysis of logic circuits is usually more efficient than the continuous time analysis, but the preciseness of the discrete time analysis is not guaranteed. The paper shows a method to decide a unit time for a logic circuit under which the analysis result is the same as the result based on the continuous time. The delay time of an element is specified with an interval between the minimum and maximum delay times, and we assume an analysis method which enumerates all possible delay cases under the deisrete time. Our main theorem is as follows: refine the unit time by a factor of 1/2, and if the analysis result with a unit time u and that with a unit time u/2 are the same, then u is the expected unit time.

  • Single-Unit Underground Radar Utilizing Zero-Crossed Synthetic Aperture

    Yuji NAGASHIMA  Hirotaka YOSHIDA  Jun-ichi MASUDA  Ryosuke ARIOKA  

     
    PAPER-Subsurface Radar

      Vol:
    E76-B No:10
      Page(s):
    1290-1296

    This paper describes a new single-unit underground radar for detecting underground buried pipes. The pipe depth can be calculated from the hyperbolic shape in the cross-sectional image of radar echoes. The edge contour of the image is extracted, and the buried depth is judged from the similarity between the extracted hyperbolic curve and the theoretical curve. A suitable amplification rate is estimated by choosing the best image from numerous cross-sectional images formed during one antenna movement repeated at different amplification rates. The best image has few pixels corresponding to weak and saturated signals. The new radar is very compact, so it can be operated by one person. Objects buried up to 2.0m deep can be detected.

  • A Compostite Signal Detection Scheme in Additive and Signal-Dependent Noise

    Sangyoub KIM  Iickho SONG  Sun Yong KIM  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E76-A No:10
      Page(s):
    1790-1803

    When orignal signals are contaminated by both additive and signal-dependent noise components, the test statistics of locally optimum detector are obtained for detection of weak composite signals based on the generalized Neyman-Pearson lemma. In order to consider the non-additive noise as well as purely-additive noise, a generalized observation model is used in this paper. The locally optimum detector test statisics are derived for all different cases according to the relative strengths of the known signal, random signal, and signal-dependent noise components. Schematic diagrams of the structures of the locally optimum detector are also included. The finite sample-size performance characteristics of the locally optimum detector are compared with those of other common detectors.

  • Theory and Techniques for Testing Check Bits of RAMs with On-Chip ECC

    Manoj FRANKLIN  Kewal K. SALUJA  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E76-D No:10
      Page(s):
    1243-1252

    As RAMs become dense, their reliability reduces because of complex interactions between memory cells and soft errors due to alpha particle radiations. In order to rectify this problem, RAM manufacturers have started incorporating on-chip (built-in) ECC. In order to minimize the area overhead of on-chip ECC, the same technology is used for implementing the check bits and the information bits. Thus the check bits are exposed to the same failure modes as the information bits. Furthermore, faults in the check bits will manifest as uncorrectable multiple errors when a soft error occurs. Therefore it is important to test the check bits for all failure modes expected of other cells. In this paper, we formulate the problem of testing RAMs with on-chip ECC capability. We than derive necessary and sufficient conditions for testing the check bits for arbitrary and adjacent neighborhood pattern sensitive faults. We also provide an efficient solution to test a memory array of N bits (including check bits) for 5-cell neighborhood pattern sensitive faults in O (N) reads and writes, with the check bits also tested for the same fault classes as the information bits.

  • A Construction of a New Image Database System which Realizes Fully Automated Image Keyword Extraction

    Jun YAMANE  Masao SAKAUCHI  

     
    PAPER

      Vol:
    E76-D No:10
      Page(s):
    1216-1223

    Recently, a flexible image database retrieval system where image keywords can be captured automatically is strongly required, in order to manage a practical number of image data successfully. However, image recognition/understanding technology level is not generally sufficient enough to achieve this requirement. In order to overcome this problem, a new type of image database framework is proposed in this paper. In the proposed system, image keywords are extracted in fully-automated fashion by the flexible and generalized image recognition system. Image keywords employed in this system are a collection of recognized objects in the image, where achieved recognition levels are allowed to be intermediate or imperfect. The concept of recognition thesaurus" has been introduced to manage these various abstraction level of kerwords successfully. As an embodiment of this concept, an experimental image database with various types of sports scenes has been implemented and various retrieval evaluations have been performed. Experimental results reveal the effectiveness of the proposed method.

  • Suppression of Weibull Radar Clutter

    David FERNANDES  Matsuo SEKINE  

     
    INVITED PAPER

      Vol:
    E76-B No:10
      Page(s):
    1231-1235

    Weibull-distributed clutter are reviewed. Most of the clutter received by L, S, C, X and Ku band radars obey Weibull distribution. Clutter suppression techniques for Weibull clutter are also reviewed. Especially, the generalized Weibull CFAR detector is emphasized. The approch is to estimate the shape and scale parameters of the Weibull clutter using order statistics and then use them in the detector. The generalized CFAR detector transforms the Weibull clutter distribution into a normalized exponential distribution. When a target is present, the transformation produces a large error that can be used to detect the target. Actual data taken by a Ku band radar are used to compare the proposed method with another method to estimate the Weibull parameters and with the Weibull CFAR detector. Order statistics estimation requires a small number of samples and can be used to find the local value of Weibull clutter parameters and, thus, the proposed method requires less computational time to find the Weibull parameters.

  • A Note on Leaf Reduction Theorem for Reversal- and Leaf-Bounded Alternating Turing Machines

    Hiroaki YAMAMOTO  Takashi MIYAZAKI  

     
    LETTER-Automaton, Language and Theory of Computing

      Vol:
    E76-D No:10
      Page(s):
    1298-1301

    There have been several studies related to a reduction of the amount of computational resources used by Turing machines. As consequences, linear speed-up theorem" tape compression theorem", and reversal reduction theorem" have been obtained. In this paper, we consider reversal- and leaf-bounded alternating Turing machines, and then show that the number of leaves can be reduced by a constant factor without increasing the number of reversals. Thus our results say that a constant factor on the leaf complexity does not affect the power of reversal- and leaf-bounded alternating Turing machines

  • Two-Dimensional Target Profiling by Electromagnetic Backscattering

    Saburo ADACHI  Toru UNO  Tsutomu NAKAKI  

     
    PAPER-Inverse Problem

      Vol:
    E76-C No:10
      Page(s):
    1449-1455

    This paper discusses methods and numerical simulations of one and two dimensional profilings for an arbitrary convex conducting target using the electromagnetic backscattering. The inversions for profile reconstructions are based upon the modified extended physical optics method (EPO). The modified EPO method assumes the modified physical optics current properly over the entire surface of conducting scatterers. First, the cross sectional area along a line of sight is reconstructed by performing iteratively the Fourier transform of the backscattering field in the frequency domain. Second, the two dimensional profile is reconstructed by synthesizing the above one dimensional results for several incident angles. Numerical simulation results of the target profiling are shown for spheroids and cone-spheroid.

  • High-Resolution Radar Image Reconstruction Using an Arbitrary Array

    Toshio WAKAYAMA  Toru SATO  Iwane KIMURA  

     
    PAPER-Subsurface Radar

      Vol:
    E76-B No:10
      Page(s):
    1305-1312

    Radar imaging technique is one of the most powerful tool for underground detection. However, performance of conventional methods is not sufficiently high when the observational direction or the aperture size is restricted. In the present paper, an image reconstruction method based on a model fitting with nonlinear least-squares has been developed, which is applicable to arbitrarily arranged arrays. Reconstruction is executed on the assumption that targets consist of discrete point scatterers embedded in a homogeneous medium. Model fitting is iterated as the number of point target in the assumed model is increased, until the residual in fitting becomes unchanged or small enough. A penalty function is used in nonlinear least-squares to make the algorithm stable. Fundamental characteristics of the method revealed with computer simulation are described. This method focuses a much sharper image than that obtained by the conventional aperture synthesis technique.

7941-7960hit(8214hit)