The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] FA(3430hit)

1941-1960hit(3430hit)

  • The Boundary Surface Control Principle and Its Applications

    Shiro ISE  

     
    INVITED PAPER

      Vol:
    E88-A No:7
      Page(s):
    1656-1664

    In order to control a sound field using multiple sources and microphones, we must choose the optimum values of parameters such as the numbers of sources and microphones, the location of the sources and the microphones and the filter tap length. Because there is a huge number of possible combinations of these conditions, the boundary surface control principle can be useful as a basis of a design method of such a system. In this paper, a design method of sound field reproduction and active noise control based on the BSC principle are described and several example of its application are presented.

  • A Fast Algorithm for the Sound Projection Using Multiple Sources

    Yuan WEN  Woon-Seng GAN  Jun YANG  

     
    LETTER

      Vol:
    E88-A No:7
      Page(s):
    1765-1766

    An algorithm for the sound projection using multiple sources is presented. The source strength vector is obtained by using a fast estimation approach instead of the conventional eigenvalue decomposition (EVD) method. The computation load is therefore greatly reduced, which makes the algorithm more efficient in practical applications.

  • An Effective Testing Method for Hardware Related Fault in Embedded Software

    Takeshi SUMI  Osamu MIZUNO  Tohru KIKUNO  Masayuki HIRAYAMA  

     
    PAPER

      Vol:
    E88-D No:6
      Page(s):
    1142-1149

    According to the proliferation of ubiquitous computing, various products which contain large-size embedded software have been developed. One of most typical features of embedded software is concurrency of software and hardware factors. That is, software has connected deeply into hardware devices. The existence of various hardware make quality assurance of embedded software more difficult. In order to assure quality of embedded software more effectively, this paper discusses features of embedded software and an effective method for quality assurance for embedded software. In this paper, we first analyze a failure distribution of embedded software and discuss the effects of hardware devices on quality of embedded software. Currently, in order to reduce hardware related faults, huge effort for testing with large number of test items is required. Thus, one of the most important issues for quality assurance of embedded software is how to reduce the cost and effort of software testing. Next, focusing on hardware constraints as well as software specifications in embedded software, we propose an evaluation metrics for determinating important functions for quality of embedded software. Furthermore, by referring to the metrics, undesirable behaviors of important functions are identified as root nodes of fault tree analysis. From the result of case study applying the proposed method to actual project data, we confirmed that test items considering the property of embedded software are constructed. We also confirmed that the constructed test items are appropriate to detect hardware related faults in embedded systems.

  • Comparison of Measured Rain Attenuation in the 12-GHz Band with Predictions by ITU-R Methods

    Fumiaki MINEMATSU  Yoichi SUZUKI  Masashi KAMEI  Kazuyoshi SHOGEN  

     
    PAPER

      Vol:
    E88-B No:6
      Page(s):
    2419-2426

    The rain attenuation in the 12-GHz band and one-minute-rain rate were measured in Tokyo over a four-year period (2000-2003). The statistical characteristics of this data are presented. The one-minute-rain rates at 0.01% of time percentage of year in Tokyo and Osaka are compared to other past and recent values. The comparison of measured rain attenuation in the 12-GHz band in Tokyo and Osaka with prediction by ITU-R methods is conducted. The root-mean-square prediction error of rain attenuation for the prediction by ITU-R Rec.P.618 is evaluated. Convective rain cell effects can be seen in the scatter diagram of one-minute-rain rate and rain attenuation. However, it is found that the effect is not properly accounted for by the slant path length adjustment factor of P.618-8. A reliable rain attenuation prediction requires some revisions of the slant path length adjustment factor with taking local weather characteristics into account for the P.618-8.

  • Performance Analysis and Improvement of HighSpeed TCP with TailDrop/RED Routers

    Zongsheng ZHANG  Go HASEGAWA  Masayuki MURATA  

     
    PAPER-Internet

      Vol:
    E88-B No:6
      Page(s):
    2495-2507

    Continuous and explosive growth of the Internet has shown that current TCP mechanisms can obstruct efficient use of high-speed, long-delay networks. To address this problem we propose an enhanced transport-layer protocol called gHSTCP, based on HighSpeed TCP proposed by Sally Floyd. It uses two modes in the congestion avoidance phase based on the changing trend of RTT. Simulation results show gHSTCP can significantly improve performance in mixed environments, in terms of throughput and fairness against the traditional TCP Reno flows. However, the performance improvement is limited due to the nature of TailDrop router, and the RED/ARED routers can not alleviate the problem completely. Therefore, we present a modified version of Adaptive RED, called gARED, directed at the problem of simultaneous packet drops by multiple flows in high speed networks. gARED can eliminate weaknesses found in Adaptive RED by monitoring the trend in variation of the average queue length of the router buffer. Our approach, combining gARED and gHSTCP, is quite effective and fair to competing traffic than Adaptive RED with HighSpeed TCP.

  • Minimizing the Buffer Size in Fault-Tolerant Video Servers for VBR Streams

    Minseok SONG  Heonshik SHIN  

     
    LETTER-Dependable Computing

      Vol:
    E88-D No:6
      Page(s):
    1294-1298

    To guarantee the high reliability of video services, video servers usually adopt parity-encoding techniques in which data blocks and their associated parity blocks form a parity group. For real-time video service, all the blocks in a parity group are prefetched in order to cope with a possible disk failure, thereby incurring a buffering overhead. In this paper, we propose a new scheme called Round-level Parity Grouping (RPG) to reduce the buffer overhead while restoring VBR video streams in the presence of a faulty disk. RPG allows variable parity group sizes so that the exact amount of data is retrieved during each round. Based on RPG, we have developed a storage allocation algorithm for effective buffer management. Experimental results show that our proposed scheme reduces the buffer requirement by 20% to 25%.

  • A Distributed Task Assignment Algorithm with the FCFS Policy in a Logical Ring

    Atsushi SASAKI  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E88-A No:6
      Page(s):
    1573-1582

    This paper presents a distributed task assignment algorithm in a logical unidirectional ring, which guarantees that almost all tasks are assigned to servers with the first come first served (FCFS) policy without a global clock. A task assignment for a process is obtained in the time period needed for a message to circle the ring. This time period is almost optimal for a unidirectional ring. The FCFS policy is very important in terms of task fairness and can also avoid starvation and provide an efficient response time. Simulation results show that the algorithm generally works better than conventional task assignment or load balancing schemes with respect to both mean response time and task fairness.

  • Defect Level vs. Yield and Fault Coverage in the Presence of an Unreliable BIST

    Yoshiyuki NAKAMURA  Jacob SAVIR  Hideo FUJIWARA  

     
    PAPER-Dependable Computing

      Vol:
    E88-D No:6
      Page(s):
    1210-1216

    Built-in self-test (BIST) hardware is included today in many chips. This hardware is used to test the chip's functional circuits. Since this BIST hardware is manufactured using the same technology as the functional circuits themselves, it is possible for it to be faulty. It is important, therefore, to assess the impact of this unreliable BIST on the product defect level after test. Williams and Brown's formula, relating the product defect level as a function of the manufacturing yield and fault coverage, is re-examined in this paper. In particular, special attention is given to the influence of an unreliable BIST on this relationship. We show that when the BIST hardware is used to screen the functional product, an unreliable BIST circuitry tends, in many cases, to reduce the effective fault coverage and increase the corresponding product defect level. The BIST unreliability impact is assessed for both early life phase, and product maturity phase.

  • Analysis of Z-Cut Quartz Etalon with Weight for Wavelength Locker

    Shigeru OHSHIMA  Masahide MIYACHI  

     
    PAPER-Optoelectronics

      Vol:
    E88-C No:5
      Page(s):
    1033-1040

    This paper presents an analysis of the cavity length modulation of a Z-cut quartz etalon equipped with a weight for Laser Diode (LD) wavelength lockers. The electro-optic effect, piezoelectric effect and photo-elastic effect are considered, and the mechanical movement of the etalon with a weight is analyzed by using a mechanical circuit. Approximate equations that clearly explain the mechanical force, mechanical resonance frequency, and Q factor of the mechanical resonance are obtained. The mechanism for improving the modulation efficiency by placing a weight is clarified. We also compare the analysis with experimental results, and show that most of the experimental values are in accord with the calculated values.

  • A Compact Model of the Pinch-off Region of 100 nm MOSFETs Based on the Surface-Potential

    Dondee NAVARRO  Takeshi MIZOGUCHI  Masami SUETAKE  Kazuya HISAMITSU  Hiroaki UENO  Mitiko MIURA-MATTAUSCH  Hans Jurgen MATTAUSCH  Shigetaka KUMASHIRO  Tetsuya YAMAGUCHI  Kyoji YAMASHITA  Noriaki NAKAYAMA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E88-C No:5
      Page(s):
    1079-1086

    We have developed a model for circuit-simulation which describes the MOSFET region from pinch-off to drain contact based on the surface potential. The model relates the surface-potential increase beyond the pinch-off point to the channel/drain junction profile by applying the Gauss law with the assumption that the lateral field is greater than the vertical one. Explicit equations for the lateral field and the pinch-off length are obtained, which take the potential increase in the drain overlap region into account. The model, as implemented into a circuit simulator, correctly reproduces measured channel conductance and overlap capacitance for 100 nm pocket-implant technologies as a function of bias condition and gate length.

  • Cyberworlds--Theory, Design and Potential--

    Tosiyasu L. KUNII  

     
    INVITED PAPER

      Vol:
    E88-D No:5
      Page(s):
    790-800

    Cyberworlds are being formed in cyberspaces as computational spaces. Now cyberspaces are rapidly expanding on the Web either intentionally or spontaneously, with or without design. Widespread and intensive local activities are melting each other on the web globally to create cyberworlds. The major key players of cyberworlds include e-finance that trades a GDP-equivalent a day and e-manufacturing that is transforming industrial production into Web shopping of product components and assembly factories. Lacking proper theory and design, cyberworlds have continued to grow chaotic and are now out of human understanding and control. This research first presents a generic theoretical framework and design based on algebraic topology, and also provides an axiomatic approach to theorize the potentials of cyberworlds.

  • Determining Front-Facing Polygons for Dynamic and Deformable Objects

    Hsien-Hsi HSIEH  Wen-Kai TAI  

     
    PAPER-Computer Graphics

      Vol:
    E88-D No:5
      Page(s):
    1050-1059

    In this paper, we present a simple and practical method for determining the front-facing polygons for static, dynamic, and deformable objects. The object space is considered a set of open-frustum regions. A bit string associated with each region records polygons for their extended positive half space intersecting the corresponding region. For a given viewpoint, the bit string of the set of the front facing polygons can be determined in a constant time. While objects continuously keep deforming and/or remain in motion in each frame, we update set of bit strings, determined as minimal as possible by the spatial coherence, making our method still perform efficiently.

  • Optical Network Design with Optical Constraints in IP/WDM Networks

    Kwangil LEE  Mark A. SHAYMAN  

     
    PAPER-Optical Network Architecture

      Vol:
    E88-B No:5
      Page(s):
    1898-1905

    In this paper we consider algorithms for the logical topology design and traffic grooming problem in WDM networks with router interface constraints as well as optical constraints. The optical constraints include restricted transmission range due to optical impairments as well as limits on the number of available wavelengths. We formulate this problem as an integer linear program which is NP-complete. We then introduce heuristic algorithms which use a graphical modeling tool called the Virtual Neighbor Graph and add lightpaths sequentially. The best performing heuristic uses a so-called Resource Efficiency Factor to determine the order in which paths are provisioned for the traffic demands. By giving priority to demands that can be routed over paths that make efficient use of network resources, it is able to achieve good performance both in terms of weighted hop count and network throughput. For finding optimal multi-hop paths sequentially, we introduce interface constraint shortest path problem and solve it using minimum weight perfect matching.

  • Study on Tapered Multimode Interference-Based Coherent Lightwave Combiners

    Zhigang WU  Katsuyuki UTAKA  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E88-C No:5
      Page(s):
    1005-1012

    In this paper we analyze the characteristics of tapered multimode interference (MMI)-based coherent lightwave combiners, and theoretically confirm that the stable and clear multimode interference images exist in the tapered MMI combiners. We present the output characteristics of 21 tapered MMI-based coherent lightwave combiners under various structures, which are useful to optimally design the combiners. In order to extend the combiner to a multi-port (N1, N > 2) configuration, a new structure with the border shapes of two tangent arcs is proposed, by which we show an output power imbalance of about 0.5 dB between different input ports of an 81 tapered coherent lightwave combiner. Due to the advantages of no end-facet reflection, easy extension to a multi-port configuration, high tolerance for fabrication errors and a compact size, the tapered MMI structure is a good candidate as a coherent lightwave combiner used in large-scale photonic integrated circuits.

  • Web-based Constructive Shape Modeling Using Real Distance Functions

    Pierre-Alain FAYOLLE  Benjamin SCHMITT  Yuichiro GOTO  Alexander PASKO  

     
    PAPER

      Vol:
    E88-D No:5
      Page(s):
    828-835

    We present an approach and a web-based system implementation for modeling shapes using real distance functions. The system consists of an applet supporting the HyperFun modeling language. The applet is extended with primitives defined by Euclidean distance from a point to the surface of the shape. Set-theoretic operations (union, intersection, difference) that provide an approximation of the Euclidean distance to a shape built in a constructive way are introduced. Such operations have a controllable error of the exact Euclidean distance to the shape and preserve C1 continuity of the overall function, which is an important condition for further operations and applications. The proposed system should help model various shapes, store them in a concise form, and exchange them easily between different entities on a network. The applet offers also the possibility to export the models defined in the HyperFun language to other formats for raytracing or rapid prototyping.

  • Fast Implementation of Extension Fields with TypeII ONB and Cyclic Vector Multiplication Algorithm

    Yasuyuki NOGAMI  Shigeru SHINONAGA  Yoshitaka MORIKAWA  

     
    PAPER

      Vol:
    E88-A No:5
      Page(s):
    1200-1208

    This paper proposes an extension field named TypeII AOPF. This extension field adopts TypeII optimal normal basis, cyclic vector multiplication algorithm, and Itoh-Tsujii inversion algorithm. The calculation costs for a multiplication and inversion in this field is clearly given with the extension degree. For example, the arithmetic operations in TypeII AOPF Fp5 is about 20% faster than those in OEF Fp5. Then, since CVMA is suitable for parallel processing, we show that TypeII AOPF is superior to AOPF as to parallel processing and then show that a multiplication in TypeII AOPF becomes about twice faster by parallelizing the CVMA computation in TypeII AOPF.

  • Novel via Chain Structure for Failure Analysis at 65 nm-Node Fixing OPC Using Inner and Outer via Chain Dummy Patterns

    Takashi NASUNO  Yoshihisa MATSUBARA  Hiromasa KOBAYASHI  Akiyuki MINAMI  Eiichi SODA  Hiroshi TSUDA  Koichiro TSUJITA  Wataru WAKAMIYA  Nobuyoshi KOBAYASHI  

     
    PAPER

      Vol:
    E88-C No:5
      Page(s):
    796-803

    A novel via chain structure for failure analysis at 65 nm-node fixing OPC using inner and outer via chain dummy patterns has been proposed. The inner dummy is necessary to localize failure site in 200 nm pitch via chain using an optical beam induced resistance change method. The outer dummy protects via chain pattern from local flare and optical proximity effects. Using this test structure, we can identify the failure point in the 1.2 k and 15 k via chain fabricated by Cu/low-k single damascene process. This test structure is beneficial in the application to the 65 nm-node technologies and beyond.

  • A Self-Stabilizing Approximation Algorithm for the Distributed Minimum k-Domination

    Sayaka KAMEI  Hirotsugu KAKUGAWA  

     
    PAPER

      Vol:
    E88-A No:5
      Page(s):
    1109-1116

    Self-stabilization is a theoretical framework of non-masking fault-tolerant distributed algorithms. In this paper, we investigate a self-stabilizing distributed approximation for the minimum k-dominating set (KDS) problem in general networks. The minimum KDS problem is a generalization of the well-known dominating set problem in graph theory. For a graph G = (V,E), a set Dk V is a KDS of G if and only if each vertex not in Dk is adjacent to at least k vertices in Dk. The approximation ratio of our algorithm is , where Δ is the maximum degree of G, in the networks of which the minimum degree is more than or equal to k.

  • A Network Game Based on Fair Random Numbers

    Masaru KAMADA  Kaoru KUROSAWA  Yasuhiro OHTAKI  Shusuke OKAMOTO  

     
    PAPER

      Vol:
    E88-D No:5
      Page(s):
    859-864

    A compromising technique is proposed for deterring clients from cheating by robot players in skill-based real-time network games. This technique is to inject a fair random noise into the manual input for a real-time game modeled as a chaotic dynamical system. The fair random noise is determined by means of the bit commitment protocol so that neither host nor client can control the noise in their favor. A scenario possibly plotted by a robot player for its victory may be spoiled by slight noise injection because of the sensitivity of chaotic systems to the input. The noise injection brings a luck-based factor into a skill-based game. In this sense, the technique proposed in this paper is not a solution but a compromise for the inherent problem of robot players with the skill-based network games. An example implementation of pinball is presented.

  • Video Post-Processing with Adaptive 3-D Filters for Wavelet Ringing Artifact Removal

    Boštjan MARUŠI  Primo SKOIR  Jurij TASI  Andrej KOŠIR  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E88-D No:5
      Page(s):
    1031-1040

    This paper reports on the suitability of the SUSAN filter for the removal of artifacts that result from quantization errors in wavelet video coding. In this paper two extensions of the original filter are described. The first uses a combination of 2-D spatial filtering followed by 1-D temporal filtering along motion trajectories, while the second extension is a pure 3-D motion compensated SUSAN filter. The SUSAN approach effectively reduces coding artifacts, while preserving the original signal structure, by relying on a simple pixel-difference-based classification procedure. Results reported in the paper clearly indicate that both extensions efficiently reduce ringing that is the prevalent artifact perceived in wavelet-based coded video. Experimental results indicate an increase in perceptual as well as objective (PSNR) decoded video quality, which is competitive with state-of-the-art post-processing algorithms, especially when low computational demands of the proposed approach are taken into account.

1941-1960hit(3430hit)