The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ICE(1726hit)

121-140hit(1726hit)

  • Service Chain Construction Algorithm for Maximizing Total Data Throughput in Resource-Constrained NFV Environments

    Daisuke AMAYA  Shunsuke HOMMA  Takuji TACHIBANA  

     
    PAPER

      Pubricized:
    2019/10/08
      Vol:
    E103-B No:4
      Page(s):
    335-346

    In resource-constrained network function virtualization (NFV) environments, it is expected that data throughput for service chains is maintained by using virtual network functions (VNFs) effectively. In this paper, we formulate an optimization problem for maximizing the total data throughput in resource-constrained NFV environments. Moreover, based on our formulated optimization problem, we propose a heuristic service chain construction algorithm for maximizing the total data throughput. This algorithm also determines the placement of VNFs, the amount of resources for each VNF, and the transmission route for each service chain. It is expected that the heuristic algorithm can construct service chains more quickly than the meta-heuristic algorithm. We evaluate the performance of the proposed methods with simulations, and we investigate the effectiveness of our proposed heuristic algorithm through a performance comparison. Numerical examples show that our proposed methods can construct service chains so as to maximize the total data throughput regardless of the number of service chains, the amount of traffic, and network topologies.

  • Predicting Uninterruptible Durations of Office Workers by Using Probabilistic Work Continuance Model

    Shota SHIRATORI  Yuichiro FUJIMOTO  Kinya FUJITA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/01/10
      Vol:
    E103-D No:4
      Page(s):
    838-849

    In order not to disrupt a team member concentrating on his/her own task, the interrupter needs to wait for a proper time. In this research, we examined the feasibility of predicting prospective interruptible times of office workers who use PCs. An analysis of actual working data collected from 13 participants revealed the relationship between uninterruptible durations and four features, i.e. type of application software, rate of PC operation activity, activity ratio between keystrokes and mouse clicks, and switching frequency of application software. On the basis of these results, we developed a probabilistic work continuance model whose probability changes according to the four features. The leave-one-out cross-validation indicated positive correlations between the actual and the predicted durations. The medians of the actual and the predicted durations were 539 s and 519 s. The main contribution of this study is the demonstration of the feasibility to predict uninterruptible durations in an actual working scenario.

  • Evaluation of Heavy-Ion-Induced Single Event Upset Cross Sections of a 65-nm Thin BOX FD-SOI Flip-Flops Composed of Stacked Inverters

    Kentaro KOJIMA  Kodai YAMADA  Jun FURUTA  Kazutoshi KOBAYASHI  

     
    PAPER-Electronic Circuits

      Vol:
    E103-C No:4
      Page(s):
    144-152

    Cross sections that cause single event upsets by heavy ions are sensitive to doping concentration in the source and drain regions, and the structure of the raised source and drain regions especially in FDSOI. Due to the parasitic bipolar effect (PBE), radiation-hardened flip flops with stacked transistors in FDSOI tend to have soft errors, which is consistent with measurement results by heavy-ion irradiation. Device-simulation results in this study show that the cross section is proportional to the silicon thickness of the raised layer and inversely proportional to the doping concentration in the drain. Increasing the doping concentration in the source and drain region enhance the Auger recombination of carriers there and suppresses the parasitic bipolar effect. PBE is also suppressed by decreasing the silicon thickness of the raised layer. Cgg-Vgs and Ids-Vgs characteristics change smaller than soft error tolerance change. Soft error tolerance can be effectively optimized by using these two determinants with only a small impact on transistor characteristics.

  • Master-Slave FF Using DICE Capable of Tolerating Soft Errors Occurring Around Clock Edge

    Kazuteru NAMBA  

     
    LETTER-Dependable Computing

      Pubricized:
    2020/01/06
      Vol:
    E103-D No:4
      Page(s):
    892-895

    This letter reveals that an edge-triggered master-slave flip-flop (FF) using well-known soft error tolerant DICE (dual interlocked storage cell) is vulnerable to soft errors occurring around clock edge. This letter presents a design of a soft error tolerant FF based on the master-slave FF using DICE. The proposed design modifies the connection between the master and slave latches to make the FF not vulnerable to these errors. The hardware overhead is almost the same as that for the original edge-triggered FF using the DICE.

  • Prediction of DC-AC Converter Efficiency Degradation due to Device Aging Using a Compact MOSFET-Aging Model

    Kenshiro SATO  Dondee NAVARRO  Shinya SEKIZAKI  Yoshifumi ZOKA  Naoto YORINO  Hans Jürgen MATTAUSCH  Mitiko MIURA-MATTAUSCH  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2019/09/02
      Vol:
    E103-C No:3
      Page(s):
    119-126

    The degradation of a SiC-MOSFET-based DC-AC converter-circuit efficiency due to aging of the electrically active devices is investigated. The newly developed compact aging model HiSIM_HSiC for high-voltage SiC-MOSFETs is used in the investigation. The model considers explicitly the carrier-trap-density increase in the solution of the Poisson equation. Measured converter characteristics during a 3-phase line-to-ground (3LG) fault is correctly reproduced by the model. It is verified that the MOSFETs experience additional stress due to the high biases occurring during the fault event, which translates to severe MOSFET aging. Simulation results predict a 0.5% reduction of converter efficiency due to a single 70ms-3LG, which is equivalent to a year of operation under normal conditions, where no additional stress is applied. With the developed compact model, prediction of the efficiency degradation of the converter circuit under prolonged stress, for which measurements are difficult to obtain and typically not available, is also feasible.

  • An ATM Security Measure to Prevent Unauthorized Deposit with a Smart Card

    Hisao OGATA  Tomoyoshi ISHIKAWA  Norichika MIYAMOTO  Tsutomu MATSUMOTO  

     
    PAPER-Dependable Computing

      Pubricized:
    2019/12/09
      Vol:
    E103-D No:3
      Page(s):
    590-601

    Recently, criminals frequently utilize logical attacks to Automated Teller Machines (ATMs) and financial institutes' (FIs') networks to steal cash. We proposed a security measure utilizing peripheral devices in an ATM for smart card transactions to prevent “unauthorized cash withdrawals” of logical attacks, and the fundamental framework as a generalized model of the measure in other paper. As the measure can prevent those logical attacks with tamper-proof hardware, it is quite difficult for criminals to compromise the measure. However, criminals can still carry out different types of logical attacks to ATMs, such as “unauthorized deposit”, to steal cash. In this paper, we propose a security measure utilizing peripheral devices to prevent unauthorized deposits with a smart card. The measure needs to protect multiple transaction sub-processes in a deposit transaction from multiple types of logical attacks and to be harmonized with existing ATM system/operations. A suitable implementation of the fundamental framework is required for the measure and such implementation design is confusing due to many items to be considered. Thus, the measure also provides an implementation model analysis of the fundamental framework to derive suitable implementation for each defense point in a deposit transaction. Two types of measure implementation are derived as the result of the analysis.

  • Generative Moment Matching Network-Based Neural Double-Tracking for Synthesized and Natural Singing Voices

    Hiroki TAMARU  Yuki SAITO  Shinnosuke TAKAMICHI  Tomoki KORIYAMA  Hiroshi SARUWATARI  

     
    PAPER-Speech and Hearing

      Pubricized:
    2019/12/23
      Vol:
    E103-D No:3
      Page(s):
    639-647

    This paper proposes a generative moment matching network (GMMN)-based post-filtering method for providing inter-utterance pitch variation to singing voices and discusses its application to our developed mixing method called neural double-tracking (NDT). When a human singer sings and records the same song twice, there is a difference between the two recordings. The difference, which is called inter-utterance variation, enriches the performer's musical expression and the audience's experience. For example, it makes every concert special because it never recurs in exactly the same manner. Inter-utterance variation enables a mixing method called double-tracking (DT). With DT, the same phrase is recorded twice, then the two recordings are mixed to give richness to singing voices. However, in synthesized singing voices, which are commonly used to create music, there is no inter-utterance variation because the synthesis process is deterministic. There is also no inter-utterance variation when only one voice is recorded. Although there is a signal processing-based method called artificial DT (ADT) to layer singing voices, the signal processing results in unnatural sound artifacts. To solve these problems, we propose a post-filtering method for randomly modulating synthesized or natural singing voices as if the singer sang again. The post-filter built with our method models the inter-utterance pitch variation of human singing voices using a conditional GMMN. Evaluation results indicate that 1) the proposed method provides perceptible and natural inter-utterance variation to synthesized singing voices and that 2) our NDT exhibits higher double-trackedness than ADT when applied to both synthesized and natural singing voices.

  • Unlicensed Band Allocation for Heterogeneous Networks

    Po-Heng CHOU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/07/26
      Vol:
    E103-B No:2
      Page(s):
    103-117

    Based on the License Assisted Access (LAA) small cell architecture, the LAA coexisting with Wi-Fi heterogeneous networks provide LTE mobile users with high bandwidth efficiency as the unlicensed channels are shared among LAA and Wi-Fi. However, the LAA and Wi-Fi will affect each other when both systems are using the same unlicensed channel in the heterogeneous networks. In such a network, unlicensed band allocation for LAA and Wi-Fi is an important issue that may affect the quality of service (QoS) of both systems significantly. In this paper, we propose an analytical model and conduct simulation experiments to study two allocations for the unlicensed band: unlicensed full allocation (UFA), unlicensed time-division allocation (UTA), and the corresponding buffering mechanism for the LAA data packets. We evaluate the performance for these unlicensed band allocations schemes in terms of the acceptance rate of both LAA and Wi-Fi packet data in LAA buffer queue. Our study provides guidelines for designing channel occupation phase and the buffer size of LAA small cell.

  • On the Complexity of the LWR-Solving BKW Algorithm Open Access

    Hiroki OKADA  Atsushi TAKAYASU  Kazuhide FUKUSHIMA  Shinsaku KIYOMOTO  Tsuyoshi TAKAGI  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    173-182

    The Blum-Kalai-Wasserman algorithm (BKW) is an algorithm for solving the learning parity with noise problem, which was then adapted for solving the learning with errors problem (LWE) by Albrecht et al. Duc et al. applied BKW also to the learning with rounding problem (LWR). The number of blocks is a parameter of BKW. By optimizing the number of blocks, we can minimize the time complexity of BKW. However, Duc et al. did not derive the optimal number of blocks theoretically, but they searched for it numerically. Duc et al. also showed that the required number of samples for BKW for solving LWE can be dramatically decreased using Lyubashevsky's idea. However, it is not shown that his idea is also applicable to LWR. In this paper, we theoretically derive the asymptotically optimal number of blocks, and then analyze the minimum asymptotic time complexity of the algorithm. We also show that Lyubashevsky's idea can be applied to LWR-solving BKW, under a heuristic assumption that is regularly used in the analysis of LPN-solving BKW. Furthermore, we derive an equation that relates the Gaussian parameter σ of LWE and the modulus p of LWR. When σ and p satisfy the equation, the asymptotic time complexity of BKW to solve LWE and LWR are the same.

  • Public Transport Promotion and Mobility-as-a-Service Open Access

    Koichi SAKAI  

     
    INVITED PAPER

      Vol:
    E103-A No:1
      Page(s):
    226-230

    Promoting the use of public transport (PT) is considered to be an effective way to reduce the number of passenger cars. The concept of Mobility-as-a-Service (MaaS), which began in Europe and is now spreading rapidly around the world, is expected to help to improve the convenience of PT on the viewpoint of users, using the latest information communication technology and Internet of Things technologies. This paper outlines the concept of MaaS in Europe and the efforts made at the policy level. It also focuses on the development of MaaS from the viewpoint of promoting the use of PT in Japan.

  • Real-Time Image Processing Based on Service Function Chaining Using CPU-FPGA Architecture

    Yuta UKON  Koji YAMAZAKI  Koyo NITTA  

     
    PAPER-Network System

      Pubricized:
    2019/08/05
      Vol:
    E103-B No:1
      Page(s):
    11-19

    Advanced information-processing services based on cloud computing are in great demand. However, users want to be able to customize cloud services for their own purposes. To provide image-processing services that can be optimized for the purpose of each user, we propose a technique for chaining image-processing functions in a CPU-field programmable gate array (FPGA) coupled server architecture. One of the most important requirements for combining multiple image-processing functions on a network, is low latency in server nodes. However, large delay occurs in the conventional CPU-FPGA architecture due to the overheads of packet reordering for ensuring the correctness of image processing and data transfer between the CPU and FPGA at the application level. This paper presents a CPU-FPGA server architecture with a real-time packet reordering circuit for low-latency image processing. In order to confirm the efficiency of our idea, we evaluated the latency of histogram of oriented gradients (HOG) feature calculation as an offloaded image-processing function. The results show that the latency is about 26 times lower than that of the conventional CPU-FPGA architecture. Moreover, the throughput decreased by less than 3.7% under the worst-case condition where 90 percent of the packets are randomly swapped at a 40-Gbps input rate. Finally, we demonstrated that a real-time video monitoring service can be provided by combining image processing functions using our architecture.

  • IoT Malware Analysis and New Pattern Discovery Through Sequence Analysis Using Meta-Feature Information

    Chun-Jung WU  Shin-Ying HUANG  Katsunari YOSHIOKA  Tsutomu MATSUMOTO  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/08/05
      Vol:
    E103-B No:1
      Page(s):
    32-42

    A drastic increase in cyberattacks targeting Internet of Things (IoT) devices using telnet protocols has been observed. IoT malware continues to evolve, and the diversity of OS and environments increases the difficulty of executing malware samples in an observation setting. To address this problem, we sought to develop an alternative means of investigation by using the telnet logs of IoT honeypots and analyzing malware without executing it. In this paper, we present a malware classification method based on malware binaries, command sequences, and meta-features. We employ both unsupervised or supervised learning algorithms and text-mining algorithms for handling unstructured data. Clustering analysis is applied for finding malware family members and revealing their inherent features for better explanation. First, the malware binaries are grouped using similarity analysis. Then, we extract key patterns of interaction behavior using an N-gram model. We also train a multiclass classifier to identify IoT malware categories based on common infection behavior. For misclassified subclasses, second-stage sub-training is performed using a file meta-feature. Our results demonstrate 96.70% accuracy, with high precision and recall. The clustering results reveal variant attack vectors and one denial of service (DoS) attack that used pure Linux commands.

  • Characteristics and Applicability of Frequency Sharing Criteria in the Broadcasting Satellite Link Open Access

    Kazuyoshi SHOGEN  Thong PHAM VIET  

     
    PAPER-Satellite Communications

      Pubricized:
    2019/06/17
      Vol:
    E102-B No:12
      Page(s):
    2297-2303

    Two frequency sharing criteria for BSS (Broadcasting-Satellite Service) are enacted in Sect.1 of Annex 1 to Appendix 30 to Radio Regulations. These two criteria are pfd (power flux-density) and EPM (Equivalent Protection Margin) values. In this paper, the two criteria are compared and studied from the view point of applicability to the sharing cases between BSS and BSS. In particular, it is shown that in some cases, the EPM criterion contributes to alleviate the problem of “sensitive satellite network”, i.e., one that has relatively low transmission power and is very weak against interference and blocks the new satellite to enter. Disclaimer The views and positions expressed by the authors are strictly personal and do not constitute, nor can be interpreted as, the position of the International Telecommunication Union on the topics addressed in this paper.

  • Acoustic Design Support System of Compact Enclosure for Smartphone Using Deep Neural Network

    Kai NAKAMURA  Kenta IWAI  Yoshinobu KAJIKAWA  

     
    PAPER-Engineering Acoustics

      Vol:
    E102-A No:12
      Page(s):
    1932-1939

    In this paper, we propose an automatic design support system for compact acoustic devices such as microspeakers inside smartphones. The proposed design support system outputs the dimensions of compact acoustic devices with the desired acoustic characteristic. This system uses a deep neural network (DNN) to obtain the relationship between the frequency characteristic of the compact acoustic device and its dimensions. The training data are generated by the acoustic finite-difference time-domain (FDTD) method so that many training data can be easily obtained. We demonstrate the effectiveness of the proposed system through some comparisons between desired and designed frequency characteristics.

  • Rhythm Tap Technique for Cross-Device Interaction Enabling Uniform Operation for Various Devices Open Access

    Hirohito SHIBATA  Junko ICHINO  Shun'ichi TANO  Tomonori HASHIYAMA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2019/09/19
      Vol:
    E102-D No:12
      Page(s):
    2515-2523

    This paper proposes a novel interaction technique to transfer data across various types of digital devices in uniform a manner and to allow specifying what kind of data should be sent. In our framework, when users tap multiple devices rhythmically, data corresponding to the rhythm (transfer type) are transferred from a device tapped in the first tap (source device) to the other (target device). It is easy to operate, applicable to a wide range of devices, and extensible in a sense that we can adopt new transfer types by adding new rhythms. Through a subjective evaluation and a simulation, we had a prospect that our approach would be feasible. We also discuss suggestions and limitation to implement the technique.

  • Optimal Price-Based Power Allocation Algorithm with Quality of Service Constraints in Non-Orthogonal Multiple Access Networks

    Zheng-qiang WANG  Kun-hao HUANG  Xiao-yu WAN  Zi-fu FAN  

     
    LETTER-Information Network

      Pubricized:
    2019/07/29
      Vol:
    E102-D No:11
      Page(s):
    2257-2260

    In this letter, we investigate the price-based power allocation for non-orthogonal multiple access (NOMA) networks, where the base station (BS) can admit the users to transmit by pricing their power. Stackelberg game is utilized to model the pricing and power purchasing strategies between the BS and the users. Based on backward induction, the pricing problem of the BS is recast into the non-convex power allocation problem, which is equivalent to the rate allocation problem by variable replacement. Based on the equivalence problem, an optimal price-based power allocation algorithm is proposed to maximize the revenue of the BS. Simulation results show that the proposed algorithm is superior to the existing pricing algorithm in items of the revenue of BS and the number of admitted users.

  • Fast Datapath Processing Based on Hop-by-Hop Packet Aggregation for Service Function Chaining Open Access

    Yuki TAGUCHI  Ryota KAWASHIMA  Hiroki NAKAYAMA  Tsunemasa HAYASHI  Hiroshi MATSUO  

     
    PAPER-Information Network

      Pubricized:
    2019/08/22
      Vol:
    E102-D No:11
      Page(s):
    2184-2194

    Many studies have revealed that the performance of software-based Virtual Network Functions (VNFs) is insufficient for mission-critical networks. Scaling-out approaches, such as auto-scaling of VNFs, could handle a huge amount of traffic; however, the exponential traffic growth confronts us the limitations of both expandability of physical resources and complexity of their management. In this paper, we propose a fast datapath processing method called Packet Aggregation Flow (PA-Flow) that is based on hop-by-hop packet aggregation for more efficient Service Function Chaining (SFC). PA-Flow extends a notion of existing intra-node packet aggregation toward network-wide packet aggregation, and we introduce following three novel features. First, packet I/O overheads at intermediate network devices including NFV-nodes are mitigated by reduction of packet amount. Second, aggregated packets are further aggregated as going through the service chain in a hop-by-hop manner. Finally, next-hop aware packet aggregation is realized using OpenFlow-based flow tables. PA-Flow is designed to be available with various VNF forms (e.g. VM/container/baremetal-based) and virtual I/O technologies (e.g. vhost-user/SR-IOV), and its implementation does not bring noticeable delay for aggregation. We conducted two evaluations: (i) a baseline evaluation for understanding fundamental performance characteristics of PA-Flow (ii) a simulation-based SFC evaluation for proving PA-Flow's effect in a realistic environment. The results showed that throughput of short packet forwarding was improved by 4 times. Moreover, the total number of packets was reduced by 93% in a large-scale SFC.

  • Analysis of Relevant Quality Metrics and Physical Parameters in Softness Perception and Assessment System

    Zhiyu SHAO  Juan WU  Qiangqiang OUYANG  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Pubricized:
    2019/06/11
      Vol:
    E102-D No:10
      Page(s):
    2013-2024

    Many quality metrics have been proposed for the compliance perception to assess haptic device performance and perceived results. Perceived compliance may be influenced by factors such as object properties, experimental conditions and human perceptual habits. In this paper, analysis of softness perception was conducted to find out relevant quality metrics dominating in the compliance perception system and their correlation with perception results, by expressing these metrics by basic physical parameters that characterizing these factors. Based on three psychophysical experiments, just noticeable differences (JNDs) for perceived softness of combination of different stiffness coefficients and damping levels rendered by haptic devices were analyzed. Interaction data during the interaction process were recorded and analyzed. Preliminary experimental results show that the discrimination ability of softness perception changes with the ratio of damping to stiffness when subjects exploring at their habitual speed. Analysis results indicate that quality metrics of Rate-hardness, Extended Rate-hardness and ratio of damping to stiffness have high correlation for perceived results. Further analysis results show that parameters that reflecting object properties (stiffness, damping), experimental conditions (force bandwidth) and human perceptual habits (initial speed, maximum force change rate) lead to the change of these quality metrics, which then bring different perceptual feeling and finally result in the change of discrimination ability. Findings in this paper may provide a better understanding of softness perception and useful guidance in improvement of haptic and teleoperation devices.

  • Device-Free Targets Tracking with Sparse Sampling: A Kronecker Compressive Sensing Approach

    Sixing YANG  Yan GUO  Dongping YU  Peng QIAN  

     
    PAPER

      Pubricized:
    2019/04/26
      Vol:
    E102-B No:10
      Page(s):
    1951-1959

    We research device-free (DF) multi-target tracking scheme in this paper. The existing localization and tracking algorithms are always pay attention to the single target and need to collect a large amount of localization information. In this paper, we exploit the sparse property of multiple target locations to achieve target trace accurately with much less sampling both in the wireless links and the time slots. The proposed approach mainly includes the target localization part and target trace recovery part. In target localization part, by exploiting the inherent sparsity of the target number, Compressive Sensing (CS) is utilized to reduce the wireless links distributed. In the target trace recovery part, we exploit the compressive property of target trace, as well as designing the measurement matrix and the sparse matrix, to reduce the samplings in time domain. Additionally, Kronecker Compressive Sensing (KCS) theory is used to simultaneously recover the multiple traces both of the X label and the Y Label. Finally, simulations show that the proposed approach holds an effective recovery performance.

  • WearAuth: Wristwear-Assisted User Authentication for Smartphones Using Wavelet-Based Multi-Resolution Analysis

    Taeho KANG  Sangwoo JI  Hayoung JEONG  Bin ZHU  Jong KIM  

     
    PAPER-Information Network

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:10
      Page(s):
    1976-1992

    Zero-effort bilateral authentication was introduced recently to use a trusted wristwear to continuously authenticate a smartphone user. A user is allowed to use the smartphone if both wristwear and smartphone are determined to be held by the same person by comparing the wristwear's motion with the smartphone's input or motion, depending on the grip — which hand holds the smartphone and which hand provides the input. Unfortunately, the scheme has several shortcomings. First, it may work improperly when the user is walking since the gait can conceal the wrist's motions of making touches. Second, it continuously compares the motions of the two devices, which incurs a heavy communication burden. Third, the acceleration-based grip inference, which assumes that the smartphone is horizontal with the ground is inapplicable in practice. To address these shortcomings, we propose WearAuth, wristwear-assisted user authentication for smartphones in this paper. WearAuth applies wavelet-based multi-resolution analysis to extract the desired touch-specific movements regardless of whether the user is stationary or moving; uses discrete Fourier transform-based approximate correlation to reduce the communication overhead; and takes a new approach to directly compute the relative device orientation without using acceleration to infer the grip more precisely. In two experiments with 50 subjects, WearAuth produced false negative rates of 3.6% or less and false positive rates of 1.69% or less. We conclude that WearAuth operates properly under various usage cases and is robust to sophisticated attacks.

121-140hit(1726hit)