The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ICE(1726hit)

141-160hit(1726hit)

  • Explicit Relation between Low-Dimensional LLL-Reduced Bases and Shortest Vectors Open Access

    Kotaro MATSUDA  Atsushi TAKAYASU  Tsuyoshi TAKAGI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1091-1100

    The Shortest Vector Problem (SVP) is one of the most important lattice problems in computer science and cryptography. The LLL lattice basis reduction algorithm runs in polynomial time and can compute an LLL-reduced basis that provably contains an approximate solution to the SVP. On the other hand, the LLL algorithm in practice tends to solve low-dimensional exact SVPs with high probability, i.e., >99.9%. Filling this theoretical-practical gap would lead to an understanding of the computational hardness of the SVP. In this paper, we try to fill the gap in 3,4 and 5 dimensions and obtain two results. First, we prove that given a 3,4 or 5-dimensional LLL-reduced basis, the shortest vector is one of the basis vectors or it is a limited integer linear combination of the basis vectors. In particular, we construct explicit representations of the shortest vector by using the LLL-reduced basis. Our analysis yields a necessary and sufficient condition for checking whether the output of the LLL algorithm contains the shortest vector or not. Second, we estimate the failure probability that a 3-dimensional random LLL-reduced basis does not contain the shortest vector. The upper bound seems rather tight by comparison with a Monte Carlo simulation.

  • A Method for Smartphone Theft Prevention When the Owner Dozes Off Open Access

    Kouhei NAGATA  Yoshiaki SEKI  

     
    LETTER-Physical Security

      Pubricized:
    2019/06/04
      Vol:
    E102-D No:9
      Page(s):
    1686-1688

    We propose a method for preventing smartphone theft when the owner dozes off. The owner of the smartphone wears a wristwatch type device that has an acceleration sensor and a vibration mode. This device detects when the owner dozes off. When the acceleration sensor in the smartphone detects an accident while dozing, the device vibrates. We implemented this function and tested its usefulness.

  • Gradual Switch Clustering Based Virtual Middlebox Placement for Improving Service Chain Performance Open Access

    Duc-Tiep VU  Kyungbaek KIM  

     
    LETTER-Information Network

      Pubricized:
    2019/06/05
      Vol:
    E102-D No:9
      Page(s):
    1878-1881

    Recently, Network Function Virtualization (NFV) has drawn attentions of many network researchers with great deal of flexibilities, and various network service chains can be used in an SDN/NFV environment. With the flexibility of virtual middlebox placement, how to place virtual middleboxes in order to optimize the performance of service chains becomes essential. Some past studies focused on placement problem of consolidated middleboxes which combine multiple functions into a virtual middlebox. However, when a virtual middlebox providing only a single function is considered, the placement problem becomes much more complex. In this paper, we propose a new heuristic method, the gradual switch clustering based virtual middlebox placement method, in order to improve the performance of service chains, with the constraints of end-to-end delay, bandwidth, and operation cost of deploying a virtual middlebox on a switch. The proposed method gradually finds candidate places for each type of virtual middlebox along with the sequential order of service chains, by clustering candidate switches which satisfy the constraints. Finally, among candidate places for each type of virtual middlebox, the best places are selected in order to minimize the end-to-end delays of service chains. The evaluation results, which are obtained through Mininet based extensive emulations, show that the proposed method outperforms than other methods, and specifically it achieves around 25% less end-to-end delay than other methods.

  • A Generalized Data Uploading Scheme for D2D-Enhanced Cellular Networks

    Xiaolan LIU  Lisheng MA  Xiaohong JIANG  

     
    PAPER-Network

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1914-1923

    This paper investigates data uploading in cellular networks with the consideration of device-to-device (D2D) communications. A generalized data uploading scheme is proposed by leveraging D2D cooperation among the devices to reduce the data uploading time. In this scheme, we extend the conventional schemes on cooperative D2D data uploading for cellular networks to a more general case, which considers D2D cooperation among both the devices with or without uploading data. To motivate D2D cooperation among all available devices, we organize the devices within communication range by offering them rewards to construct multi-hop D2D chains for data uploading. Specifically, we formulate the problem of chain formation among the devices for data uploading as a coalitional game. Based on merge-and-split rules, we develop a coalition formation algorithm to obtain the solution for the formulated coalitional game with convergence on a stable coalitional structure. Finally, extensive numerical results show the effectiveness of our proposed scheme in reducing the average data uploading time.

  • Reducing CPU Power Consumption with Device Utilization-Aware DVFS for Low-Latency SSDs

    Satoshi IMAMURA  Eiji YOSHIDA  Kazuichi OE  

     
    PAPER-Computer System

      Pubricized:
    2019/06/18
      Vol:
    E102-D No:9
      Page(s):
    1740-1749

    Emerging solid state drives (SSDs) based on a next-generation memory technology have been recently released in market. In this work, we call them low-latency SSDs because the device latency of them is an order of magnitude lower than that of conventional NAND flash SSDs. Although low-latency SSDs can drastically reduce an I/O latency perceived by an application, the overhead of OS processing included in the I/O latency has become noticeable because of the very low device latency. Since the OS processing is executed on a CPU core, its operating frequency should be maximized for reducing the OS overhead. However, a higher core frequency causes the higher CPU power consumption during I/O accesses to low-latency SSDs. Therefore, we propose the device utilization-aware DVFS (DU-DVFS) technique that periodically monitors the utilization of a target block device and applies dynamic voltage and frequency scaling (DVFS) to CPU cores executing I/O-intensive processes only when the block device is fully utilized. In this case, DU-DVFS can reduce the CPU power consumption without hurting performance because the delay of OS processing incurred by decreasing the core frequency can be hidden. Our evaluation with 28 I/O-intensive workloads on a real server containing an Intel® Optane™ SSD demonstrates that DU-DVFS reduces the CPU power consumption by 41.4% on average (up to 53.8%) with a negligible performance degradation, compared to a standard DVFS governor on Linux. Moreover, the evaluation with multiprogrammed workloads composed of I/O-intensive and non-I/O-intensive programs shows that DU-DVFS is also effective for them because it can apply DVFS only to CPU cores executing I/O-intensive processes.

  • Authentication Scheme Using Pre-Registered Information on Blockchain

    Toshiki TSUCHIDA  Makoto TAKITA  Yoshiaki SHIRAISHI  Masami MOHRI  Yasuhiro TAKANO  Masakatu MORII  

     
    LETTER-System Construction Techniques

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:9
      Page(s):
    1676-1678

    In the context of Cyber-Physical System (CPS), analyzing the real world data accumulated in cyberspace would improve the efficiency and productivity of various social systems. Towards establishing data-driven society, it is desired to share data safely and smoothly among multiple services. In this paper, we propose a scheme that services authenticate users using information registered on a blockchain. We show that the proposed scheme has resistance to tampering and a spoofing attack.

  • Location-Based Forwarding with Multi-Destinations in NDN Networks Open Access

    Yoshiki KURIHARA  Yuki KOIZUMI  Toru HASEGAWA  Mayutan ARUMAITHURAI  

     
    PAPER

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1822-1831

    Location-based forwarding is a key driver for location-based services. This paper designs forwarding information data structures for location-based forwarding in Internet Service Provider (ISP) scale networks based on Named Data Networking (NDN). Its important feature is a naming scheme which represents locations by leveraging space-filling curves.

  • A New Method for Futures Price Trends Forecasting Based on BPNN and Structuring Data

    Weijun LU  Chao GENG  Dunshan YU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/05/28
      Vol:
    E102-D No:9
      Page(s):
    1882-1886

    Forecasting commodity futures price is a challenging task. We present an algorithm to predict the trend of commodity futures price based on a type of structuring data and back propagation neural network. The random volatility of futures can be filtered out in the structuring data. Moreover, it is not restricted by the type of futures contract. Experiments show the algorithm can achieve 80% accuracy in predicting price trends.

  • Single Failure Recovery Method for Erasure Coded Storage System with Heterogeneous Devices Open Access

    Yingxun FU  Junyi GUO  Li MA  Jianyong DUAN  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2019/06/14
      Vol:
    E102-D No:9
      Page(s):
    1865-1869

    As the demand of data reliability becomes more and more larger, most of today's storage systems adopt erasure codes to assure the data could be reconstructed when suffering from physical device failures. In order to fast recover the lost data from a single failure, recovery optimization methods have attracted a lot of attention in recent years. However, most of the existing optimization methods focus on homogeneous devices, ignoring the fact that the storage devices are usually heterogeneous. In this paper, we propose a new recovery optimization method named HSR (Heterogeneous Storage Recovery) method, which uses both loads and speed rate among physical devices as the optimization target, in order to further improve the recovery performance for heterogeneous devices. The experiment results show that, compared to existing popular recovery optimization methods, HSR method gains much higher recovery speed over heterogeneous storage devices.

  • Improving Semi-Blind Uplink Interference Suppression on Multicell Massive MIMO Systems: A Beamspace Approach

    Kazuki MARUTA  Chang-Jun AHN  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1503-1511

    This paper improves our previously proposed semi-blind uplink interference suppression scheme for multicell multiuser massive MIMO systems by incorporating the beamspace approach. The constant modulus algorithm (CMA), a known blind adaptive array scheme, can fully exploit the degree of freedom (DoF) offered by massive antenna arrays to suppress inter-user interference (IUI) and inter-cell interference (ICI). Unfortunately, CMA wastes a lot of the benefit of DoF for null-steering even when the number of incoming signal is fewer than that of receiving antenna elements. Our new proposal introduces the beamspace method which degenerates the number of array input for CMA from element-space to beamspace. It can control DoF expended for subsequent interference suppression by CMA. Optimizing the array beamforming gain and null-steering ability, can further improve the output signal-to-interference and noise power ratio (SINR). Computer simulation confirmed that our new proposal reduced the required number of data symbols by 34.6%. In addition, the 5th percentile SINR was also improved by 14.3dB.

  • Optimal Pricing for Service Provision in Heterogeneous Cloud Market

    Xianwei LI  Bo GU  Cheng ZHANG  Zhi LIU  Kyoko YAMORI  Yoshiaki TANAKA  

     
    PAPER-Network

      Pubricized:
    2018/12/17
      Vol:
    E102-B No:6
      Page(s):
    1148-1159

    In recent years, the adoption of Software as a Service (SaaS) cloud services has surpassed that of Infrastructure as a Service (IaaS) cloud service and is now the focus of attention in cloud computing. The cloud market is becoming highly competitive owing to the increasing number of cloud service providers (CSPs), who are likely to exhibit different cloud capacities, i.e., the cloud market is heterogeneous. Moreover, as different users generally exhibit different Quality of Service (QoS) preferences, it is challenging to set prices for cloud services of good QoS. In this study, we investigate the price competition in the heterogeneous cloud market where two SaaS providers, denoted by CSP1 and CSP2, lease virtual machine (VM) instances from IaaS providers to offer cloud-based application services to users. We assume that CSP1 only has M/M/1 queue of VM instances owing to its limited cloud resources, whereas CSP2 has M/M/∞ queue of VM instances reflecting its adequate resources. We consider two price competition scenarios in which two CSPs engage in two games: one is a noncooperative strategic game (NSG) where the two CSPs set prices simultaneously and the other is a Stackelberg game (SG) where CSP2 sets the price first as the leader and is followed by CSP1, who sets the price in response to CSP2. Each user decides which cloud services to purchase (if purchases are to be made) based on the prices and QoS. The NSG scenario corresponds to the practical cloud market, where two CSPs with different cloud capacities begin to offer cloud services simultaneously; meanwhile, the SG scenario covers the instance where a more recent CSP plans to enter a cloud market whose incumbent CSP has larger cloud resources. Equilibrium is achieved in each of the scenarios. Numerical results are presented to verify our theoretical analysis.

  • Distributed Search for Exchangeable Service Chain Based on In-Network Guidance

    Yutaro ODA  Yosuke TANIGAWA  Hideki TODE  

     
    PAPER

      Pubricized:
    2019/02/19
      Vol:
    E102-D No:5
      Page(s):
    963-973

    Network function virtualization (NFV) flexibly provides servoces by virtualizing network functions on a general-purpose server, and attracted research interest in recent years. In NFV environment, providing service chaining, which dynamically connects each network function (virtual network function: VNF), is critical issue. However, as it is challenging to select the optimal sequence of VNF services in the service chain in a decentralized manner, the distances between the VNFs tend to increase, leading to longer communication and processing delays. Furthermore, it has never considered that certain VNFs that can be exchange the order of services with one another. To address this problem, in this paper, we propose a distributed search method for ordered VNFs to reduce delays while considering the load on control server, by exploiting an in-network guidance technology, called Breadcrrmubs, for query messages.

  • Overflows in Multiservice Systems Open Access

    Mariusz GłĄBOWSKI  Damian KMIECIK  Maciej STASIAK  

     
    INVITED PAPER

      Pubricized:
    2018/11/22
      Vol:
    E102-B No:5
      Page(s):
    958-969

    This article presents a universal and versatile model of multiservice overflow systems based on Hayward's concept. The model can be used to analyze modern telecommunications and computer networks, mobile networks in particular. The advantage of the proposed approach lies in its ability to analyze overflow systems with elastic and adaptive traffic, systems with distributed resources and systems with non-full-availability in primary and secondary resources.

  • Numerical Channel Characterizations for Liver-Implanted Communications Considering Different Human Subjects

    Pongphan LEELATIEN  Koichi ITO  Kazuyuki SAITO  Manmohan SHARMA  Akram ALOMAINY  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/10/22
      Vol:
    E102-B No:4
      Page(s):
    876-883

    This paper presents a numerical study of the wireless channel characteristics of liver implants in a frequency range of 4.5-6.5GHz, considering different digital human phantoms by employing two inhomogeneous male and female models. Path loss data for in-body to on-body and in-body to off-body communication scenarios are provided. The influence of respiration-induced organ movement on signal attenuation is demonstrated. A narrower range of attenuation deviation is observed in the female model as compared to the male model. The path loss data in the female body is between 40-80dB which is around 5-10dB lower than the male model. Path loss data for the in-body to off-body scenario in both models suggest that in-body propagation is the main component of total path loss in the channel. The results demonstrate that channel characteristics are subject dependent, and thus indicate the need to take subject dependencies into consideration when investigating in-body communication channels.

  • Public WLAN Virtualization for Multiple Services

    Kazuhiko KINOSHITA  Kazuki GINNAN  Keita KAWANO  Hiroki NAKAYAMA  Tsunemasa HAYASHI  Takashi WATANABE  

     
    PAPER-Network

      Pubricized:
    2018/10/10
      Vol:
    E102-B No:4
      Page(s):
    832-844

    The recent widespread use of high-performance terminals has resulted in a rapid increase in mobile data traffic. Therefore, public wireless local area networks (WLANs) are being used often to supplement the cellular networks. Capacity improvement through the dense deployment of access points (APs) is being considered. However, the effective throughput degrades significantly when many users connect to a single AP. In this paper, users are classified into guaranteed bit rate (GBR) users and best effort (BE) users, and we propose a network model to provide those services. In the proposed model, physical APs and the bandwidths are assigned to each service class dynamically using a virtual AP configuration and a virtualized backhaul network, for reducing the call-blocking probability of GBR users and improving the satisfaction degree of BE users. Finally, we evaluate the performance of the proposed model through simulation experiments and discuss its feasibility.

  • A Highly Accurate Transportation Mode Recognition Using Mobile Communication Quality

    Wataru KAWAKAMI  Kenji KANAI  Bo WEI  Jiro KATTO  

     
    PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    741-750

    To recognize transportation modes without any additional sensor devices, we demonstrate that the transportation modes can be recognized from communication quality factors. In the demonstration, instead of using global positioning system (GPS) and accelerometer sensors, we collect mobile TCP throughputs, received-signal strength indicators (RSSIs), and cellular base-station IDs (Cell IDs) through in-line network measurement when the user enjoys mobile services, such as video streaming. In accuracy evaluations, we conduct two different field experiments to collect the data in six typical transportation modes (static, walking, riding a bicycle, riding a bus, riding a train and riding a subway), and then construct the classifiers by applying a support-vector machine (SVM), k-nearest neighbor (k-NN), random forest (RF), and convolutional neural network (CNN). Our results show that these transportation modes can be recognized with high accuracy by using communication quality factors as well as the use of accelerometer sensors.

  • Design and Feasibility Study: Customized Virtual Buttons for Electronic Mobile Devices

    Seungtaek SONG  Namhyun KIM  Sungkil LEE  Joyce Jiyoung WHANG  Jinkyu LEE  

     
    LETTER-Algorithms and Data Structures

      Vol:
    E102-A No:4
      Page(s):
    668-671

    Smartphone users often want to customize the positions and functions of physical buttons to accommodate their own usage patterns; however, this is unfeasible for electronic mobile devices based on COTS (Commercial Off-The-Shelf) due to high production costs and hardware design constraints. In this letter, we present the design and implementation of customized virtual buttons that are localized using only common built-in sensors of electronic mobile devices. We develop sophisticated strategies firstly to detect when a user taps one of the virtual buttons, and secondly to locate the position of the tapped virtual button. The virtual-button scheme is implemented and demonstrated in a COTS-based smartphone. The feasibility study shows that, with up to nine virtual buttons on five different sides of the smartphone, the proposed virtual buttons can operate with greater than 90% accuracy.

  • Towards Autonomous Security Assurance in 5G Infrastructures Open Access

    Stefan COVACI  Matteo REPETTO  Fulvio RISSO  

     
    INVITED PAPER

      Pubricized:
    2018/09/20
      Vol:
    E102-B No:3
      Page(s):
    401-409

    5G infrastructures will heavily rely on novel paradigms such as Network Function Virtualization and Service Function Chaining to build complex business chains involving multiple parties. Although virtualization of security middleboxes looks a common practice today, we argue that this approach is inefficient and does not fit the peculiar characteristics of virtualized environments. In this paper, we outline a new paradigm towards autonomous security assurance in 5G infrastructures, leveraging service orchestration for semi-autonomous management and reaction, yet decoupling security management from service graph design. Our work is expected to improve the design and deployment of complex business chains, as well as the application of artificial intelligence and machine learning techniques over large and intertwined security datasets. We describe the overall concept and architecture, and discuss in details the three architectural layers. We also report preliminary work on implementation of the system, by introducing relevant technologies.

  • Single-Photon Measurement Techniques with a Superconducting Transition Edge Sensor Open Access

    Daiji FUKUDA  

     
    INVITED PAPER

      Vol:
    E102-C No:3
      Page(s):
    230-234

    The optical-transition edge sensors are single-photon detectors that can determine photon energies at visible to telecommunication wavelengths. They offer a high detection efficiency and negligible dark count, which are very attractive qualities for applications in quantum optics or bioimaging. This study reviews the operating principles of such detectors and the current status of their development.

  • Congestion Avoidance Using Multiple Virtual Networks

    Tsuyoshi OGURA  Tatsuya FUJII  

     
    PAPER-Network

      Pubricized:
    2018/08/31
      Vol:
    E102-B No:3
      Page(s):
    557-570

    If a shared IP network is to deliver large-volume streaming media content, such as real-time videos, we need a technique for explicitly setting and dynamically changing the transmission paths used to respond to the congestion situation of the network, including multi-path transmission of a single-flow, to maximize network bandwidth utilization and stabilize transmission quality. However, current technologies cannot realize flexible multi-path transmission because they require complicated algorithms for route searching and the control load for route changing is excessive. This paper proposes a scheme that realizes routing control for multi-path transmission by combining multiple virtual networks on the same physical network. The proposed scheme lowers the control load incurred in creating a detour route because routing control is performed by combining existing routing planes. In addition, our scheme simplifies route searching procedure because congestion avoidance control of multi-path transmission can be realized by the control of a single path. An experiment on the JGN-X network virtualization platform finds that while the time taken to build an inter-slice link must be improved, the time required to inspect whether each slice has virtual nodes that can be connected to the original slice and be used as a detour destination can be as short as 40 microseconds per slice even with large slices having more than 100 virtual nodes.

141-160hit(1726hit)