Chen ZHONG Chegnyu WU Xiangyang LI Ao ZHAN Zhengqiang WANG
A novel temporal convolution network-gated recurrent unit (NTCN-GRU) algorithm is proposed for the greatest of constant false alarm rate (GO-CFAR) frequency hopping (FH) prediction, integrating GRU and Bayesian optimization (BO). GRU efficiently captures the semantic associations among long FH sequences, and mitigates the phenomenon of gradient vanishing or explosion. BO improves extracting data features by optimizing hyperparameters besides. Simulations demonstrate that the proposed algorithm effectively reduces the loss in the training process, greatly improves the FH prediction effect, and outperforms the existing FH sequence prediction model. The model runtime is also reduced by three-quarters compared with others FH sequence prediction models.
Hyebong CHOI Joel SHIN Jeongho KIM Samuel YOON Hyeonmin PARK Hyejin CHO Jiyoung JUNG
The design of automobile lamps requires accurate estimation of heat distribution to prevent overheating and deformation of the product. Traditional heat resistant analysis using Computational Fluid Dynamics (CFD) is time-consuming and requires expertise in thermofluid mechanics, making real-time temperature analysis less accessible to lamp designers. We propose a machine learning-based temperature prediction system for automobile lamp design. We trained our machine learning models using CFD results of various lamp designs, providing lamp designers real-time Heat-Resistant Analysis. Comprehensive tests on real lamp products demonstrate that our prediction model accurately estimates heat distribution comparable to CFD analysis within a minute. Our system visualizes the estimated heat distribution of car lamp design supporting quick decision-making by lamp designer. It is expected to shorten the product design process, improving the market competitiveness.
Xiao’an BAO Shifan ZHOU Biao WU Xiaomei TU Yuting JIN Qingqi ZHANG Na ZHANG
With the popularization of software defined networks, switch migration as an important network management strategy has attracted increasing attention. Most existing switch migration strategies only consider local conditions and simple load thresholds, without fully considering the overall optimization and dynamics of the network. Therefore, this article proposes a switch migration algorithm based on global optimization. This algorithm adds a load prediction module to the migration model, determines the migration controller, and uses an improved whale optimization algorithm to determine the target controller and its surrounding controller set. Based on the load status of the controller and the traffic priority of the switch to be migrated, the optimal migration switch set is determined. The experimental results show that compared to existing schemes, the algorithm proposed in this paper improves the average flow processing efficiency by 15% to 40%, reduces switch migration times, and enhances the security of the controller.
Highly conflicting evidence that may lead to the counter-intuitive results is one of the challenges for information fusion in Dempster-Shafer evidence theory. To deal with this issue, evidence conflict is investigated based on belief divergence measuring the discrepancy between evidence. In this paper, the pignistic probability transform belief χ2 divergence, named as BBχ2 divergence, is proposed. By introducing the pignistic probability transform, the proposed BBχ2 divergence can accurately quantify the difference between evidence with the consideration of multi-element sets. Compared with a few belief divergences, the novel divergence has more precision. Based on this advantageous divergence, a new multi-source information fusion method is devised. The proposed method considers both credibility weights and information volume weights to determine the overall weight of each evidence. Eventually, the proposed method is applied in target recognition and fault diagnosis, in which comparative analysis indicates that the proposed method can realize the highest accuracy for managing evidence conflict.
Haochen LYU Jianjun LI Yin YE Chin-Chen CHANG
The purpose of Facial Beauty Prediction (FBP) is to automatically assess facial attractiveness based on human aesthetics. Most neural network-based prediction methods do not consider the ranking information in the task. For scoring tasks like facial beauty prediction, there is abundant ranking information both between images and within images. Reasonable utilization of these information during training can greatly improve the performance of the model. In this paper, we propose a novel end-to-end Convolutional Neural Network (CNN) model based on ranking information of images, incorporating a Rank Module and an Adaptive Weight Module. We also design pairwise ranking loss functions to fully leverage the ranking information of images. Considering training efficiency and model inference capability, we choose ResNet-50 as the backbone network. We conduct experiments on the SCUT-FBP5500 dataset and the results show that our model achieves a new state-of-the-art performance. Furthermore, ablation experiments show that our approach greatly contributes to improving the model performance. Finally, the Rank Module with the corresponding ranking loss is plug-and-play and can be extended to any CNN model and any task with ranking information. Code is available at https://github.com/nehcoah/Rank-Info-Net.
To reduce the common mode voltage (CMV), suppress the CMV spikes, and improve the steady-state performance, a simplified reactive torque model predictive control (RT-MPC) for induction motors (IMs) is proposed. The proposed prediction model can effectively reduce the complexity of the control algorithm with the direct torque control (DTC) based voltage vector (VV) preselection approach. In addition, the proposed CMV suppression strategy can restrict the CMV within ±Vdc/6, and does not require the exclusion of non-adjacent non-opposite VVs, thus resulting in the system showing good steady-state performance. The effectiveness of the proposed design has been tested and verified by the practical experiment. The proposed algorithm can reduce the execution time by an average of 26.33% compared to the major competitors.
Both group process studies and collective intelligence studies are concerned with “which of the crowds and the best members perform better.” This can be seen as a matter of democracy versus dictatorship. Having evidence of the growth potential of crowds and experts can be useful in making correct predictions and can benefit humanity. In the collective intelligence experimental paradigm, experts' or best members ability is compared with the accuracy of the crowd average. In this research (n = 620), using repeated trials of simple tasks, we compare the correct answer of a class average (index of collective intelligence) and the best member (the one whose answer was closest to the correct answer). The results indicated that, for the cognition task, collective intelligence improved to the level of the best member through repeated trials without feedback; however, it depended on the ability of the best members for the prediction task. The present study suggested that best members' superiority over crowds for the prediction task on the premise of being free from social influence. However, machine learning results suggests that the best members among us cannot be easily found beforehand because they appear through repeated trials.
Zhishu SUN Zilong XIAO Yuanlong YU Luojun LIN
Facial Beauty Prediction (FBP) is a significant pattern recognition task that aims to achieve consistent facial attractiveness assessment with human perception. Currently, Convolutional Neural Networks (CNNs) have become the mainstream method for FBP. The training objective of most conventional CNNs is usually to learn static convolution kernels, which, however, makes the network quite difficult to capture global attentive information, and thus usually ignores the key facial regions, e.g., eyes, and nose. To tackle this problem, we devise a new convolution manner, Dynamic Attentive Convolution (DyAttenConv), which integrates the dynamic and attention mechanism into convolution in kernel-level, with the aim of enforcing the convolution kernels adapted to each face dynamically. DyAttenConv is a plug-and-play module that can be flexibly combined with existing CNN architectures, making the acquisition of the beauty-related features more globally and attentively. Extensive ablation studies show that our method is superior to other fusion and attention mechanisms, and the comparison with other state-of-the-arts also demonstrates the effectiveness of DyAttenConv on facial beauty prediction task.
Aditya RAKHMADI Kazuyuki SAITO
Transcatheter renal denervation (RDN) is a novel treatment to reduce blood pressure in patients with resistant hypertension using an energy-based catheter, mostly radio frequency (RF) current, by eliminating renal sympathetic nerve. However, several inconsistent RDN treatments were reported, mainly due to RF current narrow heating area, and the inability to confirm a successful nerve ablation in a deep area. We proposed microwave energy as an alternative for creating a wider ablation area. However, confirming a successful ablation is still a problem. In this paper, we designed a prediction method for deep renal nerve ablation sites using hybrid numerical calculation-driven machine learning (ML) in combination with a microwave catheter. This work is a first-step investigation to check the hybrid ML prediction capability in a real-world situation. A catheter with a single-slot coaxial antenna at 2.45 GHz with a balloon catheter, combined with a thin thermometer probe on the balloon surface, is proposed. Lumen temperature measured by the probe is used as an ML input to predict the temperature rise at the ablation site. Heating experiments using 6 and 8 mm hole phantom with a 41.3 W excited power, and 8 mm with 36.4 W excited power, were done eight times each to check the feasibility and accuracy of the ML algorithm. In addition, the temperature on the ablation site is measured for reference. Prediction by ML algorithm agrees well with the reference, with a maximum difference of 6°C and 3°C in 6 and 8 mm (both power), respectively. Overall, the proposed ML algorithm is capable of predicting the ablation site temperature rise with high accuracy.
Human motion prediction has always been an interesting research topic in computer vision and robotics. It means forecasting human movements in the future conditioning on historical 3-dimensional human skeleton sequences. Existing predicting algorithms usually rely on extensive annotated or non-annotated motion capture data and are non-adaptive. This paper addresses the problem of few-frame human motion prediction, in the spirit of the recent progress on manifold learning. More precisely, our approach is based on the insight that achieving an accurate prediction relies on a sufficiently linear expression in the latent space from a few training data in observation space. To accomplish this, we propose Regressive Gaussian Process Latent Variable Model (RGPLVM) that introduces a novel regressive kernel function for the model training. By doing so, our model produces a linear mapping from the training data space to the latent space, while effectively transforming the prediction of human motion in physical space to the linear regression analysis in the latent space equivalent. The comparison with two learning motion prediction approaches (the state-of-the-art meta learning and the classical LSTM-3LR) demonstrate that our GPLVM significantly improves the prediction performance on various of actions in the small-sample size regime.
Mitsuru UESUGI Yoshiaki SHINAGAWA Kazuhiro KOSAKA Toru OKADA Takeo UETA Kosuke ONO
With the rapid increase in the amount of data communication in 5G networks, there is a strong demand to reduce the power of the entire network, so the use of highly power-efficient millimeter-wave (mm-wave) networks is being considered. However, while mm-wave communication has high power efficiency, it has strong straightness, so it is difficult to secure stable communication in an environment with blocking. Especially when considering use cases such as autonomous driving, continuous communication is required when transmitting streaming data such as moving images taken by vehicles, it is necessary to compensate the blocking problem. For this reason, the authors examined an optimum radio access technology (RAT) selection scheme which selects mm-wave communication when mm-wave can be used and select wide-area macro-communication when mm-wave may be blocked. In addition, the authors implemented the scheme on a prototype device and conducted field tests and confirmed that mm-wave communication and macro communication were switched at an appropriate timing.
Fazhan YANG Xingge GUO Song LIANG Peipei ZHAO Shanhua LI
Visual saliency prediction has improved dramatically since the advent of convolutional neural networks (CNN). Although CNN achieves excellent performance, it still cannot learn global and long-range contextual information well and lacks interpretability due to the locality of convolution operations. We proposed a saliency prediction model based on multi-prior enhancement and cross-modal attention collaboration (ME-CAS). Concretely, we designed a transformer-based Siamese network architecture as the backbone for feature extraction. One of the transformer branches captures the context information of the image under the self-attention mechanism to obtain a global saliency map. At the same time, we build a prior learning module to learn the human visual center bias prior, contrast prior, and frequency prior. The multi-prior input to another Siamese branch to learn the detailed features of the underlying visual features and obtain the saliency map of local information. Finally, we use an attention calibration module to guide the cross-modal collaborative learning of global and local information and generate the final saliency map. Extensive experimental results demonstrate that our proposed ME-CAS achieves superior results on public benchmarks and competitors of saliency prediction models. Moreover, the multi-prior learning modules enhance images express salient details, and model interpretability.
The application of time-series prediction is very extensive, and it is an important problem across many fields, such as stock prediction, sales prediction, and loan prediction and so on, which play a great value in production and life. It requires that the model can effectively capture the long-term feature dependence between the output and input. Recent studies show that Transformer can improve the prediction ability of time-series. However, Transformer has some problems that make it unable to be directly applied to time-series prediction, such as: (1) Local agnosticism: Self-attention in Transformer is not sensitive to short-term feature dependence, which leads to model anomalies in time-series; (2) Memory bottleneck: The spatial complexity of regular transformation increases twice with the sequence length, making direct modeling of long time-series infeasible. In order to solve these problems, this paper designs an efficient model for long time-series prediction. It is a double pyramid bidirectional feature fusion mechanism network with parallel Temporal Convolution Network (TCN) and FastFormer. This network structure can combine the time series fine-grained information captured by the Temporal Convolution Network with the global interactive information captured by FastFormer, it can well handle the time series prediction problem.
Wentao LYU Di ZHOU Chengqun WANG Lu ZHANG
In this paper, we present a novel discriminative dictionary learning (DDL) method for image classification. The local structural relationship between samples is first built by the Laplacian eigenmaps (LE), and then integrated into the basic DDL frame to suppress inter-class ambiguity in the feature space. Moreover, in order to improve the discriminative ability of the dictionary, the category label information of training samples is formulated into the objective function of dictionary learning by considering the discriminative promotion term. Thus, the data points of original samples are transformed into a new feature space, in which the points from different categories are expected to be far apart. The test results based on the real dataset indicate the effectiveness of this method.
Daichi WATARI Ittetsu TANIGUCHI Francky CATTHOOR Charalampos MARANTOS Kostas SIOZIOS Elham SHIRAZI Dimitrios SOUDRIS Takao ONOYE
Energy management in buildings is vital for reducing electricity costs and maximizing the comfort of occupants. Excess solar generation can be used by combining a battery storage system and a heating, ventilation, and air-conditioning (HVAC) system so that occupants feel comfortable. Despite several studies on the scheduling of appliances, batteries, and HVAC, comprehensive and time scalable approaches are required that integrate such predictive information as renewable generation and thermal comfort. In this paper, we propose an thermal-comfort aware online co-scheduling framework that incorporates optimal energy scheduling and a prediction model of PV generation and thermal comfort with the model predictive control (MPC) approach. We introduce a photovoltaic (PV) energy nowcasting and thermal-comfort-estimation model that provides useful information for optimization. The energy management problem is formulated as three coordinated optimization problems that cover fast and slow time-scales by considering predicted information. This approach reduces the time complexity without a significant negative impact on the result's global nature and its quality. Experimental results show that our proposed framework achieves optimal energy management that takes into account the trade-off between electricity expenses and thermal comfort. Our sensitivity analysis indicates that introducing a battery significantly improves the trade-off relationship.
Toshiyuki MIYAMOTO Marika IZAWA
Event structures are a well-known modeling formalism for concurrent systems with causality and conflict relations. The flow event structure (FES) is a variant of event structures, which is a generalization of the prime event structure. In an FES, two events may be in conflict even though they are not syntactically in conflict; this is called a semantic conflict. The existence of semantic conflict in an FES motivates reducing conflict relations (i.e., conflict reduction) to obtain a simpler structure. In this paper, we study conflict reduction in acyclic FESs. A necessary and sufficient condition for conflict reduction is given; algorithms to compute semantic conflict, local configurations, and conflict reduction are proposed. A great time reduction was observed in computational experiments when comparing the proposed with the naive method.
Runze WANG Zehua ZHANG Yueqin ZHANG Zhongyuan JIANG Shilin SUN Guixiang MA
Recent studies in protein structure prediction such as AlphaFold have enabled deep learning to achieve great attention on the Drug-Target Affinity (DTA) task. Most works are dedicated to embed single molecular property and homogeneous information, ignoring the diverse heterogeneous information gains that are contained in the molecules and interactions. Motivated by this, we propose an end-to-end deep learning framework to perform Molecular Heterogeneous features Fusion (MolHF) for DTA prediction on heterogeneity. To address the challenges that biochemical attributes locates in different heterogeneous spaces, we design a Molecular Heterogeneous Information Learning module with multi-strategy learning. Especially, Molecular Heterogeneous Attention Fusion module is present to obtain the gains of molecular heterogeneous features. With these, the diversity of molecular structure information for drugs can be extracted. Extensive experiments on two benchmark datasets show that our method outperforms the baselines in all four metrics. Ablation studies validate the effect of attentive fusion and multi-group of drug heterogeneous features. Visual presentations demonstrate the impact of protein embedding level and the model ability of fitting data. In summary, the diverse gains brought by heterogeneous information contribute to drug-target affinity prediction.
Wenrong XIAO Yong CHEN Suqin GUO Kun CHEN
An attention residual network with triple feature as input is proposed to predict the remaining useful life (RUL) of bearings. First, the channel attention and spatial attention are connected in series into the residual connection of the residual neural network to obtain a new attention residual module, so that the newly constructed deep learning network can better pay attention to the weak changes of the bearing state. Secondly, the “triple feature” is used as the input of the attention residual network, so that the deep learning network can better grasp the change trend of bearing running state, and better realize the prediction of the RUL of bearing. Finally, The method is verified by a set of experimental data. The results show the method is simple and effective, has high prediction accuracy, and reduces manual intervention in RUL prediction.
Epileptic seizure prediction is an important research topic in the clinical epilepsy treatment, which can provide opportunities to take precautionary measures for epilepsy patients and medical staff. EEG is an commonly used tool for studying brain activity, which records the electrical discharge of brain. Many studies based on machine learning algorithms have been proposed to solve the task using EEG signal. In this study, we propose a novel seizure prediction models based on convolutional neural networks and scalp EEG for a binary classification between preictal and interictal states. The short-time Fourier transform has been used to translate raw EEG signals into STFT sepctrums, which is applied as input of the models. The fusion features have been obtained through the side-output constructions and used to train and test our models. The test results show that our models can achieve comparable results in both sensitivity and FPR upon fusion features. The proposed patient-specific model can be used in seizure prediction system for EEG classification.
Hao WANG Sirui LIU Jianyong DUAN Li HE Xin LI
Sememes are the smallest semantic units of human languages, the composition of which can represent the meaning of words. Sememes have been successfully applied to many downstream applications in natural language processing (NLP) field. Annotation of a word's sememes depends on language experts, which is both time-consuming and labor-consuming, limiting the large-scale application of sememe. Researchers have proposed some sememe prediction methods to automatically predict sememes for words. However, existing sememe prediction methods focus on information of the word itself, ignoring the expert-annotated knowledge bases which indicate the relations between words and should value in sememe predication. Therefore, we aim at incorporating the expert-annotated knowledge bases into sememe prediction process. To achieve that, we propose a CilinE-guided sememe prediction model which employs an existing word knowledge base CilinE to remodel the sememe prediction from relational perspective. Experiments on HowNet, a widely used Chinese sememe knowledge base, have shown that CilinE has an obvious positive effect on sememe prediction. Furthermore, our proposed method can be integrated into existing methods and significantly improves the prediction performance. We will release the data and code to the public.