The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ICT(723hit)

141-160hit(723hit)

  • Retweeting Prediction Based on Social Hotspots and Dynamic Tensor Decomposition

    Qian LI  Xiaojuan LI  Bin WU  Yunpeng XIAO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/01/30
      Vol:
    E101-D No:5
      Page(s):
    1380-1392

    In social networks, predicting user behavior under social hotspots can aid in understanding the development trend of a topic. In this paper, we propose a retweeting prediction method for social hotspots based on tensor decomposition, using user information, relationship and behavioral data. The method can be used to predict the behavior of users and analyze the evolvement of topics. Firstly, we propose a tensor-based mechanism for mining user interaction, and then we propose that the tensor be used to solve the problem of inaccuracy that arises when interactively calculating intensity for sparse user interaction data. At the same time, we can analyze the influence of the following relationship on the interaction between users based on characteristics of the tensor in data space conversion and projection. Secondly, time decay function is introduced for the tensor to quantify further the evolution of user behavior in current social hotspots. That function can be fit to the behavior of a user dynamically, and can also solve the problem of interaction between users with time decay. Finally, we invoke time slices and discretization of the topic life cycle and construct a user retweeting prediction model based on logistic regression. In this way, we can both explore the temporal characteristics of user behavior in social hotspots and also solve the problem of uneven interaction behavior between users. Experiments show that the proposed method can improve the accuracy of user behavior prediction effectively and aid in understanding the development trend of a topic.

  • Tree-Based Feature Transformation for Purchase Behavior Prediction

    Chunyan HOU  Chen CHEN  Jinsong WANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/02/02
      Vol:
    E101-D No:5
      Page(s):
    1441-1444

    In the era of e-commerce, purchase behavior prediction is one of the most important issues to promote both online companies' sales and the consumers' experience. The previous researches usually use the feature engineering and ensemble machine learning algorithms for the prediction. The performance really depends on designed features and the scalability of algorithms because the large-scale data and a lot of categorical features lead to huge samples and the high-dimensional feature. In this study, we explore an alternative to use tree-based Feature Transformation (FT) and simple machine learning algorithms (e.g. Logistic Regression). Random Forest (RF) and Gradient Boosting decision tree (GB) are used for FT. Then, the simple algorithm, rather than ensemble algorithms, is used to predict purchase behavior based on transformed features. Tree-based FT regards the leaves of trees as transformed features, and can learn high-order interactions among original features. Compared with RF, if GB is used for FT, simple algorithms are enough to achieve better performance.

  • Semantically Readable Distributed Representation Learning and Its Expandability Using a Word Semantic Vector Dictionary

    Ikuo KESHI  Yu SUZUKI  Koichiro YOSHINO  Satoshi NAKAMURA  

     
    PAPER

      Pubricized:
    2018/01/18
      Vol:
    E101-D No:4
      Page(s):
    1066-1078

    The problem with distributed representations generated by neural networks is that the meaning of the features is difficult to understand. We propose a new method that gives a specific meaning to each node of a hidden layer by introducing a manually created word semantic vector dictionary into the initial weights and by using paragraph vector models. We conducted experiments to test the hypotheses using a single domain benchmark for Japanese Twitter sentiment analysis and then evaluated the expandability of the method using a diverse and large-scale benchmark. Moreover, we tested the domain-independence of the method using a Wikipedia corpus. Our experimental results demonstrated that the learned vector is better than the performance of the existing paragraph vector in the evaluation of the Twitter sentiment analysis task using the single domain benchmark. Also, we determined the readability of document embeddings, which means distributed representations of documents, in a user test. The definition of readability in this paper is that people can understand the meaning of large weighted features of distributed representations. A total of 52.4% of the top five weighted hidden nodes were related to tweets where one of the paragraph vector models learned the document embeddings. For the expandability evaluation of the method, we improved the dictionary based on the results of the hypothesis test and examined the relationship of the readability of learned word vectors and the task accuracy of Twitter sentiment analysis using the diverse and large-scale benchmark. We also conducted a word similarity task using the Wikipedia corpus to test the domain-independence of the method. We found the expandability results of the method are better than or comparable to the performance of the paragraph vector. Also, the objective and subjective evaluation support each hidden node maintaining a specific meaning. Thus, the proposed method succeeded in improving readability.

  • Stock Price Prediction by Deep Neural Generative Model of News Articles

    Takashi MATSUBARA  Ryo AKITA  Kuniaki UEHARA  

     
    PAPER-Datamining Technologies

      Pubricized:
    2018/01/19
      Vol:
    E101-D No:4
      Page(s):
    901-908

    In this study, we propose a deep neural generative model for predicting daily stock price movements given news articles. Approaches involving conventional technical analysis have been investigated to identify certain patterns in past price movements, which in turn helps to predict future price movements. However, the financial market is highly sensitive to specific events, including corporate buyouts, product releases, and the like. Therefore, recent research has focused on modeling relationships between these events that appear in the news articles and future price movements; however, a very large number of news articles are published daily, each article containing rich information, which results in overfitting to past price movements used for parameter adjustment. Given the above, we propose a model based on a generative model of news articles that includes price movement as a condition, thereby avoiding excessive overfitting thanks to the nature of the generative model. We evaluate our proposed model using historical price movements of Nikkei 225 and Standard & Poor's 500 Stock Index, confirming that our model predicts future price movements better than such conventional classifiers as support vector machines and multilayer perceptrons. Further, our proposed model extracts significant words from news articles that are directly related to future stock price movements.

  • Approximate-DCT-Derived Measurement Matrices with Row-Operation-Based Measurement Compression and its VLSI Architecture for Compressed Sensing

    Jianbin ZHOU  Dajiang ZHOU  Takeshi YOSHIMURA  Satoshi GOTO  

     
    PAPER

      Vol:
    E101-C No:4
      Page(s):
    263-272

    Compressed Sensing based CMOS image sensor (CS-CIS) is a new generation of CMOS image sensor that significantly reduces the power consumption. For CS-CIS, the image quality and data volume of output are two important issues to concern. In this paper, we first proposed an algorithm to generate a series of deterministic and ternary matrices, which improves the image quality, reduces the data volume and are compatible with CS-CIS. Proposed matrices are derived from the approximate DCT and trimmed in 2D-zigzag order, thus preserving the energy compaction property as DCT does. Moreover, we proposed matrix row operations adaptive to the proposed matrix to further compress data (measurements) without any image quality loss. At last, a low-cost VLSI architecture of measurements compression with proposed matrix row operations is implemented. Experiment results show our proposed matrix significantly improve the coding efficiency by BD-PSNR increase of 4.2 dB, comparing with the random binary matrix used in the-state-of-art CS-CIS. The proposed matrix row operations for measurement compression further increases the coding efficiency by 0.24 dB BD-PSNR (4.8% BD-rate reduction). The VLSI architecture is only 4.3 K gates in area and 0.3 mW in power consumption.

  • Hardware Oriented Low-Complexity Intra Coding Algorithm for SHVC

    Takafumi KATAYAMA  Tian SONG  Wen SHI  Gen FUJITA  Xiantao JIANG  Takashi SHIMAMOTO  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:12
      Page(s):
    2936-2947

    Scalable high efficiency video coding (SHVC) can provide variable video quality according to terminal devices. However, the computational complexity of SHVC is increased by introducing new techniques based on high efficiency video coding (HEVC). In this paper, a hardware oriented low complexity algorithm is proposed. The hardware oriented proposals have two key points. Firstly, the coding unit depth is determined by analyzing the boundary correlation between coding units before encoding process starts. Secondly, the redundant calculation of R-D optimization is reduced by adaptively using the information of the neighboring coding units and the co-located units in the base layer. The simulation results show that the proposed algorithm can achieve over 62% computation complexity reduction compared to the original SHM11.0. Compared with other related work, over 11% time saving have been achieved without PSNR loss. Furthermore, the proposed algorithm is hardware friendly which can be implemented in a small area.

  • Error Recovery for Massive MIMO Signal Detection via Reconstruction of Discrete-Valued Sparse Vector

    Ryo HAYAKAWA  Kazunori HAYASHI  

     
    PAPER-Communication Theory and Systems

      Vol:
    E100-A No:12
      Page(s):
    2671-2679

    In this paper, we propose a novel error recovery method for massive multiple-input multiple-output (MIMO) signal detection, which improves an estimate of transmitted signals by taking advantage of the sparsity and the discreteness of the error signal. We firstly formulate the error recovery problem as the maximum a posteriori (MAP) estimation and then relax the MAP estimation into a convex optimization problem, which reconstructs a discrete-valued sparse vector from its linear measurements. By using the restricted isometry property (RIP), we also provide a theoretical upper bound of the size of the reconstruction error with the optimization problem. Simulation results show that the proposed error recovery method has better bit error rate (BER) performance than that of the conventional error recovery method.

  • Framework and VLSI Architecture of Measurement-Domain Intra Prediction for Compressively Sensed Visual Contents

    Jianbin ZHOU  Dajiang ZHOU  Li GUO  Takeshi YOSHIMURA  Satoshi GOTO  

     
    PAPER

      Vol:
    E100-A No:12
      Page(s):
    2869-2877

    This paper presents a measurement-domain intra prediction coding framework that is compatible with compressive sensing (CS)-based image sensors. In this framework, we propose a low-complexity intra prediction algorithm that can be directly applied to measurements captured by the image sensor. We proposed a structural random 0/1 measurement matrix, embedding the block boundary information that can be extracted from the measurements for intra prediction. Furthermore, a low-cost Very Large Scale Integration (VLSI) architecture is implemented for the proposed framework, by substituting the matrix multiplication with shared adders and shifters. The experimental results show that our proposed framework can compress the measurements and increase coding efficiency, with 34.9% BD-rate reduction compared to the direct output of CS-based sensors. The VLSI architecture of the proposed framework is 9.1 Kin area, and achieves the 83% reduction in size of memory bandwidth and storage for the line buffer. This could significantly reduce both the energy consumption and bandwidth in communication of wireless camera systems, which are expected to be massively deployed in the Internet of Things (IoT) era.

  • Prediction-Based Cloud Bursting Approach and Its Impact on Total Cost for Business-Critical Web Systems

    Yukio OGAWA  Go HASEGAWA  Masayuki MURATA  

     
    PAPER

      Pubricized:
    2017/05/16
      Vol:
    E100-B No:11
      Page(s):
    2007-2016

    Cloud bursting temporarily expands the capacity of a cloud-based service hosted in a private data center by renting public data center capacity when the demand for capacity spikes. To determine the optimal resources of a business-critical web system deployed over private and public data centers, this paper presents a cloud bursting approach based on long- and short-term predictions of requests to the system. In a private data center, a dedicated pool of virtual machines (VMs) is assigned to the web system on the basis of one-week predictions. Moreover, in both private and public data centers, VMs are activated on the basis of one-hour predictions. We formulate a problem that includes the total cost and response time constraints and conduct numerical simulations. The results indicate that our approach is tolerant of prediction errors and only slightly dependent on the processing power of a single VM. Even if the website receives bursty requests and one-hour predictions include a mean absolute percentage error (MAPE) of 0.2, the total cost decreases to half the existing cost of provisioning in the private date center alone. At the same time, 95% of response time is kept below 0.15s.

  • Forecasting Network Traffic at Large Time Scales by Using Dual-Related Method

    Liangrui TANG  Shiyu JI  Shimo DU  Yun REN  Runze WU  Xin WU  

     
    PAPER-Network

      Pubricized:
    2017/04/24
      Vol:
    E100-B No:11
      Page(s):
    2049-2059

    Network traffic forecasts, as it is well known, can be useful for network resource optimization. In order to minimize the forecast error by maximizing information utilization with low complexity, this paper concerns the difference of traffic trends at large time scales and fits a dual-related model to predict it. First, by analyzing traffic trends based on user behavior, we find both hour-to-hour and day-to-day patterns, which means that models based on either of the single trends are unable to offer precise predictions. Then, a prediction method with the consideration of both daily and hourly traffic patterns, called the dual-related forecasting method, is proposed. Finally, the correlation for traffic data is analyzed based on model parameters. Simulation results demonstrate the proposed model is more effective in reducing forecasting error than other models.

  • Lossless Image Coding Based on Probability Modeling Using Template Matching and Linear Prediction

    Toru SUMI  Yuta INAMURA  Yusuke KAMEDA  Tomokazu ISHIKAWA  Ichiro MATSUDA  Susumu ITOH  

     
    LETTER-Image Processing

      Vol:
    E100-A No:11
      Page(s):
    2351-2354

    We previously proposed a lossless image coding scheme using example-based probability modeling, wherein the probability density function of image signals was dynamically modeled pel-by-pel. To appropriately estimate the peak positions of the probability model, several examples, i.e., sets of pels whose neighborhoods are similar to the local texture of the target pel to be encoded, were collected from the already encoded causal area via template matching. This scheme primarily makes use of non-local information in image signals. In this study, we introduce a prediction technique into the probability modeling to offer a better trade-off between the local and non-local information in the image signals.

  • Predicting Changes in Cognitive Performance Using Heart Rate Variability

    Keisuke TSUNODA  Akihiro CHIBA  Kazuhiro YOSHIDA  Tomoki WATANABE  Osamu MIZUNO  

     
    PAPER

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2411-2419

    In this paper, we propose a low-invasive framework to predict changes in cognitive performance using only heart rate variability (HRV). Although a lot of studies have tried to estimate cognitive performance using multiple vital data or electroencephalogram data, these methods are invasive for users because they force users to attach a lot of sensor units or electrodes to their bodies. To address this problem, we proposed a method to estimate cognitive performance using only HRV, which can be measured with as few as two electrodes. However, this can't prevent loss of worker productivity because the workers' productivity had already decreased even if their current cognitive performance had been estimated as being at a low level. In this paper, we propose a framework to predict changes in cognitive performance in the near future. We obtained three principal contributions in this paper: (1) An experiment with 45 healthy male participants clarified that changes in cognitive performance caused by mental workload can be predicted using only HRV. (2) The proposed framework, which includes a support vector machine and principal component analysis, predicts changes in cognitive performance caused by mental workload with 84.4 % accuracy. (3) Significant differences were found in some HRV features for test participants, depending on whether or not their cognitive performance changes had been predicted accurately. These results lead us to conclude that the framework has the potential to help both workers and managerial personnel predict what their performances will be in the near future. This will make it possible to proactively suggest rest periods or changes in work duties to prevent losses in productivity caused by decreases of cognitive work performance.

  • Wiener-Based Inpainting Quality Prediction

    Takahiro OGAWA  Akira TANAKA  Miki HASEYAMA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2017/07/04
      Vol:
    E100-D No:10
      Page(s):
    2614-2626

    A Wiener-based inpainting quality prediction method is presented in this paper. The proposed method is the first method that can predict inpainting quality both before and after the intensities have become missing even if their inpainting methods are unknown. Thus, when the target image does not include any missing areas, the proposed method estimates the importance of intensities for all pixels, and then we can know which areas should not be removed. Interestingly, since this measure can be also derived in the same manner for its corrupted image already including missing areas, the expected difficulty in reconstruction of these missing pixels is predicted, i.e., we can know which missing areas can be successfully reconstructed. The proposed method focuses on expected errors derived from the Wiener filter, which enables least-squares reconstruction, to predict the inpainting quality. The greatest advantage of the proposed method is that the same inpainting quality prediction scheme can be used in the above two different situations, and their results have common trends. Experimental results show that the inpainting quality predicted by the proposed method can be successfully used as a universal quality measure.

  • Occluded Appearance Modeling with Sample Weighting for Human Pose Estimation

    Yuki KAWANA  Norimichi UKITA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/07/06
      Vol:
    E100-D No:10
      Page(s):
    2627-2634

    This paper proposes a method for human pose estimation in still images. The proposed method achieves occlusion-aware appearance modeling. Appearance modeling with less accurate appearance data is problematic because it adversely affects the entire training process. The proposed method evaluates the effectiveness of mitigating the influence of occluded body parts in training sample images. In order to improve occlusion evaluation by a discriminatively-trained model, occlusion images are synthesized and employed with non-occlusion images for discriminative modeling. The score of this discriminative model is used for weighting each sample in the training process. Experimental results demonstrate that our approach improves the performance of human pose estimation in contrast to base models.

  • Next-Activity Set Prediction Based on Sequence Partitioning to Reduce Activity Pattern Complexity in the Multi-User Smart Space

    Younggi KIM  Younghee LEE  

     
    PAPER-Pattern Recognition

      Pubricized:
    2017/07/18
      Vol:
    E100-D No:10
      Page(s):
    2587-2596

    Human activity prediction has become a prerequisite for service recommendation and anomaly detection systems in a smart space including ambient assisted living (AAL) and activities of daily living (ADL). In this paper, we present a novel approach to predict the next-activity set in a multi-user smart space. Differing from the majority of the previous studies considering single-user activity patterns, our study considers multi-user activities that occur with a large variety of patterns. Its complexity increases exponentially according to the number of users. In the multi-user smart space, there can be inevitably multiple next-activity candidates after multi-user activities occur. To solve the next-activity problem in a multi-user situation, we propose activity set prediction rather than one activity prediction. We also propose activity sequence partitioning to reduce the complexity of the multi-user activity pattern. This divides an activity sequence into start, ongoing, and finish zones based on the features in the tendency of activity occurrences. The majority of the activities in a multi-user environment occur at the beginning or end, rather than the middle, of an activity sequence. Furthermore, the types of activities typically occurring in each zone can be sufficiently distinguishable. Exploiting these characteristics, we suggest a two-step procedure to predict the next-activity set utilizing a long short-term memory (LSTM) model. The first step identifies the zones to which current activities belong. In the next step, we construct three different LSTM models to predict the next-activity set in each zone. To evaluate the proposed approach, we experimented using a real dataset generated from our campus testbed. Our experiments confirmed the complexity reduction and high accuracy in the next-activity set prediction. Thus, it can be effectively utilized for various applications with context-awareness in a multi-user smart space.

  • Effect of Hardness on Wear and Abrasion Resistance of Silver Plating on Copper Alloy

    Shigeru SAWADA  Song-Zhu KURE-CHU  Rie NAKAGAWA  Toru OGASAWARA  Hitoshi YASHIRO  Yasushi SAITOH  

     
    PAPER

      Vol:
    E100-C No:9
      Page(s):
    695-701

    This study is aimed at clarifying the mechanism of wear process for Ag plating. The samples of different hardness Ag plating on copper alloys were prepared as coupon and embossment specimens, which simulated terminal contacts. During the sliding test, the contact resistance and the friction coefficient versus sliding distance are measured. The surface observation and surface roughness of the Ag films after wear tests were investigated. As results, the hard Ag plating film (120 Hv) exhibited higher contact resistance comparing to the soft Ag plating film (80 Hv). The soft Ag film delivered wider wear trace on coupon specimens compared to the hard one. Moreover, the observation of tribofilms formed on the Ag films after wear tests suggested that a mixed-type of adhesive and abrasive wears occurred for both of soft and hard Ag films. Furthermore, the fretting corrosion resistance of Ag plating samples with different hardness was also investigated. As results, the wear resistance of hard Ag film was stronger than that of soft Ag film.

  • A Smart City Based on Ambient Intelligence Open Access

    Tomoaki OHTSUKI  

     
    INVITED PAPER-Network

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1547-1553

    The United Nations (UN) reports that the global population reached 7 billion in 2011, and today, it stands at about 7.3 billion. This dramatic increase has been driven largely by the extension of people's lifetime. The urban population has been also increasing, which causes a lot of issues for cities, such as congestion and increased demand for resources, including energy, water, sanitation, education, and healthcare services. A smart city has been expected a lot to solve those issues. The concept of a smart city is not new. Due to the progress of information and communication technology (ICT), including the Internet of Things (IoT) and big data (BD), the concept of a smart city has been being realized in various aspects. This paper introduces the concept and definition of a smart city. Then it explains the ambient intelligence that supports a smart city. Moreover, it introduces several key components of a smart city.

  • A Vibration Control Method of an Electrolarynx Based on Statistical F0 Pattern Prediction

    Kou TANAKA  Tomoki TODA  Satoshi NAKAMURA  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Pubricized:
    2017/05/23
      Vol:
    E100-D No:9
      Page(s):
    2165-2173

    This paper presents a novel speaking aid system to help laryngectomees produce more naturally sounding electrolaryngeal (EL) speech. An electrolarynx is an external device to generate excitation signals, instead of vibration of the vocal folds. Although the conventional EL speech is quite intelligible, its naturalness suffers from the unnatural fundamental frequency (F0) patterns of the mechanically generated excitation signals. To improve the naturalness of EL speech, we have proposed EL speech enhancement methods using statistical F0 pattern prediction. In these methods, the original EL speech recorded by a microphone is presented from a loudspeaker after performing the speech enhancement. These methods are effective for some situation, such as telecommunication, but it is not suitable for face-to-face conversation because not only the enhanced EL speech but also the original EL speech is presented to listeners. In this paper, to develop an EL speech enhancement also effective for face-to-face conversation, we propose a method for directly controlling F0 patterns of the excitation signals to be generated from the electrolarynx using the statistical F0 prediction. To get an "actual feel” of the proposed system, we also implement a prototype system. By using the prototype system, we find latency issues caused by a real-time processing. To address these latency issues, we furthermore propose segmental continuous F0 pattern modeling and forthcoming F0 pattern modeling. With evaluations through simulation, we demonstrate that our proposed system is capable of effectively addressing the issues of latency and those of electrolarynx in term of the naturalness.

  • A Method for Evaluating Degradation Phenomenon of Electrical Contacts Using a Micro-Sliding Mechanism — Minimal Sliding Amplitudes against Input Waveforms (2) —

    Shin-ichi WADA  Koichiro SAWA  

     
    PAPER

      Vol:
    E100-C No:9
      Page(s):
    723-731

    Authors previously studied the degradation of electrical contacts under the condition of various external micro-oscillations. They also developed a micro-sliding mechanism (MSM2), which causes micro-sliding and is driven by a piezoelectric actuator and elastic hinges. Using the mechanism, experimental results were obtained on the minimal sliding amplitude (MSA) required to make the electrical resistance fluctuate under various conditions. In this paper, to develop a more realistic model of input waveform than the previous one, Ts/2 is set as the rising or falling time, Tc as the flat time, and τ/2 as the duration in a sliding period T (0.25 s) of the input waveform. Using the Duhamel's integral method and an optimization method, the physical parameters of natural angular frequency ω0 (12000 s-1), damping ratio ζ (0.05), and rising and falling time Ts (1.3 or 1.2 ms) are obtained. Using the parameters and the MSA, the total acceleration of the input TA (=f(t)) and the displacement of the output x(t) are also obtained using the Fourier series expansion method. The waveforms x(t) and the experimental results are similar to each other. If the effective mass m, which is defined as that of the movable parts in the MSM2, is 0.1 kg, each total force TF (=2mTA) is estimated from TA and m. By the TF, the cases for 0.3 N/pin as frictional force or in impulsive as input waveform are more serious than the others. It is essential for the safety and the confidence of electrical contacts to evaluate the input waveform and the frictional force. The ringing waveforms of the output displacements x(t) are calculated at smaller values of Ts (1.0, 0.5, and 0.0 ms) than the above values (1.3 or 1.2 ms). When Ts is slightly changed from 1.3 or 1.2 ms to 1.0 ms, the ringing amplitude is doubled. For the degradation of electrical contacts, it is essential that Ts is reduced in a rectangular and impulsive input. Finally, a very simple wear model comprising three stages (I, II, and III) is introduced in this paper. Because Ts is much shorter in a rectangular or impulsive input than in a sinusoidal input, it is considered that the former more easily causes wear than the latter owing to a larger frictional force. Taking the adhesive wear in Stages I and III into consideration, the wear is expected to be more severe in the case of small damped oscillations owing to the ringing phenomenon.

  • Entropy-Based Sparse Trajectories Prediction Enhanced by Matrix Factorization

    Lei ZHANG  Qingfu FAN  Wen LI  Zhizhen LIANG  Guoxing ZHANG  Tongyang LUO  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2017/06/05
      Vol:
    E100-D No:9
      Page(s):
    2215-2218

    Existing moving object's trajectory prediction algorithms suffer from the data sparsity problem, which affects the accuracy of the trajectory prediction. Aiming to the problem, we present an Entropy-based Sparse Trajectories Prediction method enhanced by Matrix Factorization (ESTP-MF). Firstly, we do trajectory synthesis based on trajectory entropy and put synthesized trajectories into the trajectory space. It can resolve the sparse problem of trajectory data and make the new trajectory space more reliable. Secondly, under the new trajectory space, we introduce matrix factorization into Markov models to improve the sparse trajectory prediction. It uses matrix factorization to infer transition probabilities of the missing regions in terms of corresponding existing elements in the transition probability matrix. It aims to further solve the problem of data sparsity. Experiments with a real trajectory dataset show that ESTP-MF generally improves prediction accuracy by as much as 6% and 4% compared to the SubSyn algorithm and STP-EE algorithm respectively.

141-160hit(723hit)