The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ICT(723hit)

121-140hit(723hit)

  • Syntax-Based Context Representation for Statistical Machine Translation

    Kehai CHEN  Tiejun ZHAO  Muyun YANG  

     
    PAPER-Natural Language Processing

      Pubricized:
    2018/08/24
      Vol:
    E101-D No:12
      Page(s):
    3226-3237

    Learning semantic representation for translation context is beneficial to statistical machine translation (SMT). Previous efforts have focused on implicitly encoding syntactic and semantic knowledge in translation context by neural networks, which are weak in capturing explicit structural syntax information. In this paper, we propose a new neural network with a tree-based convolutional architecture to explicitly learn structural syntax information in translation context, thus improving translation prediction. Specifically, we first convert parallel sentences with source parse trees into syntax-based linear sequences based on a minimum syntax subtree algorithm, and then define a tree-based convolutional network over the linear sequences to learn syntax-based context representation and translation prediction jointly. To verify the effectiveness, the proposed model is integrated into phrase-based SMT. Experiments on large-scale Chinese-to-English and German-to-English translation tasks show that the proposed approach can achieve a substantial and significant improvement over several baseline systems.

  • A Two-Stage Crack Detection Method for Concrete Bridges Using Convolutional Neural Networks

    Yundong LI  Weigang ZHAO  Xueyan ZHANG  Qichen ZHOU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/09/05
      Vol:
    E101-D No:12
      Page(s):
    3249-3252

    Crack detection is a vital task to maintain a bridge's health and safety condition. Traditional computer-vision based methods easily suffer from disturbance of noise and clutters for a real bridge inspection. To address this limitation, we propose a two-stage crack detection approach based on Convolutional Neural Networks (CNN) in this letter. A predictor of small receptive field is exploited in the first detection stage, while another predictor of large receptive field is used to refine the detection results in the second stage. Benefiting from data fusion of confidence maps produced by both predictors, our method can predict the probability belongs to cracked areas of each pixel accurately. Experimental results show that the proposed method is superior to an up-to-date method on real concrete surface images.

  • Unrestricted-Rate Parallel Random Input-Output Codes for Multilevel Flash Memory

    Shan LU  Hiroshi KAMABE  Jun CHENG  Akira YAMAWAKI  

     
    PAPER-Coding theory for storage

      Vol:
    E101-A No:12
      Page(s):
    2135-2140

    Recent years have seen increasing efforts to improve the input/output performance of multilevel flash memory. In this regard, we propose a coding scheme for two-page unrestricted-rate parallel random input-output (P-RIO) code, which enables different code rates to be used for each page of multilevel memory. On the second page, the set of cell-state vectors for each message consists of two complementary vectors with length n. There are a total of 2n-1 sets that are disjoint to guarantee that they are uniquely decodable for 2n-1 messages. On the first page, the set of cell-state vectors for each message consists of all weight-u vectors with their non-zero elements restricted to the same (2u-1) positions, where the non-negative integer u is less than or equal to half of the code length. Finding cell-state vector sets such that they are disjoint on the first page is equivalent to the construction of constant-weight codes, and the number of disjoint sets is the best-known number of code words in the constant-weight codes. Our coding scheme is constructive, and the code length is arbitrary. The sum rates of our proposed codes are higher than those of previous work.

  • Frequency Resource Management Based on Model Predictive Control for Satellite Communications System

    Yuma ABE  Hiroyuki TSUJI  Amane MIURA  Shuichi ADACHI  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:12
      Page(s):
    2434-2445

    We propose an approach to allocate bandwidth for a satellite communications (SATCOM) system that includes the recent high-throughput satellite (HTS) with frequency flexibility. To efficiently operate the system, we manage the limited bandwidth resources available for SATCOM by employing a control method that allows the allocated bandwidths to exceed the communication demand of user terminals per HTS beam. To this end, we consider bandwidth allocation for SATCOM as an optimal control problem. Then, assuming that the model of communication requests is available, we propose an optimal control method by combining model predictive control and sparse optimization. The resulting control method enables the efficient use of the limited bandwidth and reduces the bandwidth loss and number of control actions for the HTS compared to a setup with conventional frequency allocation and no frequency flexibility. Furthermore, the proposed method allows to allocate bandwidth depending on various control objectives and beam priorities by tuning the corresponding weighting matrices. These findings were verified through numerical simulations by using a simple time variation model of the communication requests and predicted aircraft communication demand obtained from the analysis of actual flight tracking data.

  • Parallel Precomputation with Input Value Prediction for Model Predictive Control Systems

    Satoshi KAWAKAMI  Takatsugu ONO  Toshiyuki OHTSUKA  Koji INOUE  

     
    PAPER-Real-time Systems

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2864-2877

    We propose a parallel precomputation method for real-time model predictive control. The key idea is to use predicted input values produced by model predictive control to solve an optimal control problem in advance. It is well known that control systems are not suitable for multi- or many-core processors because feedback-loop control systems are inherently based on sequential operations. However, since the proposed method does not rely on conventional thread-/data-level parallelism, it can be easily applied to such control systems without changing the algorithm in applications. A practical evaluation using three real-world model predictive control system simulation programs demonstrates drastic performance improvement without degrading control quality offered by the proposed method.

  • Theoretical Understanding of Some Conditional and Joint Biases in RC4 Stream Cipher

    Sonu JHA  Subhadeep BANIK  Takanori ISOBE  Toshihiro OHIGASHI  Santanu SARKAR  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:11
      Page(s):
    1869-1879

    In this paper we present proofs for the new biases in RC4 which were experimentally found and listed out (without theoretical justifications and proofs) in a paper by Vanhoef et al. in USENIX 2015. Their purpose was to exploit the vulnerabilities of RC4 in TLS using the set of new biases found by them. We also show (and prove) new results on couple of very strong biases residing in the joint distribution of three consecutive output bytes of the RC4 stream cipher. These biases provides completely new distinguisher for RC4 taking roughly O(224) samples to distinguish streams of RC4 from a uniformly random stream. We also provide a list of new results with proofs relating to some conditional biases in the keystreams of the RC4 stream cipher.

  • Optimal Design of Adaptive Intra Predictors Based on Sparsity Constraint

    Yukihiro BANDOH  Yuichi SAYAMA  Seishi TAKAMURA  Atsushi SHIMIZU  

     
    PAPER-Image

      Vol:
    E101-A No:11
      Page(s):
    1795-1805

    It is essential to improve intra prediction performance to raise the efficiency of video coding. In video coding standards such as H.265/HEVC, intra prediction is seen as an extension of directional prediction schemes, examples include refinement of directions, planar extension, filtering reference sampling, and so on. From the view point of reducing prediction error, some improvements on intra prediction for standardized schemes have been suggested. However, on the assumption that the correlation between neighboring pixels are static, these conventional methods use pre-defined predictors regardless of the image being encoded. Therefore, these conventional methods cannot reduce prediction error if the images break the assumption made in prediction design. On the other hand, adaptive predictors that change the image being encoded may offer poor coding efficiency due to the overhead of the additional information needed for adaptivity. This paper proposes an adaptive intra prediction scheme that resolves the trade-off between prediction error and adaptivity overhead. The proposed scheme is formulated as a constrained optimization problem that minimizes prediction error under sparsity constraints on the prediction coefficients. In order to solve this problem, a novel solver is introduced as an extension of LARS for multi-class support. Experiments show that the proposed scheme can reduce the amount of encoded bits by 1.21% to 3.24% on average compared to HM16.7.

  • Restricted Access Window Based Hidden Node Problem Mitigating Algorithm in IEEE 802.11ah Networks

    Ruoyu WANG  Min LIN  

     
    PAPER-Network

      Pubricized:
    2018/03/29
      Vol:
    E101-B No:10
      Page(s):
    2162-2171

    IEEE 802.11ah is a specification being developed for sub-1GHz license-exempt operation and is intended to provide Low Power Wide Area (LPWA) communication services and support Internet of Things (IoT) features such as large-scale networks and extended transmission range. However, these features also make the 802.11ah networks highly susceptible to channel contention and hidden node problem (HNP). To address the problems, the 11ah Task Group proposed a Restricted Access Window (RAW) mechanism. It shows outstanding performance in alleviating channel contention, but its effect on solving HNP is unsatisfactory. In this paper, we propose a simple and effective hidden node grouping algorithm (HNGA) based on IEEE 802.11ah RAW. The algorithm collects hidden node information by taking advantage of the 802.11 association process and then performs two-stage uniform grouping to prevent hidden node collisions (HNCs). Performance of the proposed algorithm is evaluated in comparison with other existing schemes in a hidden node situation. The results show that our proposed algorithm eliminates most of hidden node pairs inside a RAW group with low overhead penalty, thereby improving the performance of the network. Moreover, the algorithm is immune to HNCs caused by cross slot boundary transmissions.

  • Individuality-Preserving Gait Pattern Prediction Based on Gait Feature Transitions

    Tsuyoshi HIGASHIGUCHI  Norimichi UKITA  Masayuki KANBARA  Norihiro HAGITA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2018/07/20
      Vol:
    E101-D No:10
      Page(s):
    2501-2508

    This paper proposes a method for predicting individuality-preserving gait patterns. Physical rehabilitation can be performed using visual and/or physical instructions by physiotherapists or exoskeletal robots. However, a template-based rehabilitation may produce discomfort and pain in a patient because of deviations from the natural gait of each patient. Our work addresses this problem by predicting an individuality-preserving gait pattern for each patient. In this prediction, the transition of the gait patterns is modeled by associating the sequence of a 3D skeleton in gait with its continuous-value gait features (e.g., walking speed or step width). In the space of the prediction model, the arrangement of the gait patterns are optimized so that (1) similar gait patterns are close to each other and (2) the gait feature changes smoothly between neighboring gait patterns. This model allows to predict individuality-preserving gait patterns of each patient even if his/her various gait patterns are not available for prediction. The effectiveness of the proposed method is demonstrated quantitatively. with two datasets.

  • Recovery Performance of IHT and HTP Algorithms under General Perturbations

    Xiaobo ZHANG  Wenbo XU  Yupeng CUI  Jiaru LIN  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:10
      Page(s):
    1698-1702

    In compressed sensing, most previous researches have studied the recovery performance of a sparse signal x based on the acquired model y=Φx+n, where n denotes the noise vector. There are also related studies for general perturbation environment, i.e., y=(Φ+E)x+n, where E is the measurement perturbation. IHT and HTP algorithms are the classical algorithms for sparse signal reconstruction in compressed sensing. Under the general perturbations, this paper derive the required sufficient conditions and the error bounds of IHT and HTP algorithms.

  • Cross-Validation-Based Association Rule Prioritization Metric for Software Defect Characterization

    Takashi WATANABE  Akito MONDEN  Zeynep YÜCEL  Yasutaka KAMEI  Shuji MORISAKI  

     
    PAPER-Software Engineering

      Pubricized:
    2018/06/13
      Vol:
    E101-D No:9
      Page(s):
    2269-2278

    Association rule mining discovers relationships among variables in a data set, representing them as rules. These are expected to often have predictive abilities, that is, to be able to predict future events, but commonly used rule interestingness measures, such as support and confidence, do not directly assess their predictive power. This paper proposes a cross-validation -based metric that quantifies the predictive power of such rules for characterizing software defects. The results of evaluation this metric experimentally using four open-source data sets (Mylyn, NetBeans, Apache Ant and jEdit) show that it can improve rule prioritization performance over conventional metrics (support, confidence and odds ratio) by 72.8% for Mylyn, 15.0% for NetBeans, 10.5% for Apache Ant and 0 for jEdit in terms of SumNormPre(100) precision criterion. This suggests that the proposed metric can provide better rule prioritization performance than conventional metrics and can at least provide similar performance even in the worst case.

  • Review Rating Prediction on Location-Based Social Networks Using Text, Social Links, and Geolocations

    Yuehua WANG  Zhinong ZHONG  Anran YANG  Ning JING  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/06/01
      Vol:
    E101-D No:9
      Page(s):
    2298-2306

    Review rating prediction is an important problem in machine learning and data mining areas and has attracted much attention in recent years. Most existing methods for review rating prediction on Location-Based Social Networks only capture the semantics of texts, but ignore user information (social links, geolocations, etc.), which makes them less personalized and brings down the prediction accuracy. For example, a user's visit to a venue may be influenced by their friends' suggestions or the travel distance to the venue. To address this problem, we develop a review rating prediction framework named TSG by utilizing users' review Text, Social links and the Geolocation information with machine learning techniques. Experimental results demonstrate the effectiveness of the framework.

  • An Emotion Similarity Based Severity Prediction of Software Bugs: A Case Study of Open Source Projects

    Geunseok YANG  Tao ZHANG  Byungjeong LEE  

     
    PAPER-Software Engineering

      Pubricized:
    2018/05/02
      Vol:
    E101-D No:8
      Page(s):
    2015-2026

    Many software development teams usually tend to focus on maintenance activities in general. Recently, many studies on bug severity prediction have been proposed to help a bug reporter determine severity. But they do not consider the reporter's expression of emotion appearing in the bug report when they predict the bug severity level. In this paper, we propose a novel approach to severity prediction for reported bugs by using emotion similarity. First, we do not only compute an emotion-word probability vector by using smoothed unigram model (UM), but we also use the new bug report to find similar-emotion bug reports with Kullback-Leibler divergence (KL-divergence). Then, we introduce a new algorithm, Emotion Similarity (ES)-Multinomial, which modifies the original Naïve Bayes Multinomial algorithm. We train the model with emotion bug reports by using ES-Multinomial. Finally, we can predict the bug severity level in the new bug report. To compare the performance in bug severity prediction, we select related studies including Emotion Words-based Dictionary (EWD)-Multinomial, Naïve Bayes Multinomial, and another study as baseline approaches in open source projects (e.g., Eclipse, GNU, JBoss, Mozilla, and WireShark). The results show that our approach outperforms the baselines, and can reflect reporters' emotional expressions during the bug reporting.

  • Predicting Taxi Destination by Regularized RNN with SDZ

    Lei ZHANG  Guoxing ZHANG  Zhizheng LIANG  Qingfu FAN  Yadong LI  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2018/05/02
      Vol:
    E101-D No:8
      Page(s):
    2141-2144

    The traditional Markov prediction methods of the taxi destination rely only on the previous 2 to 3 GPS points. They negelect long-term dependencies within a taxi trajectory. We adopt a Recurrent Neural Network (RNN) to explore the long-term dependencies to predict the taxi destination as the multiple hidden layers of RNN can store these dependencies. However, the hidden layers of RNN are very sensitive to small perturbations to reduce the prediction accuracy when the amount of taxi trajectories is increasing. In order to improve the prediction accuracy of taxi destination and reduce the training time, we embed suprisal-driven zoneout (SDZ) to RNN, hence a taxi destination prediction method by regularized RNN with SDZ (TDPRS). SDZ can not only improve the robustness of TDPRS, but also reduce the training time by adopting partial update of parameters instead of a full update. Experiments with a Porto taxi trajectory data show that TDPRS improves the prediction accuracy by 12% compared to RNN prediction method in literature[4]. At the same time, the prediction time is reduced by 7%.

  • Adaptive Beamforming Based on Compressed Sensing with Gain/Phase Uncertainties

    Bin HU  Xiaochuan WU  Xin ZHANG  Qiang YANG  Di YAO  Weibo DENG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:8
      Page(s):
    1257-1262

    A new method for adaptive digital beamforming technique with compressed sensing (CS) for sparse receiving arrays with gain/phase uncertainties is presented. Because of the sparsity of the arriving signals, CS theory can be adopted to sample and recover receiving signals with less data. But due to the existence of the gain/phase uncertainties, the sparse representation of the signal is not optimal. In order to eliminating the influence of the gain/phase uncertainties to the sparse representation, most present study focus on calibrating the gain/phase uncertainties first. To overcome the effect of the gain/phase uncertainties, a new dictionary optimization method based on the total least squares (TLS) algorithm is proposed in this paper. We transfer the array signal receiving model with the gain/phase uncertainties into an EIV model, treating the gain/phase uncertainties effect as an additive error matrix. The method we proposed in this paper reconstructs the data by estimating the sparse coefficients using CS signal reconstruction algorithm and using TLS method toupdate error matrix with gain/phase uncertainties. Simulation results show that the sparse regularized total least squares algorithm can recover the receiving signals better with the effect of gain/phase uncertainties. Then adaptive digital beamforming algorithms are adopted to form antenna beam using the recovered data.

  • Fast Time-Aware Sparse Trajectories Prediction with Tensor Factorization

    Lei ZHANG  Qingfu FAN  Guoxing ZHANG  Zhizheng LIANG  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2018/04/13
      Vol:
    E101-D No:7
      Page(s):
    1959-1962

    Existing trajectory prediction methods suffer from the “data sparsity” and neglect “time awareness”, which leads to low accuracy. Aiming to the problem, we propose a fast time-aware sparse trajectories prediction with tensor factorization method (TSTP-TF). Firstly, we do trajectory synthesis based on trajectory entropy and put synthesized trajectories into the original trajectory space. It resolves the sparse problem of trajectory data and makes the new trajectory space more reliable. Then, we introduce multidimensional tensor modeling into Markov model to add the time dimension. Tensor factorization is adopted to infer the missing regions transition probabilities to further solve the problem of data sparsity. Due to the scale of the tensor, we design a divide and conquer tensor factorization model to reduce memory consumption and speed up decomposition. Experiments with real dataset show that TSTP-TF improves prediction accuracy generally by as much as 9% and 2% compared to the Baseline algorithm and ESTP-MF algorithm, respectively.

  • HOAH: A Hybrid TCP Throughput Prediction with Autoregressive Model and Hidden Markov Model for Mobile Networks

    Bo WEI  Kenji KANAI  Wataru KAWAKAMI  Jiro KATTO  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1612-1624

    Throughput prediction is one of the promising techniques to improve the quality of service (QoS) and quality of experience (QoE) of mobile applications. To address the problem of predicting future throughput distribution accurately during the whole session, which can exhibit large throughput fluctuations in different scenarios (especially scenarios of moving user), we propose a history-based throughput prediction method that utilizes time series analysis and machine learning techniques for mobile network communication. This method is called the Hybrid Prediction with the Autoregressive Model and Hidden Markov Model (HOAH). Different from existing methods, HOAH uses Support Vector Machine (SVM) to classify the throughput transition into two classes, and predicts the transmission control protocol (TCP) throughput by switching between the Autoregressive Model (AR Model) and the Gaussian Mixture Model-Hidden Markov Model (GMM-HMM). We conduct field experiments to evaluate the proposed method in seven different scenarios. The results show that HOAH can predict future throughput effectively and decreases the prediction error by a maximum of 55.95% compared with other methods.

  • Block-Adaptive Selection of Recursive and Non-Recursive Type Intra Prediction Modes for Image Coding

    Yuta ISHIDA  Yusuke KAMEDA  Tomokazu ISHIKAWA  Ichiro MATSUDA  Susumu ITOH  

     
    LETTER-Image

      Vol:
    E101-A No:6
      Page(s):
    992-996

    This paper proposes a lossy image coding method for still images. In this method, recursive and non-recursive type intra prediction techniques are adaptively selected on a block-by-block basis. The recursive-type intra prediction technique applies a linear predictor to each pel within a prediction block in a recursive manner, and thus typically produces smooth image values. In this paper, the non-recursive type intra prediction technique is extended from the angular prediction technique adopted in the H.265/HEVC video coding standard to enable interpolative prediction to the maximum possible extent. The experimental results indicate that the proposed method achieves better coding performance than the conventional method that only uses the recursive-type prediction technique.

  • Online Linear Optimization with the Log-Determinant Regularizer

    Ken-ichiro MORIDOMI  Kohei HATANO  Eiji TAKIMOTO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/03/01
      Vol:
    E101-D No:6
      Page(s):
    1511-1520

    We consider online linear optimization over symmetric positive semi-definite matrices, which has various applications including the online collaborative filtering. The problem is formulated as a repeated game between the algorithm and the adversary, where in each round t the algorithm and the adversary choose matrices Xt and Lt, respectively, and then the algorithm suffers a loss given by the Frobenius inner product of Xt and Lt. The goal of the algorithm is to minimize the cumulative loss. We can employ a standard framework called Follow the Regularized Leader (FTRL) for designing algorithms, where we need to choose an appropriate regularization function to obtain a good performance guarantee. We show that the log-determinant regularization works better than other popular regularization functions in the case where the loss matrices Lt are all sparse. Using this property, we show that our algorithm achieves an optimal performance guarantee for the online collaborative filtering. The technical contribution of the paper is to develop a new technique of deriving performance bounds by exploiting the property of strong convexity of the log-determinant with respect to the loss matrices, while in the previous analysis the strong convexity is defined with respect to a norm. Intuitively, skipping the norm analysis results in the improved bound. Moreover, we apply our method to online linear optimization over vectors and show that the FTRL with the Burg entropy regularizer, which is the analogue of the log-determinant regularizer in the vector case, works well.

  • Forecasting Service Performance on the Basis of Temporal Information by the Conditional Restricted Boltzmann Machine

    Jiali YOU  Hanxing XUE  Yu ZHUO  Xin ZHANG  Jinlin WANG  

     
    PAPER-Network

      Pubricized:
    2017/11/10
      Vol:
    E101-B No:5
      Page(s):
    1210-1221

    Predicting the service performance of Internet applications is important in service selection, especially for video services. In order to design a predictor for forecasting video service performance in third-party application, two famous service providers in China, Iqiyi and Letv, are monitored and analyzed. The study highlights that the measured performance in the observation period is time-series data, and it has strong autocorrelation, which means it is predictable. In order to combine the temporal information and map the measured data to a proper feature space, the authors propose a predictor based on a Conditional Restricted Boltzmann Machine (CRBM), which can capture the potential temporal relationship of the historical information. Meanwhile, the measured data of different sources are combined to enhance the training process, which can enlarge the training size and avoid the over-fit problem. Experiments show that combining the measured results from different resolutions for a video can raise prediction performance, and the CRBM algorithm shows better prediction ability and more stable performance than the baseline algorithms.

121-140hit(723hit)