The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ICT(723hit)

41-60hit(723hit)

  • Predicting A Growing Stage of Rice Plants Based on The Cropping Records over 25 Years — A Trial of Feature Engineering Incorporating Hidden Regional Characteristics —

    Hiroshi UEHARA  Yasuhiro IUCHI  Yusuke FUKAZAWA  Yoshihiro KANETA  

     
    PAPER

      Pubricized:
    2021/12/29
      Vol:
    E105-D No:5
      Page(s):
    955-963

    This study tries to predict date of ear emergence of rice plants, based on cropping records over 25 years. Predicting ear emergence of rice plants is known to be crucial for practicing good harvesting quality, and has long been dependent upon old farmers who acquire skills of intuitive prediction based on their long term experiences. Facing with aging farmers, data driven approach for the prediction have been pursued. Nevertheless, they are not necessarily sufficient in terms of practical use. One of the issue is to adopt weather forecast as the feature so that the predictive performance is varied by the accuracy of the forecast. The other issue is that the performance is varied by region and the regional characteristics have not been used as the features for the prediction. With this background, we propose a feature engineering to quantify hidden regional characteristics as the feature for the prediction. Further the feature is engineered based only on observational data without any forecast. Applying our proposal to the data on the cropping records resulted in sufficient predictive performance, ±2.69days of RMSE.

  • Experiment of Integrated Technologies in Robotics, Network, and Computing for Smart Agriculture Open Access

    Ryota ISHIBASHI  Takuma TSUBAKI  Shingo OKADA  Hiroshi YAMAMOTO  Takeshi KUWAHARA  Kenichi KAWAMURA  Keisuke WAKAO  Takatsune MORIYAMA  Ricardo OSPINA  Hiroshi OKAMOTO  Noboru NOGUCHI  

     
    INVITED PAPER

      Pubricized:
    2021/11/05
      Vol:
    E105-B No:4
      Page(s):
    364-378

    To sustain and expand the agricultural economy even as its workforce shrinks, the efficiency of farm operations must be improved. One key to efficiency improvement is completely unmanned driving of farm machines, which requires stable monitoring and control of machines from remote sites, a safety system to ensure safe autonomous driving even without manual operations, and precise positioning in not only small farm fields but also wider areas. As possible solutions for those issues, we have developed technologies of wireless network quality prediction, an end-to-end overlay network, machine vision for safety and positioning, network cooperated vehicle control and autonomous tractor control and conducted experiments in actual field environments. Experimental results show that: 1) remote monitoring and control can be seamlessly continued even when connection between the tractor and the remote site needs to be switched across different wireless networks during autonomous driving; 2) the safety of the autonomous driving can automatically be ensured by detecting both the existence of people in front of the unmanned tractor and disturbance of network quality affecting remote monitoring operation; and 3) the unmanned tractor can continue precise autonomous driving even when precise positioning by satellite systems cannot be performed.

  • Dynamic Service Chain Construction Based on Model Predictive Control in NFV Environments

    Masaya KUMAZAKI  Masaki OGURA  Takuji TACHIBANA  

     
    PAPER-Network Virtualization

      Pubricized:
    2021/10/15
      Vol:
    E105-B No:4
      Page(s):
    399-410

    For beyond 5G era, in network function virtualization (NFV) environments, service chaining can be utilized to provide the flexible network infrastructures needed to support the creation of various application services. In this paper, we propose a dynamic service chain construction based on model predictive control (MPC) to utilize network resources. In the proposed method, the number of data packets in the buffer at each node is modeled as a dynamical system for MPC. Then, we formulate an optimization problem with the predicted amount of traffic injecting into each service chain from users for the dynamical system. In the optimization problem, the transmission route of each service chain, the node where each VNF is placed, and the amount of resources for each VNF are determined simultaneously by using MPC so that the amount of resources allocated to VNFs and the number of VNF migrations are minimized. In addition, the performance of data transmission is also controlled by considering the maximum amount of data packets stored in buffers. The performance of the proposed method is evaluated by simulation, and the effectiveness of the proposed method with different parameter values is investigated.

  • Anomaly Prediction for Wind Turbines Using an Autoencoder with Vibration Data Supported by Power-Curve Filtering

    Masaki TAKANASHI  Shu-ichi SATO  Kentaro INDO  Nozomu NISHIHARA  Hiroki HAYASHI  Toru SUZUKI  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/12/07
      Vol:
    E105-D No:3
      Page(s):
    732-735

    The prediction of the malfunction timing of wind turbines is essential for maintaining the high profitability of the wind power generation industry. Studies have been conducted on machine learning methods that use condition monitoring system data, such as vibration data, and supervisory control and data acquisition (SCADA) data to detect and predict anomalies in wind turbines automatically. Autoencoder-based techniques that use unsupervised learning where the anomaly pattern is unknown have attracted significant interest in the area of anomaly detection and prediction. In particular, vibration data are considered useful because they include the changes that occur in the early stages of a malfunction. However, when autoencoder-based techniques are applied for prediction purposes, in the training process it is difficult to distinguish the difference between operating and non-operating condition data, which leads to the degradation of the prediction performance. In this letter, we propose a method in which both vibration data and SCADA data are utilized to improve the prediction performance, namely, a method that uses a power curve composed of active power and wind speed. We evaluated the method's performance using vibration and SCADA data obtained from an actual wind farm.

  • Link Availability Prediction Based on Machine Learning for Opportunistic Networks in Oceans

    Lige GE  Shengming JIANG  Xiaowei WANG  Yanli XU  Ruoyu FENG  Zhichao ZHENG  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Pubricized:
    2021/08/24
      Vol:
    E105-A No:3
      Page(s):
    598-602

    Along with the fast development of blue economy, wireless communication in oceans has received extensive attention in recent years, and opportunistic networks without any aid from fixed infrastructure or centralized management are expected to play an important role in such highly dynamic environments. Here, link prediction can help nodes to select proper links for data forwarding to reduce transmission failure. The existing prediction schemes are mainly based on analytical models with no adaptability, and consider relatively simple and small terrestrial wireless networks. In this paper, we propose a new link prediction algorithm based on machine learning, which is composed of an extractor of convolutional layers and an estimator of long short-term memory to extract useful representations of time-series data and identify effective long-term dependencies. The experiments manifest that the proposed scheme is more effective and flexible compared with the other link prediction schemes.

  • Joint Domain Adaption and Pseudo-Labeling for Cross-Project Defect Prediction

    Fei WU  Xinhao ZHENG  Ying SUN  Yang GAO  Xiao-Yuan JING  

     
    LETTER-Software Engineering

      Pubricized:
    2021/11/04
      Vol:
    E105-D No:2
      Page(s):
    432-435

    Cross-project defect prediction (CPDP) is a hot research topic in recent years. The inconsistent data distribution between source and target projects and lack of labels for most of target instances bring a challenge for defect prediction. Researchers have developed several CPDP methods. However, the prediction performance still needs to be improved. In this paper, we propose a novel approach called Joint Domain Adaption and Pseudo-Labeling (JDAPL). The network architecture consists of a feature mapping sub-network to map source and target instances into a common subspace, followed by a classification sub-network and an auxiliary classification sub-network. The classification sub-network makes use of the label information of labeled instances to generate pseudo-labels. The auxiliary classification sub-network learns to reduce the distribution difference and improve the accuracy of pseudo-labels for unlabeled instances through loss maximization. Network training is guided by the adversarial scheme. Extensive experiments are conducted on 10 projects of the AEEEM and NASA datasets, and the results indicate that our approach achieves better performance compared with the baselines.

  • Interleaved Weighted Round-Robin: A Network Calculus Analysis Open Access

    Seyed Mohammadhossein TABATABAEE  Jean-Yves LE BOUDEC  Marc BOYER  

     
    INVITED PAPER

      Pubricized:
    2021/07/01
      Vol:
    E104-B No:12
      Page(s):
    1479-1493

    Weighted Round-Robin (WRR) is often used, due to its simplicity, for scheduling packets or tasks. With WRR, a number of packets equal to the weight allocated to a flow can be served consecutively, which leads to a bursty service. Interleaved Weighted Round-Robin (IWRR) is a variant that mitigates this effect. We are interested in finding bounds on worst-case delay obtained with IWRR. To this end, we use a network calculus approach and find a strict service curve for IWRR. The result is obtained using the pseudo-inverse of a function. We show that the strict service curve is the best obtainable one, and that delay bounds derived from it are tight (i.e., worst-case) for flows of packets of constant size. Furthermore, the IWRR strict service curve dominates the strict service curve for WRR that was previously published. We provide some numerical examples to illustrate the reduction in worst-case delays caused by IWRR compared to WRR.

  • Representation Learning of Tongue Dynamics for a Silent Speech Interface

    Hongcui WANG  Pierre ROUSSEL  Bruce DENBY  

     
    PAPER-Speech and Hearing

      Pubricized:
    2021/08/24
      Vol:
    E104-D No:12
      Page(s):
    2209-2217

    A Silent Speech Interface (SSI) is a sensor-based, Artificial Intelligence (AI) enabled system in which articulation is performed without the use of the vocal chords, resulting in a voice interface that conserves the ambient audio environment, protects private data, and also functions in noisy environments. Though portable SSIs based on ultrasound imaging of the tongue have obtained Word Error Rates rivaling that of acoustic speech recognition, SSIs remain relegated to the laboratory due to stability issues. Indeed, reliable extraction of acoustic features from ultrasound tongue images in real-life situations has proven elusive. Recently, Representation Learning has shown considerable success in learning underlying structure in noisy, high-dimensional raw data. In its unsupervised form, Representation Learning is able to reveal structure in unlabeled data, thus greatly simplifying the data preparation task. In the present article, a 3D Convolutional Neural Network architecture is applied to unlabeled ultrasound images, and is shown to reliably predict future tongue configurations. By comparing the 3DCNN to a simple previous-frame predictor, it is possible to recognize tongue trajectories comprising transitions between regions of stability that correlate with formant trajectories in a spectrogram of the signal. Prospects for using the underlying structural representation to provide features for subsequent speech processing tasks are presented.

  • MPTCP-meLearning: A Multi-Expert Learning-Based MPTCP Extension to Enhance Multipathing Robustness against Network Attacks

    Yuanlong CAO  Ruiwen JI  Lejun JI  Xun SHAO  Gang LEI  Hao WANG  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-D No:11
      Page(s):
    1795-1804

    With multiple network interfaces are being widely equipped in modern mobile devices, the Multipath TCP (MPTCP) is increasingly becoming the preferred transport technique since it can uses multiple network interfaces simultaneously to spread the data across multiple network paths for throughput improvement. However, the MPTCP performance can be seriously affected by the use of a poor-performing path in multipath transmission, especially in the presence of network attacks, in which an MPTCP path would abrupt and frequent become underperforming caused by attacks. In this paper, we propose a multi-expert Learning-based MPTCP variant, called MPTCP-meLearning, to enhance MPTCP performance robustness against network attacks. MPTCP-meLearning introduces a new kind of predictor to possibly achieve better quality prediction accuracy for each of multiple paths, by leveraging a group of representative formula-based predictors. MPTCP-meLearning includes a novel mechanism to intelligently manage multiple paths in order to possibly mitigate the out-of-order reception and receive buffer blocking problems. Experimental results demonstrate that MPTCP-meLearning can achieve better transmission performance and quality of service than the baseline MPTCP scheme.

  • Multi-Rate Switched Pinning Control for Velocity Control of Vehicle Platoons Open Access

    Takuma WAKASA  Kenji SAWADA  

     
    PAPER

      Pubricized:
    2021/05/12
      Vol:
    E104-A No:11
      Page(s):
    1461-1469

    This paper proposes a switched pinning control method with a multi-rating mechanism for vehicle platoons. The platoons are expressed as multi-agent systems consisting of mass-damper systems in which pinning agents receive target velocities from external devices (ex. intelligent traffic signals). We construct model predictive control (MPC) algorithm that switches pinning agents via mixed-integer quadratic programmings (MIQP) problems. The optimization rate is determined according to the convergence rate to the target velocities and the inter-vehicular distances. This multi-rating mechanism can reduce the computational load caused by iterative calculation. Numerical results demonstrate that our method has a reduction effect on the string instability by selecting the pinning agents to minimize errors of the inter-vehicular distances to the target distances.

  • Deadlock-Free Symbolic Smith Controllers Based on Prediction for Nondeterministic Systems Open Access

    Masashi MIZOGUCHI  Toshimitsu USHIO  

     
    PAPER-Systems and Control

      Pubricized:
    2021/05/14
      Vol:
    E104-A No:11
      Page(s):
    1593-1602

    The Smith method has been used to control physical plants with dead time components, where plant states after the dead time is elapsed are predicted and a control input is determined based on the predicted states. We extend the method to the symbolic control and design a symbolic Smith controller to deal with a nondeterministic embedded system. Due to the nondeterministic transitions, the proposed controller computes all reachable plant states after the dead time is elapsed and determines a control input that is suitable for all of them in terms of a given control specification. The essence of the Smith method is that the effects of the dead time are suppressed by the prediction, however, which is not always guaranteed for nondeterministic systems because there may exist no control input that is suitable for all predicted states. Thus, in this paper, we discuss the existence of a deadlock-free symbolic Smith controller. If it exists, it is guaranteed that the effects of the dead time can be suppressed and that the controller can always issue the control input for any reachable state of the plant. If it does not exist, it is proved that the deviation from the control specification is essentially inevitable.

  • PSTNet: Crowd Flow Prediction by Pyramidal Spatio-Temporal Network

    Enze YANG  Shuoyan LIU  Yuxin LIU  Kai FANG  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2021/04/12
      Vol:
    E104-D No:10
      Page(s):
    1780-1783

    Crowd flow prediction in high density urban scenes is involved in a wide range of intelligent transportation and smart city applications, and it has become a significant topic in urban computing. In this letter, a CNN-based framework called Pyramidal Spatio-Temporal Network (PSTNet) for crowd flow prediction is proposed. Spatial encoding is employed for spatial representation of external factors, while prior pyramid enhances feature dependence of spatial scale distances and temporal spans, after that, post pyramid is proposed to fuse the heterogeneous spatio-temporal features of multiple scales. Experimental results based on TaxiBJ and MobileBJ demonstrate that proposed PSTNet outperforms the state-of-the-art methods.

  • Lossless Coding of HDR Color Images in a Floating Point Format Using Block-Adaptive Inter-Color Prediction

    Yuya KAMATAKI  Yusuke KAMEDA  Yasuyo KITA  Ichiro MATSUDA  Susumu ITOH  

     
    LETTER

      Pubricized:
    2021/05/17
      Vol:
    E104-D No:10
      Page(s):
    1572-1575

    This paper proposes a lossless coding method for HDR color images stored in a floating point format called Radiance RGBE. In this method, three mantissa and a common exponent parts, each of which is represented in 8-bit depth, are encoded using the block-adaptive prediction technique with some modifications considering the data structure.

  • Applying K-SVD Dictionary Learning for EEG Compressed Sensing Framework with Outlier Detection and Independent Component Analysis Open Access

    Kotaro NAGAI  Daisuke KANEMOTO  Makoto OHKI  

     
    LETTER-Biometrics

      Pubricized:
    2021/03/01
      Vol:
    E104-A No:9
      Page(s):
    1375-1378

    This letter reports on the effectiveness of applying the K-singular value decomposition (SVD) dictionary learning to the electroencephalogram (EEG) compressed sensing framework with outlier detection and independent component analysis. Using the K-SVD dictionary matrix with our design parameter optimization, for example, at compression ratio of four, we improved the normalized mean square error value by 31.4% compared with that of the discrete cosine transform dictionary for CHB-MIT Scalp EEG Database.

  • Transmission Loss of Optical Fibers; Achievements in Half a Century Open Access

    Hiroo KANAMORI  

     
    INVITED PAPER-Optical Fiber for Communications

      Pubricized:
    2021/02/15
      Vol:
    E104-B No:8
      Page(s):
    922-933

    This paper reviews the evolutionary process that reduced the transmission loss of silica optical fibers from the report of 20dB/km by Corning in 1970 to the current record-low loss. At an early stage, the main effort was to remove impurities especially hydroxy groups for fibers with GeO2-SiO2 core, resulting in the loss of 0.20dB/km in 1980. In order to suppress Rayleigh scattering due to composition fluctuation, pure-silica-core fibers were developed, and the loss of 0.154dB/km was achieved in 1986. As the residual main factor of the loss, Rayleigh scattering due to density fluctuation was actively investigated by utilizing IR and Raman spectroscopy in the 1990s and early 2000s. Now, ultra-low-loss fibers with the loss of 0.150dB/km are commercially available in trans-oceanic submarine cable systems.

  • Creation of Temporal Model for Prioritized Transmission in Predictive Spatial-Monitoring Using Machine Learning Open Access

    Keiichiro SATO  Ryoichi SHINKUMA  Takehiro SATO  Eiji OKI  Takanori IWAI  Takeo ONISHI  Takahiro NOBUKIYO  Dai KANETOMO  Kozo SATODA  

     
    PAPER-Network

      Pubricized:
    2021/02/01
      Vol:
    E104-B No:8
      Page(s):
    951-960

    Predictive spatial-monitoring, which predicts spatial information such as road traffic, has attracted much attention in the context of smart cities. Machine learning enables predictive spatial-monitoring by using a large amount of aggregated sensor data. Since the capacity of mobile networks is strictly limited, serious transmission delays occur when loads of communication traffic are heavy. If some of the data used for predictive spatial-monitoring do not arrive on time, prediction accuracy degrades because the prediction has to be done using only the received data, which implies that data for prediction are ‘delay-sensitive’. A utility-based allocation technique has suggested modeling of temporal characteristics of such delay-sensitive data for prioritized transmission. However, no study has addressed temporal model for prioritized transmission in predictive spatial-monitoring. Therefore, this paper proposes a scheme that enables the creation of a temporal model for predictive spatial-monitoring. The scheme is roughly composed of two steps: the first involves creating training data from original time-series data and a machine learning model that can use the data, while the second step involves modeling a temporal model using feature selection in the learning model. Feature selection enables the estimation of the importance of data in terms of how much the data contribute to prediction accuracy from the machine learning model. This paper considers road-traffic prediction as a scenario and shows that the temporal models created with the proposed scheme can handle real spatial datasets. A numerical study demonstrated how our temporal model works effectively in prioritized transmission for predictive spatial-monitoring in terms of prediction accuracy.

  • Occurrence Prediction of Dislocation Regions in Photoluminescence Image of Multicrystalline Silicon Wafers Using Transfer Learning of Convolutional Neural Network Open Access

    Hiroaki KUDO  Tetsuya MATSUMOTO  Kentaro KUTSUKAKE  Noritaka USAMI  

     
    PAPER

      Pubricized:
    2020/12/08
      Vol:
    E104-A No:6
      Page(s):
    857-865

    In this paper, we evaluate a prediction method of regions including dislocation clusters which are crystallographic defects in a photoluminescence (PL) image of multicrystalline silicon wafers. We applied a method of a transfer learning of the convolutional neural network to solve this task. For an input of a sub-region image of a whole PL image, the network outputs the dislocation cluster regions are included in the upper wafer image or not. A network learned using image in lower wafers of the bottom of dislocation clusters as positive examples. We experimented under three conditions as negative examples; image of some depth wafer, randomly selected images, and both images. We examined performances of accuracies and Youden's J statistics under 2 cases; predictions of occurrences of dislocation clusters at 10 upper wafer or 20 upper wafer. Results present that values of accuracies and values of Youden's J are not so high, but they are higher results than ones of bag of features (visual words) method. For our purpose to find occurrences dislocation clusters in upper wafers from the input wafer, we obtained results that randomly select condition as negative examples is appropriate for 10 upper wafers prediction, since its results are better than other negative examples conditions, consistently.

  • Two-Sided LPC-Based Speckle Noise Removal for Laser Speech Detection Systems

    Yahui WANG  Wenxi ZHANG  Xinxin KONG  Yongbiao WANG  Hongxin ZHANG  

     
    PAPER-Speech and Hearing

      Pubricized:
    2021/03/17
      Vol:
    E104-D No:6
      Page(s):
    850-862

    Laser speech detection uses a non-contact Laser Doppler Vibrometry (LDV)-based acoustic sensor to obtain speech signals by precisely measuring voice-generated surface vibrations. Over long distances, however, the detected signal is very weak and full of speckle noise. To enhance the quality and intelligibility of the detected signal, we designed a two-sided Linear Prediction Coding (LPC)-based locator and interpolator to detect and replace speckle noise. We first studied the characteristics of speckle noise in detected signals and developed a binary-state statistical model for speckle noise generation. A two-sided LPC-based locator was then designed to locate the polluted samples, composed of an inverse decorrelator, nonlinear filter and threshold estimator. This greatly improves the detectability of speckle noise and avoids false/missed detection by improving the noise-to-signal-ratio (NSR). Finally, samples from both sides of the speckle noise were used to estimate the parameters of the interpolator and to code samples for replacing the polluted samples. Real-world speckle noise removal experiments and simulation-based comparative experiments were conducted and the results show that the proposed method is better able to locate speckle noise in laser detected speech and highly effective at replacing it.

  • An Approach for Identifying Malicious Domain Names Generated by Dictionary-Based DGA Bots

    Akihiro SATOH  Yutaka NAKAMURA  Yutaka FUKUDA  Daiki NOBAYASHI  Takeshi IKENAGA  

     
    LETTER

      Pubricized:
    2021/02/17
      Vol:
    E104-D No:5
      Page(s):
    669-672

    Computer networks are facing serious threats from the emergence of sophisticated new DGA bots. These DGA bots have their own dictionary, from which they concatenate words to dynamically generate domain names that are difficult to distinguish from human-generated domain names. In this letter, we propose an approach for identifying the callback communications of DGA bots based on relations among the words that constitute the character string of each domain name. Our evaluation indicates high performance, with a recall of 0.9977 and a precision of 0.9869.

  • Curiosity Guided Fine-Tuning for Encoder-Decoder-Based Visual Forecasting

    Yuta KAMIKAWA  Atsushi HASHIMOTO  Motoharu SONOGASHIRA  Masaaki IIYAMA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/02/02
      Vol:
    E104-D No:5
      Page(s):
    752-761

    An encoder-decoder (Enc-Dec) model is one of the fundamental architectures in many computer vision applications. One desired property of a trained Enc-Dec model is to feasibly encode (and decode) diverse input patterns. Aiming to obtain such a model, in this paper, we propose a simple method called curiosity-guided fine-tuning (CurioFT), which puts more weight on uncommon input patterns without explicitly knowing their frequency. In an experiment, we evaluated CurioFT in a task of future frame generation with the CUHK Avenue dataset and found that it reduced the mean square error by 7.4% for anomalous scenes, 4.8% for common scenes, and 6.6% in total. Some other experiments with the UCSD dataset further supported the reasonability of the proposed method.

41-60hit(723hit)