The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IOD(519hit)

201-220hit(519hit)

  • 4H-SiC Avalanche Photodiodes for 280 nm UV Detection

    Ho-Young CHA  Hyuk-Kee SUNG  Hyungtak KIM  Chun-Hyung CHO  Peter M. SANDVIK  

     
    BRIEF PAPER-Compound Semiconductor Devices

      Vol:
    E93-C No:5
      Page(s):
    648-650

    We designed and fabricated 4H-SiC PIN avalanche photodiodes (APD) for UV detection. The thickness of an intrinsic layer in a PIN structure was optimized in order to achieve the highest quantum efficiency at the wavelength of interest. The optimized 4H-SiC PIN APDs exhibited a maximum external quantum efficiency of >80% at the wavelength of 280 nm and a gain greater than 40000. Both electrical and optical characteristics of the fabricated APDs were in agreement with those predicted from simulation.

  • InP Gunn Diodes with Current Limiting Contact for High Efficiency Gunn Oscillators

    Mi-Ra KIM  Jin-Koo RHEE  Chang-Woo LEE  Yeon-Sik CHAE  Jae-Hyun CHOI  Wan-Joo KIM  

     
    PAPER-Compound Semiconductor Devices

      Vol:
    E93-C No:5
      Page(s):
    585-589

    We fabricated and examined current limiting effect for InP Gunn diodes with stable depletion layer mode operation of diodes for high efficiency Gunn oscillators. Current limiting at the cathode was achieved by a shallow Schottky barrier at the interface. We discussed fabrication procedure, the results for negative differential resistance and rf tests for InP Gunn diodes. It was shown that the fabricated Gunn diodes have the output power of 10.22 dBm at a frequency of 90.13 GHz. Its input voltage and corresponding current were 8.55 V and 252 mA, respectively.

  • Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes

    Ching-Lin FAN  Yu-Sheng LIN  Yan-Wei LIU  

     
    LETTER-Electronic Displays

      Vol:
    E93-C No:5
      Page(s):
    712-714

    A new pixel design and driving method for active matrix organic light emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage programming method are proposed and verified using the SPICE simulator. We had employed an appropriate TFT model in SPICE simulation to demonstrate the performance of the pixel circuit. The OLED anode voltage variation error rates are below 0.35% under driving TFT threshold voltage deviation (Δ Vth = 0.33 V). The OLED current non-uniformity caused by the OLED threshold voltage degradation (Δ VTO = +0.33 V) is significantly reduced (below 6%). The simulation results show that the pixel design can improve the display image non-uniformity by compensating for the threshold voltage deviation in the driving TFT and the OLED threshold voltage degradation at the same time.

  • New Quaternary Sequences with Even Period and Three-Valued Autocorrelation

    Jin-Ho CHUNG  Yun Kyoung HAN  Kyeongcheol YANG  

     
    PAPER-Coding Theory

      Vol:
    E93-A No:1
      Page(s):
    309-315

    In this paper we present a construction method for quaternary sequences from a binary sequence of even period, which preserves the period and autocorrelation of the given binary sequence. By applying the method to the binary sequences with three-valued autocorrelation, we construct new quaternary sequences with three-valued autocorrelation, which are balanced or almost balanced. In particular, we construct new balanced quaternary sequences whose autocorrelations are three-valued and have out-of-phase magnitude 2, when their periods are N=pm-1 and N≡ 2 (mod 4) for any odd prime p and any odd integer m. Their out-of-phase autocorrelation magnitude is the known optimal value for N≠ 2,4,8, and 16.

  • TE Plane Wave Scattering and Diffraction from a Periodic Surface with Semi-infinite Extent

    Yasuhiko TAMURA  

     
    PAPER

      Vol:
    E93-C No:1
      Page(s):
    9-16

    This paper studies scattering and diffraction of a TE plane wave from a periodic surface with semi-infinite extent. By use of a combination of the Wiener-Hopf technique and a perturbation method, a concrete representation of the wavefield is explicitly obtained in terms of a sum of two types of Fourier integrals. It is then found that effects of surface roughness mainly appear on the illuminated side, but weakly on the shadow side. Moreover, ripples on the angular distribution of the first-order scattering in the shadow side are newly found as interference between a cylindrical wave radiated from the edge and an inhomogeneous plane wave supported by the periodic surface.

  • Analysis of Huge-Scale Periodic Array Antenna Using Impedance Extension Method

    Keisuke KONNO  Qiang CHEN  Kunio SAWAYA  Toshihiro SEZAI  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:12
      Page(s):
    3869-3874

    An extreamly large scale periodic array antenna is required for transmitting power from space solar power systems. Analysis of the huge-scale array antenna is important to estimate the radiation property of the array antenna, but a full-wave analysis requires too much computer memory and excessive CPU time. In order to overcome these difficulties, the impedance extension method is proposed as a method of approximate analysis for huge periodic array antennas. From the results of actual gain pattern obtained by the proposed method and its relative error, it is shown that edge effects of a huge-scale array antenna can be ignored in calculating the radiation property.

  • An Improved Nonlinear Circuit Model for GaAs Gunn Diode in W-Band Oscillator

    Bo ZHANG  Yong FAN  Yonghong ZHANG  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E92-C No:12
      Page(s):
    1490-1495

    An improved nonlinear circuit model for a GaAs Gunn diode in an oscillator is proposed based on the physical mechanism of the diode. This model interprets the nonlinear harmonic character on the Gunn diode. Its equivalent nonlinear circuit of which can assist in the design of the Gunn oscillator and help in the analysis of the fundamental and harmonic characteristics of the GaAs Gunn diode. The simulation prediction and the experiment of the Gunn oscillator show the feasibility of the nonlinear circuit model for the GaAs Gunn oscillator.

  • P3HT/Al Organic/Inorganic Heterojunction Diodes Investigated by I-V and C-V Measurements

    Fumihiko HIROSE  Yasuo KIMURA  Michio NIWANO  

     
    PAPER-Fundamentals for Nanodevices

      Vol:
    E92-C No:12
      Page(s):
    1475-1478

    Electrical characteristics of P3HT/Aluminum organic/ inorganic heterojunction diodes were investigated V-I and capacitance-voltage (C-V) measurements. The V-I measurement exhibited current rectification inherent in the Schottky diode, suggesting their availabilities as rectification diodes in organic flexible circuits. C-V analysis indicated the fact that the depletion layer was generated in the P3HT film in the reversed bias condition. The flat band voltage analysis suggested that the interfacial charge affected the built-in potential of the diodes. Al/P3HT heterojunction is possible to be used as not only the rectification diodes but also gate junctions for junction type field effect or static induction transistors.

  • Effects of Address-on-Time on Wall Voltage Variation during Address-Period in AC Plasma Display Panel

    Byung-Tae CHOI  Hyung Dal PARK  Heung-Sik TAE  

     
    PAPER

      Vol:
    E92-C No:11
      Page(s):
    1347-1352

    To explain the variation of the address discharge during an address period, the wall voltage variation during an address period was investigated as a function of the address-on-time by using the Vt closed curves. It was observed that the wall voltage between the scan and address electrodes was decreased with an increase in the address-on-time. It was also observed that the wall voltage variation during an address period strongly depended on the voltage difference between the scan and address electrodes. Based on this result, the modified driving waveform to raise the level of Vscanw, was proposed to minimize the voltage difference between the scan and address electrodes. However, the modified driving waveform resulted in the increase in the falling time of scan pulse. Finally, the overlapped double scan waveform was proposed to reduce a falling time of scan pulse under the raised voltage level of Vscanw, also.

  • LDPC Convolutional Codes Based on Parity Check Polynomials with a Time Period of 3

    Yutaka MURAKAMI  Shutai OKAMURA  Shozo OKASAKA  Takaaki KISHIGAMI  Masayuki ORIHASHI  

     
    LETTER-Coding Theory

      Vol:
    E92-A No:10
      Page(s):
    2479-2483

    We newly design time-varying low-density parity-check convolutional codes (LDPC-CCs) based on parity check polynomials of the convolutional codes with a time period of 3, and show that BER (Bit Error Rate) performance in the time-varying LDPC-CCs with a time period of 3 is better than that in the conventional time-varying LDPC-CCs with a time period of 2 in the same coding rate with the nearly equal constraint length.

  • Bandwidth-Efficient Mutually Cooperative Relaying with Spatially Coordinate-Interleaved Orthogonal Design

    Hyun-Seok RYU  Kyung-Mi PARK  Hee-Soo LEE  Chung-Gu KANG  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E92-B No:8
      Page(s):
    2731-2734

    This letter proposes a type of mutually cooperative relaying (MCR) scheme based on a spatially coordinate-interleaved orthogonal design (SCID), in which two cooperative users are spatially multiplexed without bandwidth expansion. It provides not only diversity gain (with order of two) as in the existing MCR scheme, but also additional coding gain. Our simulation results demonstrate that the proposed SCID scheme is useful for improving the uplink performance as long as one user can find another active user as a close neighbor that is simultaneously communicating with the same destination, e.g., a base station in the cellular network.

  • A Scheduling Algorithm for Minimizing Exclusive Window Durations in Time-Triggered Controller Area Network

    Minsoo RYU  

     
    LETTER-Network

      Vol:
    E92-B No:8
      Page(s):
    2739-2742

    Time-Triggered Controller Area Network is widely accepted as a viable solution for real-time communication systems such as in-vehicle communications. However, although TTCAN has been designed to support both periodic and sporadic real-time messages, previous studies mostly focused on providing deterministic real-time guarantees for periodic messages while barely addressing the performance issue of sporadic messages. In this paper, we present an O(n2) scheduling algorithm that can minimize the maximum duration of exclusive windows occupied by periodic messages, thereby minimizing the worst-case scheduling delays experienced by sporadic messages.

  • Beam Profile Tailoring of Laser Diodes Using Lloyd's Mirror Interference

    Takehiro FUKUSHIMA  Kunihiro MIYAHARA  Naoki NAKATA  

     
    LETTER-Lasers, Quantum Electronics

      Vol:
    E92-C No:8
      Page(s):
    1095-1097

    A novel method for tailoring the beam profile of laser diodes that employs Lloyd's mirror interference is investigated. The beam profile in the vertical direction is controlled by inserting a GaAs mirror below the active layer. The experimentally obtained trends are successfully modeled by numerical calculations using Huygens' integral.

  • Recent Advances in Ultra-High-Speed Waveguide Photodiodes for Optical Communication Systems Open Access

    Kikuo MAKITA  Kazuhiro SHIBA  Takeshi NAKATA  Emiko MIZUKI  Sawaki WATANABE  

     
    INVITED PAPER

      Vol:
    E92-C No:7
      Page(s):
    922-928

    This paper describes the recent advances in semiconductor photodiodes for use in ultra-high-speed optical systems. We developed two types of waveguide photodiodes (WG-PD) -- an evanescently coupled waveguide photodiode (EC-WG-PD) and a separated-absorption-and-multiplication waveguide avalanche photodiode (WG-APD). The EC-WG-PD is very robust under high optical input operation because of its distribution of photo current density along the light propagation. The EC-WG-PD simultaneously exhibited a high external quantum efficiency of 70% for both 1310 and 1550 nm, and a wide bandwidth of more than 40 GHz. The WG-APD, on the other hand, has a wide bandwidth of 36.5 GHz and a gain-bandwidth product of 170 GHz as a result of its small waveguide mesa structure and a thin multiplication layer. Record high receiver sensitivity of -19.6 dBm at 40 Gbps was achieved. Additionally, a monolithically integrated dual EC-WG-PD for differential phase shift-keying (DPSK) systems was developed. Each PD has equivalent characteristics with 3-dB-down bandwidth of more than 40 GHz and external quantum efficiency of 70% at 1550 nm.

  • Finding a Basis Conversion Matrix via Prime Gauss Period Normal Basis

    Yasuyuki NOGAMI  Ryo NAMBA  Yoshitaka MORIKAWA  

     
    PAPER-Information Theory

      Vol:
    E92-A No:6
      Page(s):
    1500-1507

    This paper proposes a method to construct a basis conversion matrix between two given bases in Fpm. In the proposed method, Gauss period normal basis (GNB) works as a bridge between the two bases. The proposed method exploits this property and construct a basis conversion matrix mostly faster than EDF-based algorithm on average in polynomial time. Finally, simulation results are reported in which the proposed method compute a basis conversion matrix within 30 msec on average with Celeron (2.00 GHz) when mlog p≈160.

  • Computation of Floquet Multipliers Using an Iterative Method for Variational Equations

    Yu NUREKI  Sunao MURASHIGE  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E92-A No:5
      Page(s):
    1331-1338

    This paper proposes a new method to numerically obtain Floquet multipliers which characterize stability of periodic orbits of ordinary differential equations. For sufficiently smooth periodic orbits, we can compute Floquet multipliers using some standard numerical methods with enough accuracy. However, it has been reported that these methods may produce incorrect results under some conditions. In this work, we propose a new iterative method to compute Floquet multipliers using eigenvectors of matrix solutions of the variational equations. Numerical examples show effectiveness of the proposed method.

  • Stabilizing Unknown Periodic Orbits of a Chaotic Spiking Oscillator

    Tadashi TSUBONE  Yasuhiro WADA  

     
    PAPER-Nonlinear Problems

      Vol:
    E92-A No:5
      Page(s):
    1316-1321

    In this paper, we propose a simple nonlinear system which consists of a chaotic spiking oscillator and a controlling circuit to stabilize unknown periodic orbits. Our proposed system generates various stabilized unknown Unstable Periodic Orbits which are embedded on the chaotic attractor of the original chaotic spiking oscillator. The proposed system is simple and exhibits various bifurcation phenomena. The dynamics of the system is governed by 1-D piecewise linear return map. Therefore, the rigorous analysis can be performed. We provide conditions for stability and almost complete analysis for bifurcation and co-existence phenomena by using the 1-D return map. An implementation example of the controlled chaotic spiking oscillator is provided to confirm some theoretical results.

  • A PN Junction-Current Model for Advanced MOSFET Technologies

    Ryosuke INAGAKI  Norio SADACHIKA  Mitiko MIURA-MATTAUSCH  Yasuaki INOUE  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    983-989

    A PN junction current model for advanced MOSFETs is proposed and implemented into HiSIM2, a complete surface-potential-based MOSFET model. The model includes forward diode currents and reverse diode currents, and requires a total of 13 model parameters covering all bias conditions. Model simulation results reproduce measurements for different device geometries over a wide range of bias and temperature values.

  • Low Grazing Scattering from a Surface with a Finite Periodic Array of Rectangular Grooves

    Junichi NAKAYAMA  Yasuhiko TAMURA  Kiyoshi TSUTSUMI  

     
    LETTER-Electromagnetic Theory

      Vol:
    E92-C No:1
      Page(s):
    166-168

    This paper deals with the scattering of a transverse magnetic (TM) plane wave from a perfectly conductive surface with a finite periodic array of rectangular grooves. By use of the method in a previous paper [IEICE TRANS. ELECTRON. VOL.E90-C, no.4, pp.903-906, APRIL 2007], the total scattering cross section is numerically calculated for several different numbers of grooves at a low grazing angle of incidence. It is newly found that, when the corrugation width becomes thousands times of wavelength, the total scattering cross section slightly depends on the groove depth and the period, and becomes almost proportional to square root of the corrugation width with a small correction.

  • New Families of Binary Sequences with Low Correlation and Large Size

    Zhengchun ZHOU  Xiaohu TANG  

     
    PAPER-Coding Theory

      Vol:
    E92-A No:1
      Page(s):
    291-297

    In this paper, for odd n and any k with gcd(n,k) = 1, new binary sequence families Sk of period 2n-1 are constructed. These families have maximum correlation , family size 22n+2n+1 and maximum linear span . The correlation distribution of Sk is completely determined as well. Compared with the modified Gold codes with the same family size, the proposed families have the same period and correlation properties, but larger linear span. As good candidates with low correlation and large family size, the new families contain the Gold sequences and the Gold-like sequences. Furthermore, Sk includes a subfamily which has the same period, correlation distribution, family size and linear span as the family So(2) recently constructed by Yu and Gong. In particular, when k=1, is exactly So(2).

201-220hit(519hit)