The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IOD(519hit)

161-180hit(519hit)

  • Method of Image Green's Function in Grating Theory: TE Wave Case

    Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E95-C No:6
      Page(s):
    1117-1120

    This paper deals with an integral method analyzing the diffraction of a transverse electric (TE) wave by a perfectly conductive periodic surface. The conventional integral method fails to work for a critical angle of incidence. To overcome such a drawback, this paper applies the method of image Green's function. We newly obtain an image integral equation for the basic surface current in the TE case. The integral equation is solved numerically for a very rough sinusoidal surface. Then, it is found that a reliable solution can be obtained for any real angle of incidence including a critical angle.

  • Estimation of Transit Time in Terahertz Oscillating Resonant Tunneling Diodes with Graded Emitter and Thin Barriers

    Atsushi TERANISHI  Safumi SUZUKI  Kaoru SHIZUNO  Masahiro ASADA  Hiroki SUGIYAMA  Haruki YOKOYAMA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E95-C No:3
      Page(s):
    401-407

    We estimated the transit time of GaInAs/AlAs double-barrier resonant tunneling diodes (RTDs) oscillating at 0.6–1 THz. The RTDs have graded emitter structures and thin barriers, and are integrated with planar slot antennas for the oscillation. The transit time across the collector depletion region was estimated from measured results of the dependence of oscillation frequency on RTD mesa area. The estimated transit time was slightly reduced with the introduction of the graded emitter, probably due to reduction of the electron transition between Γ and L bands resulted from the low electric field in the collector depletion region.

  • Broadband Light Source Based on Four-Color Self-Assembled InAs Quantum Dot Ensembles Monolithically Grown in Selective Areas

    Nobuhiko OZAKI  Koichi TAKEUCHI  Shunsuke OHKOUCHI  Naoki IKEDA  Yoshimasa SUGIMOTO  Kiyoshi ASAKAWA  Richard A. HOGG  

     
    BRIEF PAPER

      Vol:
    E95-C No:2
      Page(s):
    247-250

    We developed advanced techniques for the growth of self-assembled quantum dots (QDs) for fabricating a broadband light source that can be applied to optical coherence tomography (OCT). Four QD ensembles and strain reducing layers (SRLs) were grown in selective areas on a wafer by the use of a 90° rotational metal mask. The SRL thickness was varied to achieve appropriate shifts in the peak wavelength of the QD emission spectrum of up to 120 nm. The four-color QD ensembles were expected to have a broad bandwidth of more than 160 nm due to the combination of excited state emissions when introduced in a current-induced broadband light source such as a superluminescent diode (SLD). Furthermore, a desired shape of the SLD spectrum can be obtained by controlling the injection current applied to each QD ensemble. The broadband and spectrum shape controlled light source is promising for high-resolution and low-noise OCT systems.

  • All-Optical Flip-Flop Based on Coupled-Mode DBR Laser Diode for Optically Clocked Operation

    Masaru ZAITSU  Akio HIGO  Takuo TANEMURA  Yoshiaki NAKANO  

     
    PAPER

      Vol:
    E95-C No:2
      Page(s):
    218-223

    A novel type of optically clocked all-optical flip-flop based on a coupled-mode distributed Bragg reflector laser diode is proposed. The device operates as a bistable laser, where the two lasing modes at different wavelength are switched all-optically by injecting a clock pulse together with a set/reset signal. We employ an analytical model based on the two-mode coupled rate equations to verify the basic operation of the device numerically. Optically clocked flip-flop operation is obtained with a set/reset power of 0.60 mW and clock power of 1.8 mW. The device features simple structure, small footprint, and synchronized all-optical flip-flop operation, which should be attractive in the future digital photonic integrated circuits.

  • Numerical Methods of Multilayered Dielectric Gratings by Application of Shadow Theory to Middle Regions

    Hideaki WAKABAYASHI  Keiji MATSUMOTO  Masamitsu ASAI  Jiro YAMAKITA  

     
    PAPER-Periodic Structures

      Vol:
    E95-C No:1
      Page(s):
    44-52

    In the scattering problem of periodic gratings, at a low grazing limit of incidence, the incident plane wave is completely cancelled by the reflected wave, and the total wave field vanishes and physically becomes a dark shadow. This problem has received much interest recently. Nakayama et al. have proposed “the shadow theory”. The theory was first applied to the diffraction by perfectly conductive gratings as an example, where a new description and a physical mean at a low grazing limit of incidence for the gratings have been discussed. In this paper, the shadow theory is applied to the analyses of multilayered dielectric periodic gratings, and is shown to be valid on the basis of the behavior of electromagnetic waves through the matrix eigenvalue problem. Then, the representation of field distributions is demonstrated for the cases that the eigenvalues degenerate in the middle regions of multilayered gratings in addition to at a low grazing limit of incidence and some numerical examples are given.

  • Almost Perfect Sequences and Periodic Complementary Sequence Pairs over the 16-QAM Constellation

    Fanxin ZENG  Xiaoping ZENG  Zhenyu ZHANG  Guixin XUAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E95-A No:1
      Page(s):
    400-405

    Based on quadriphase perfect sequences and their cyclical shift versions, three families of almost perfect 16-QAM sequences are presented. When one of two time shifts chosen equals half a period of quadriphase sequence employed and another is zero, two of the proposed three sequence families possess the property that their out-of-phase autocorrelation function values vanish except one. At the same time, to the other time shifts, the nontrivial autocorrelation function values in three families are zero except two or four. In addition, two classes of periodic complementary sequence (PCS) pairs over the 16-QAM constellation, whose autocorrelation is similar to the one of conventional PCS pairs, are constructed as well.

  • Method of Image Green's Function in Grating Theory

    Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    BRIEF PAPER-Periodic Structures

      Vol:
    E95-C No:1
      Page(s):
    93-96

    This paper deals with the diffraction of a transverse magnetic (TM) plane wave by a perfectly conductive periodic surface by an integral method. However, it is known that a conventional integral method does not work for a critical angle of incidence, because of divergence of a periodic Green's function (integral kernel). To overcome such a divergence difficulty, we introduce an image Green's function which is physically defined as a field radiated from an infinite phased array of dipoles. By use of the image Green's function, it is newly shown that the diffracted field is represented as a sum of radiation from the periodic surface and its image surface. Then, this paper obtains a new image integral equation for the basic surface current, which is solved numerically. A numerical result is illustrated for a very rough sinusoidal surface. Then, it is concluded that the method of image Green's function works practically even at a critical angle of incidence.

  • Orthogonal and ZCZ Sets of Real-Valued Periodic Orthogonal Sequences from Huffman Sequences

    Takahiro MATSUMOTO  Shinya MATSUFUJI  Tetsuya KOJIMA  Udaya PARAMPALLI  

     
    PAPER

      Vol:
    E94-A No:12
      Page(s):
    2728-2736

    This paper presents a method of generating sets of orthogonal and zero-correlation zone (ZCZ) periodic real-valued sequences of period 2n, n ≥ 1. The sequences admit a fast correlation algorithm and the sets of sequences achieve the upper bound on family size. A periodic orthogonal sequence has the periodic autocorrelation function with zero sidelobes, and a set with orthogonal sequences whose mutual periodic crosscorrelation function at zero shift is zero. Similarly, a ZCZ set is the set of the sequences with zero-correlation zone. In this paper, we derive the real-valued periodic orthogonal sequences of period 2n from a real-valued Huffman sequence of length 2ν+1, ν being a positive integer and ν ≥ n, whose aperiodic autocorrelation function has zero sidelobes except possibly at the left and right shift-ends. The orthogonal and ZCZ sets of real-valued periodic orthogonal sequences are useful in various systems, such as synchronous code division multiple access (CDMA) systems, quasi-synchronous CDMA systems and digital watermarkings.

  • P3HT/n--Si Heterojunction Diodes and Photovoltaic Devices Investigated by I-V and C-V Measurements

    Naoki OYAMA  Sho KANEKO  Katsuaki MOMIYAMA  Fumihiko HIROSE  

     
    PAPER

      Vol:
    E94-C No:12
      Page(s):
    1838-1844

    Current density-voltage (J-V) and capacitance-voltage (C-V) characteristics of P3HT/n--silicon heterojunction diodes were investigated to clarify the carrier conduction mechanism at the organic/inorganic heterojunction. The J-V characteristics of the P3HT/n--Si junctions can be explained by a Schottky diode model with an interfacial layer. Diode parameters such as Schottky barrier height and ideality factor were estimated to be 0.78 eV and 3.2, respectively. The C-V analysis suggests that the depletion layer appears in the n--Si layer with a thickness of 1.2 µm from the junction with zero bias and the diffusion potential was estimated at 0.40 eV at the open-circuit condition. The present heterojunction allows a photovoltaic operation with power conversion efficiencies up to 0.38% with a simulated solar light exposure of 100 mW/cm2. The forward bias current was enhanced by coating the Si surface with a SiC layer, where the ideality factor was improved to be the level of 1.451.50.

  • High-Performance 110–140-GHz Broadband Fixed-Tuned Varistor Mode Schottky Diode Tripler Incorporating CMRC for Submillimeter-Wave Applications

    Bo ZHANG  Yong FAN  FuQun ZHONG  ShiXi ZHANG  

     
    PAPER-Passive Devices and Circuits

      Vol:
    E94-C No:10
      Page(s):
    1605-1610

    In this study, the design and fabrication of a 110–140-GHz varistor mode frequency tripler made with four Schottky diodes pair are presented. Nonlinear simulations were performed to calculate the optimum diode embedding impedance and the required input power. A compact microstrip resonant cell (CMRC) filter was introduced for the first time in submillimeter multiplier, instead of the traditional low-and-high impedance microstrip filter. The shorter size and the wider stop band of the CMRC filter improved the performance of the tripler. The tripler exhibited the best conversion efficiency of 5.2% at 129 GHz and peak output power of 5.3 mW at 125 GHz. Furthermore, within the output bandwidth from 110 to 140 GHz, the conversion efficiency was greater than 1.5%.

  • Band Pass Response on Left-Handed Ferrite Rectangular Waveguide

    Kensuke OKUBO  Makoto TSUTSUMI  

     
    PAPER-Passive Devices and Circuits

      Vol:
    E94-C No:10
      Page(s):
    1565-1571

    This paper investigates characteristics of periodic structure of ferrite and dielectric slabs in cutoff waveguide which include left-handed operation. Transmission line model and finite element simulation are used to get dispersion characteristics and scattering parameters. Band pass response of left-handed ferrite mode at negative permeability region are discussed with backward wave phenomenon. Theoretical results show that by choosing appropriate ratio of (1) ferrite width and dielectric width, and (2) ferrite length and dielectric length, band pass response with steep edge characteristics can be obtained by the LH ferrite mode, which are confirmed with experiments using single crystal of yttrium iron garnet ferrite. Good band pass and phase shift responses are observed in S band.

  • Rounding Logistic Maps over Integers and the Properties of the Generated Sequences

    Takeru MIYAZAKI  Shunsuke ARAKI  Yasuyuki NOGAMI  Satoshi UEHARA  

     
    PAPER-Information Theory

      Vol:
    E94-A No:9
      Page(s):
    1817-1825

    Because of its simple structure, many reports on the logistic map have been presented. To implement this map on computers, finite precision is usually used, and therefore rounding is required. There are five major methods to implement rounding, but, to date, no study of rounding applied to the logistic map has been reported. In the present paper, we present experimental results showing that the properties of sequences generated by the logistic map are heavily dependent on the rounding method used and give a theoretical analysis of each method. Then, we describe why using the map with a floor function for rounding generates long aperiodic subsequences.

  • Analysis of Radiation from Line Source Located in Cylindrical Electromagnetic Bandgap Structures with Defects

    Vakhtang JANDIERI  Kiyotoshi YASUMOTO  Young-Ki CHO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E94-C No:8
      Page(s):
    1245-1252

    A semi-analytical approach for analyzing the electromagnetic radiation of a line source in cylindrical electromagnetic bandgap (EBG) structure is presented. The cylindrical structure is composed of circular rods periodically distributed along concentrically layered circular rings. The method uses the T-matrix of a circular rod in isolation, the reflection and transmission matrices of a cylindrical array expressed in terms of the cylindrical waves as the basis, and the generalized reflection and transmission matrices for a layered cylindrical structure. Using the proposed method, the radiated field from a line source placed inside a three-layered cylindrical EBG structure with defects is investigated. The defects are created by removing the particular circular rods from each circular ring. The structure is prominent from the viewpoint of flexible design of the directive antennas. Numerical examples demonstrate that the cylindrical EBG structures are very effective at forming and controlling the directed beam in the radiated fields.

  • A Generalized Construction of Zero-Correlation Zone Sequence Set with Sequence Subsets

    Takafumi HAYASHI  Takao MAEDA  Satoshi OKAWA  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E94-A No:7
      Page(s):
    1597-1602

    The present paper introduces a new approach to the construction of a sequence set with a zero-correlation zone for both periodic and aperiodic correlation functions. The proposed sequences can be constructed from a pair of Hadamard matrices of orders n0 and n1. The constructed sequence set consists of n0 n1 ternary sequences, each of length n0(m+2)(n1+Δ), for a non-negative integer m and Δ ≥ 2. The zero-correlation zone of the proposed sequences is |τ| ≤ n0m+1-1, where τ is the phase shift. The proposed sequence set consists of n0 subsets, each with a member size n1. The correlation function of the sequences of a pair of different subsets, referred to as the inter-subset correlation function, has a zero-correlation zone with a width that is approximately Δ times that of the correlation function of sequences of the same subset (intra-subset correlation function). The inter-subset zero-correlation zone of the proposed sequences is |τ| ≤ Δn0m+1, where τ is the phase shift. The wide inter-subset zero-correlation enables performance improvement during application of the proposed sequence set.

  • A Predistortion Diode Linearizer Technique with Automatic Average Power Bias Control for a Class-F GaN HEMT Power Amplifier

    Akihiro ANDO  Yoichiro TAKAYAMA  Tsuyoshi YOSHIDA  Ryo ISHIKAWA  Kazuhiko HONJO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:7
      Page(s):
    1193-1198

    A novel predistortion technique using an automatic average-power bias controlled diode is proposed to compensate the complicated nonlinear characteristics of a microwave class-F power amplifier using an AlGaN/GaN HEMT. The optimum value for diode bias voltage is automatically set according to detected input average RF power level. A high-efficiency 1.9 GHz class-F GaN HEMT power amplifier with the automatic average-power bias control (ABC) diode linearizer achieves an improved third order inter-modulation distortion (IMD3) of better than -45 dBc at a smaller than 6 dB output power back-off from a saturated output power of 27 dBm, without changing drain efficiency. The adjacent channel leakage power ratio (ACPR) for 1.9 GHz W-CDMA signals is below -40 dBc at output power levels of smaller than 20 dBm for the class-F power amplifier.

  • Eigenmode Analysis of Propagation Constant for a Microstrip Line with Dummy Fills on a Si CMOS Substrate

    Yuya ONO  Takuichi HIRANO  Kenichi OKADA  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER

      Vol:
    E94-C No:6
      Page(s):
    1008-1015

    In this paper we present eigenmode analysis of the propagation constant for a microstrip line with dummy fills on a Si CMOS substrate. The effect of dummy fills is not negligible, particularly in the millimeter-wave band, although it has been ignored below frequencies of a few GHz. The propagation constant of a microstrip line with a periodic structure on a Si CMOS substrate is analyzed by eigenmode analysis for one period of the line. The calculated propagation constant and characteristic impedance were compared with measured values for a chip fabricated by the 0.18 µm CMOS process. The agreement between the analysis and measurement was very good. The dependence of loss on the arrangement of dummy fills was also investigated by eigenmode analysis. It was found that the transmission loss becomes large when dummy fills are arranged at places where the electromagnetic field is strong.

  • Investigation of n-Type Pentacene Based MOS Diodes with Ultra-Thin Metal Interface Layer

    Young-Uk SONG  Hiroshi ISHIWARA  Shun-ichiro OHMI  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    767-770

    In order to realize stable n-type characteristics of pentacene for applying to the organic complementary metal-oxide-semiconductor field-effect transistors (CMOS), we have fabricated pentacene based MOS diodes using ultra-thin Yb layer such as 0.5-3 nm between gate insulator and pentacene. From the results of capacitance-voltage (C-V) measurements, excellent n-type C-V characteristics of the devices with 1 and 2 nm-thick Yb were observed even though the devices were measured in air. These results suggested that the n-type semiconductor characteristics of pentacene are able to be improved by the thin Yb interfacial layer. Furthermore, the improved n-type characteristics of pentacene will enable the fabrication of flexible complementary logic circuits utilizing one kind organic semiconductor.

  • High Power and Stable High Coupling Efficiency (66%) Superluminescent Light Emitting Diodes by Using Active Multi-Mode Interferometer

    Zhigang ZANG  Keisuke MUKAI  Paolo NAVARETTI  Marcus DUELK  Christian VELEZ  Kiichi HAMAMOTO  

     
    BRIEF PAPER

      Vol:
    E94-C No:5
      Page(s):
    862-864

    The fabricated 1.55 µm high power superluminescent light emitting diodes (SLEDs) with 115 mW maximum output power and 3 dB bandwidth of 50 nm, using active multi-mode interferometer (MMI), showed high coupling efficiency of 66% into single-mode fiber, which resulted in maximum fiber-coupled power of 77 mW.

  • Novel Field Emission Organic Light Emitting Diodes

    Meiso YOKOYAMA  Chi-Shing LI  Shui-Hsiang SU  

     
    PAPER-Electromagnetic Theory

      Vol:
    E94-C No:3
      Page(s):
    307-311

    This work presents a novel field emission organic light emitting diode (FEOLED), in which an inorganic phosphor thin film is replaced by an organic EL light-emitting layer in the configuration of a field emission display (FED). The field emission electrons emitted from the carbon nanotubes (CNTs) cathode of the proposed FEOLED intensify the electron density in the multi-layer organic materials of the OLED; thus, resulting a higher luminous efficiency than that of a conventional OLED. Additionally, the luminance of the proposed FEOLED can be further increased from 10,820 cd/m2 to 27,393 cd/m2 by raising the current density of OLED through an external electron source. A balanced quantity of electrons and holes in the OLED, which is achieved by the proposed FEOLED increases the number of excitons and attributes the enhancement of luminous efficiency of the OLED. Under the same operating current density, the proposed FEOLED exhibits a higher luminous efficiency than that of a conventional OLED.

  • Multilayer Polyfluorene-Based Light-Emitting Diodes for Frequency Response Up to 100 MHz

    Hirotake KAJII  Toshinari KOJIMA  Yutaka OHMORI  

     
    BRIEF PAPER

      Vol:
    E94-C No:2
      Page(s):
    190-192

    High luminance and high speed response with the cut-off frequency of more than 50 MHz in multilayer polyfluorene-based light-emitting diodes with an interlayer were achieved. We realized multilayer polyfluorene-based light-emitting diodes for frequency response up to 100 MHz.

161-180hit(519hit)