The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IOD(519hit)

41-60hit(519hit)

  • The Role of Accent and Grouping Structures in Estimating Musical Meter

    Han-Ying LIN  Chien-Chieh HUANG  Wen-Whei CHANG  Jen-Tzung CHIEN  

     
    PAPER-Engineering Acoustics

      Vol:
    E103-A No:4
      Page(s):
    649-656

    This study presents a new method to exploit both accent and grouping structures of music in meter estimation. The system starts by extracting autocorrelation-based features that characterize accent periodicities. Based on the local boundary detection model, we construct grouping features that serve as additional cues for inferring meter. After the feature extraction, a multi-layer cascaded classifier based on neural network is incorporated to derive the most likely meter of input melody. Experiments on 7351 folk melodies in MIDI files indicate that the proposed system achieves an accuracy of 95.76% for classification into nine categories of meters.

  • Silicon Controlled Rectifier Based Partially Depleted SOI ESD Protection Device for High Voltage Application

    Yibo JIANG  Hui BI  Hui LI  Zhihao XU  Cheng SHI  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2019/10/09
      Vol:
    E103-C No:4
      Page(s):
    191-193

    In partially depleted SOI (PD-SOI) technology, the SCR-based protection device is desired due to its relatively high robustness, but be restricted to use because of its inherent low holding voltage (Vh) and high triggering voltage (Vt1). In this paper, the body-tie side triggering diode inserting silicon controlled rectifier (BSTDISCR) is proposed and verified in 180 nm PD-SOI technology. Compared to the other devices in the same process and other related works, the BSTDISCR presents as a robust and latchup-immune PD-SOI ESD protection device, with appropriate Vt1 of 6.3 V, high Vh of 4.2 V, high normalized second breakdown current (It2), which indicates the ESD protection robustness, of 13.3 mA/µm, low normalized parasitic capacitance of 0.74 fF/µm.

  • A Class of Binary Cyclic Codes and Their Weight Distributions

    Chao HE  Rong LUO  Mei YANG  

     
    LETTER-Coding Theory

      Vol:
    E103-A No:3
      Page(s):
    634-637

    Let m, k be positive integers with m=2k and k≥3. Let C(u, ν) is a class of cyclic codes of length 2m-1 whose parity-check polynomial is mu(x)mν(x), where mu(x) and mν(x) are the minimal polynomials of α-u and α-ν over GF(2). For the case $(u, u)=(1, rac{1}{3}(2^m-1))$, the weight distributions of binary cyclic codes C(u, ν) was determined in 2017. This paper determines the weight distributions of the binary cyclic codes C(u, ν) for the case of (u, ν)=(3, 2k-1+1). The application of these cyclic codes in secret sharing is also considered.

  • 16-QAM Sequences with Good Periodic Autocorrelation Function

    Fanxin ZENG  Yue ZENG  Lisheng ZHANG  Xiping HE  Guixin XUAN  Zhenyu ZHANG  Yanni PENG  Linjie QIAN  Li YAN  

     
    LETTER-Sequences

      Vol:
    E102-A No:12
      Page(s):
    1697-1700

    Sequences that attain the smallest possible absolute sidelobes (SPASs) of periodic autocorrelation function (PACF) play fairly important roles in synchronization of communication systems, Large scale integrated circuit testing, and so on. This letter presents an approach to construct 16-QAM sequences of even periods, based on the known quaternary sequences. A relationship between the PACFs of 16-QAM and quaternary sequences is established, by which when quaternary sequences that attain the SPASs of PACF are employed, the proposed 16-QAM sequences have good PACF.

  • Frequency Divider Using One-Dimensional Tunnel-Diode Oscillator Lattice Systems

    Koichi NARAHARA  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2019/06/25
      Vol:
    E102-C No:12
      Page(s):
    845-848

    A one-dimensional lattice of tunnel-diode oscillators is investigated for potential high-speed frequency divider. In the evolution of the investigated lattice, the high-frequency oscillation dominates over the low-frequency oscillation. When a base oscillator is connected at the end, and generates oscillatory signals with a frequency higher than that of the synchronous lattice oscillation, the oscillator output begins to move in the lattice. This one-way property guarantees that the oscillation dynamics of the lattice have only slight influence on the oscillator motion. Moreover, counter-moving pulses in the lattice exhibit pair annihilation through head-on collisions. These lattice properties enable an efficient frequency division method. Herein, the operating principles of the frequency divider are described, along with a numerical validation.

  • On the Distribution of p-Error Linear Complexity of p-Ary Sequences with Period pn

    Miao TANG  Juxiang WANG  Minjia SHI  Jing LIANG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2019/09/02
      Vol:
    E102-D No:12
      Page(s):
    2595-2598

    Linear complexity and the k-error linear complexity of periodic sequences are the important security indices of stream cipher systems. This paper focuses on the distribution of p-error linear complexity of p-ary sequences with period pn. For p-ary sequences of period pn with linear complexity pn-p+1, n≥1, we present all possible values of the p-error linear complexity, and derive the exact formulas to count the number of the sequences with any given p-error linear complexity.

  • Adaptive Channel Access Control Solving Compound Problem of Hidden Nodes and Continuous Collisions among Periodic Data Flows

    Anh-Huy NGUYEN  Yosuke TANIGAWA  Hideki TODE  

     
    PAPER-Network

      Pubricized:
    2019/05/21
      Vol:
    E102-B No:11
      Page(s):
    2113-2125

    With the rapid increase in IoT (Internet of Things) applications, more sensor devices, generating periodic data flows whose packets are transmitted at regular intervals, are being incorporated into WSNs (Wireless Sensor Networks). However, packet collision caused by the hidden node problem is becoming serious, particularly in large-scale multi-hop WSNs. Moreover, focusing on periodic data flows, continuous packet collisions among periodic data flows occur if the periodic packet transmission phases become synchronized. In this paper, we tackle the compounded negative effect of the hidden node problem and the continuous collision problem among periodic data flows. As this is a complex variant of the hidden node problem, there is no simple and well-studied solution. To solve this problem, we propose a new MAC layer mechanism. The proposed method predicts a future risky duration during which a collision can be caused by hidden nodes by taking into account the periodic characteristics of data packet generation. In the risky duration, each sensor node stops transmitting data packets in order to avoid collisions. To the best of our knowledge, this is the first paper that considers the compounded effect of hidden nodes and continuous collisions among periodic data flows. Other advantages of the proposed method include eliminating the need for any new control packets and it can be implemented in widely-diffused IEEE 802.11 and IEEE 802.15.4 devices.

  • An LTPS Ambient Light Sensor System with Sensitivity Correction Methods in LCD

    Takashi NAKAMURA  Masahiro TADA  Hiroyuki KIMURA  

     
    PAPER

      Vol:
    E102-C No:7
      Page(s):
    558-564

    An integrated ambient light sensor (ALS) system in low-temperature polycrystalline silicon (LTPS) thin-film-transistor liquid-crystal-displays (TFT-LCDs) is proposed and prototyped in this study. It is designed as a 4-bit (16-step-grayscale) ALS and includes a noise subtraction circuit, a comparator as an analog-to-digital converter (ADC), 4-bit counters, and a parallel-to-serial converter. LTPS lateral p-i-n diodes with a long i-region are employed as photodetectors in the system. An LSI source driver is mounted on the LCD panel with a sensor control block which provides programmable clocks and reference voltages to the ALS circuit on the glass substrate for sensitivity tuning. The reliability tests were conducted for 300 hours with 30000 lux illumination at 70 °C and at -20 °C. The observed deviations of the ALS values for dark, 1000 lux, and 10000 lux were within ±1.

  • The Effect of PMA with TiN Gate Electrode on the Formation of Ferroelectric Undoped HfO2 Directly Deposited on Si(100)

    Min Gee KIM  Shun-ichiro OHMI  

     
    PAPER

      Vol:
    E102-C No:6
      Page(s):
    435-440

    We have investigated post-metallization annealing (PMA) utilizing TiN gate electrode on the thin ferroelectric undoped HfO2 directly deposited on p-Si(100) by RF magnetron sputtering. By post-deposition annealing (PDA) process at 600°C/30 s in N2, the memory window (MW) in the C-V characteristics was observed in the Al/HfO2/p-Si(100) diodes with 15 to 24-nm-thick HfO2. However, it was not obtained when the thickness of HfO2 was 10 nm. On the other hand, the MW was observed for Pt/TiN/HfO2 (10 nm)/p-Si(100) diodes utilizing PMA process at 600°C/30 s. The MW was 0.5 V when the bias voltage was applied from -3 to 3 V.

  • Analysis of Modulated Terahertz Wave Radiation Characteristics in a Monolithic Integrated Structure Consisting of a Resonant Tunneling Diodes, a Photodiodes and a Self-Complementary Bow-Tie Antenna

    Masataka NAKANISHI  Michihiko SUHARA  Kiyoto ASAKAWA  

     
    BRIEF PAPER

      Vol:
    E102-C No:6
      Page(s):
    466-470

    We numerically demonstrate a possibility on-off keying (OOK) type of modulation over tens gigabits per second for sub-terahertz radiation in our proposed wireless transmitter device structure towards radio over fiber (RoF) technology. The integrated device consists of an InP-based compound semiconductor resonant tunneling diode (RTD) adjacent to an InP-based photo diode (PD), a self-complementary type of bow-tie antenna (BTA), external microstrip lines. These integration structures are carefully designed to obtain robust relaxation oscillation (RO) due to the negative differential conductance (NDC) characteristic of the RTD and the nonlinearity of the NDC. Moreover, the device is designed to exhibit OOK modulation of RO due to photo current from the PD inject into the RTD. Electromagnetic simulations and nonlinear equivalent circuit model of the whole device structure are established to perform large signal analysis numerically with considerations of previously measured characteristics of the triple-barrier RTD.

  • Pulse Responses from Periodically Arrayed Dispersion Media with an Air Region

    Ryosuke OZAKI  Tsuneki YAMASAKI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E102-C No:6
      Page(s):
    479-486

    In this paper, we propose a new technique for the transient scattering problem of periodically arrayed dispersion media for the TE case by using a combination of the Fourier series expansion method (FSEM) and the fast inversion Laplace transform (FILT) method, and analyze the pulse response for various widths of the dispersion media. As a result, we clarified the influence of the dispersion media with an air region on the resulting waveform.

  • Characterization and Modeling of a GaAsSb/InGaAs Backward Diode on the Basis of S-Parameter Measurement Up to 67 GHz

    Shinpei YAMASHITA  Michihiko SUHARA  Kenichi KAWAGUCHI  Tsuyoshi TAKAHASHI  Masaru SATO  Naoya OKAMOTO  Kiyoto ASAKAWA  

     
    BRIEF PAPER

      Vol:
    E102-C No:6
      Page(s):
    462-465

    We fabricate and characterize a GaAsSb/InGaAs backward diode (BWD) toward a realization of high sensitivity zero bias microwave rectification for RF wave energy harvest. Lattice-matched p-GaAsSb/n-InGaAs BWDs were fabricated and their current-voltage (I-V) characteristics and S-parameters up to 67 GHz were measured with respect to several sorts of mesa diameters in μm order. Our theoretical model and analysis are well fitted to the measured I-Vs on the basis of WKB approximation of the transmittance. It is confirmed that the interband tunneling due to the heterojunction is a dominant transport mechanism to exhibit the nonlinear I-V around zero bias regime unlike recombination or diffusion current components on p-n junction contribute in large current regime. An equivalent circuit model of the BWD is clarified by confirming theoretical fitting for frequency dependent admittance up to 67 GHz. From the circuit model, eliminating the parasitic inductance component, the frequency dependence of voltage sensitivity of the BWD rectifier is derived with respect to several size of mesa diameter. It quantitatively suggests an effectiveness of mesa size reduction to enhance the intrinsic matched voltage sensitivity with increasing junction resistance and keeping the magnitude of I-V curvature coefficient.

  • InP-Based Photodetectors Monolithically Integrated with 90° Hybrid toward Over 400Gb/s Coherent Transmission Systems Open Access

    Hideki YAGI  Takuya OKIMOTO  Naoko INOUE  Koji EBIHARA  Kenji SAKURAI  Munetaka KUROKAWA  Satoru OKAMOTO  Kazuhiko HORINO  Tatsuya TAKEUCHI  Kouichiro YAMAZAKI  Yoshifumi NISHIMOTO  Yasuo YAMASAKI  Mitsuru EKAWA  Masaru TAKECHI  Yoshihiro YONEDA  

     
    INVITED PAPER

      Vol:
    E102-C No:4
      Page(s):
    347-356

    We present InP-based photodetectors monolithically integrated with a 90° hybrid toward over 400Gb/s coherent transmission systems. To attain a wide 3-dB bandwidth of more than 40GHz for 400Gb/s dual-polarization (DP)-16-ary quadrature amplitude modulation (16QAM) and 600Gb/s DP-64QAM through 64GBaud operation, A p-i-n photodiode structure consisting of a GaInAs thin absorption and low doping n-typed InP buffer layers was introduced to overcome the trade-off between short carrier transit time and low parasitic capacitance. Additionally, this InP buffer layer contributes to the reduction of propagation loss in the 90° hybrid waveguide, that is, this approach allows a high responsivity as well as wide 3-dB bandwidth operation. The coherent receiver module for the C-band (1530nm - 1570nm) operation indicated the wide 3-dB bandwidth of more than 40GHz and the high receiver responsivity of more than 0.070A/W (Chip responsivity within the C-band: 0.130A/W) thanks to photodetectors with this photodiode design. To expand the usable wavelengths in wavelength-division multiplexing toward large-capacity optical transmission, the photodetector integrated with the 90° hybrid optimized for the L-band (1565nm - 1612nm) operation was also fabricated, and exhibited the high responsivity of more than 0.120A/W over the L-band. Finally, the InP-based monolithically integrated photonic device consisting of eight-channel p-i-n photodiodes, two 90° hybrids and a beam splitter was realized for the miniaturization of modules and afforded the reduction of the total footprint by 70% in a module compared to photodetectors with the 90° hybrid and four-channel p-i-n photodiodes.

  • High-Sensitivity Optical Receiver Using Differential Photodiodes AC-Coupled with a Transimpedance Amplifier

    Daisuke OKAMOTO  Hirohito YAMADA  

     
    PAPER-Optoelectronics

      Vol:
    E102-C No:4
      Page(s):
    380-387

    To address the bandwidth bottleneck that exists between LSI chips, we have proposed a novel, high-sensitivity receiver circuit for differential optical transmission on a silicon optical interposer. Both anodes and cathodes of the differential photodiodes (PDs) were designed to be connected to a transimpedance amplifier (TIA) through coupling capacitors. Reverse bias voltage was applied to each of the differential PDs through load resistance. The proposed receiver circuit achieved double the current signal amplitude of conventional differential receiver circuits. The frequency response of the receiver circuit was analyzed using its equivalent circuit, wherein the temperature dependence of the PD was implemented. The optimal load resistances of the PDs were determined to be 5kΩ by considering the tradeoff between the frequency response and bias voltage drop. A small dark current of the PD was important to reduce the voltage drop, but the bandwidth degradation was negligible if the dark current at room temperature was below 1µA. The proposed circuit achieved 3-dB bandwidths of 18.9 GHz at 25°C and 13.7 GHz at 85°C. Clear eye openings in the TIA output waveforms for 25-Gbps 27-1 pseudorandom binary sequence signals were obtained at both temperatures.

  • Fabrication and Evaluation of Integrated Photonic Array-Antenna System for RoF Based Remote Antenna Beam Forming

    Takayoshi HIRASAWA  Shigeyuki AKIBA  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E102-C No:3
      Page(s):
    235-242

    This paper studies the performance of the quantitative RF power variation in Radio-over-Fiber beam forming system utilizing a phased array-antenna integrating photo-diodes in downlink network for next generation millimeter wave band radio access. Firstly, we described details of fabrication of an integrated photonic array-antenna (IPA), where a 60GHz patch antenna 4×2 array and high-speed photo-diodes were integrated into a substrate. We evaluated RF transmission efficiency as an IPA system for Radio-over-Fiber (RoF)-based mobile front hall architecture with remote antenna beam forming capability. We clarified the characteristics of discrete and integrated devices such as an intensity modulator (IM), an optical fiber and the IPA and calculated RF power radiated from the IPA taking account of the measured data of the devices. Based on the experimental results on RF tone signal transmission by utilizing the IPA, attainable transmission distance of wireless communication by improvement and optimization of the used devices was discussed. We deduced that the antenna could output sufficient power when we consider that the cell size of the future mobile communication systems would be around 100 meters or smaller.

  • Influence of Polarity of Polarization Charge Induced by Spontaneous Orientation of Polar Molecules on Electron Injection in Organic Semiconductor Devices

    Yuya TANAKA  Takahiro MAKINO  Hisao ISHII  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    172-175

    On surfaces of tris-(8-hydroxyquinolate) aluminum (Alq) and tris(7-propyl-8-hydroxyquinolinato) aluminum (Al7p) thin-films, positive and negative polarization charges appear, respectively, owing to spontaneous orientation of these polar molecules. Alq is a typical electron transport material where electrons are injected from cathode. Because the polarization charge exists at the Alq/cathode interface, it is likely that it affects the electron injection process because of Coulomb interaction. In order to evaluate an impact of polarization charge on electron injection from cathode, electron only devices (EODs) composed of Alq or Al7p were prepared and evaluated by displacement current measurement. We found that Alq-EOD has lower resistance than Al7p-EOD, indicating that the positive polarization charge at Alq/cathode interface enhances the electron injection due to Coulomb attraction, while the electron injection is suppressed by the negative polarization charge at the Al7p/Al interface. These results clearly suggest that it is necessary to design organic semiconductor devices by taking polarization charge into account.

  • Automatic Generation of Train Timetables from Mesoscopic Railway Models by SMT-Solver Open Access

    Yoshinao ISOBE  Hisabumi HATSUGAI  Akira TANAKA  Yutaka OIWA  Takanori AMBE  Akimasa OKADA  Satoru KITAMURA  Yamato FUKUTA  Takashi KUNIFUJI  

     
    PAPER

      Vol:
    E102-A No:2
      Page(s):
    325-335

    This paper presents a formal approach for generating train timetables in a mesoscopic level that is more concrete than the macroscopic level, where each station is simply expressed in a black-box, and more abstract than the microscopic level, where the infrastructure in each station-area is expressed in detail. The accuracy of generated timetable and the computational effort for the generation is a trade-off. In this paper, we design a formal mesoscopic modeling language by analyzing real railways, for example Tazawako-line as the first step of this work. Then, we define the constraint formulae for generating train timetables with the help of SMT (Satisfiability Module Theories)-Solver, and explain our tool RW-Solver that is an implementation of the constraint formulae. Finally, we demonstrate how RW-Solver with the help of SMT-Solver can be used for generating timetables in a case study of Tazawako-line.

  • Patterning of OLED Glass Substrate for Improving Light Outcoupling Efficiency

    Savanna LLOYD  Tatsuya TANIGAWA  Heisuke SAKAI  Hideyuki MURATA  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    180-183

    In this work, we have successfully patterned OLED glass substrates with a novel Yb-doped femtosecond laser. Such patterns can simultaneously increase the outcoupling efficiency up to 24.4%, as a result of reducing substrate waveguided light by scattering at the substrate/air interface and reduce the viewing angle dependence of the electroluminescent spectra.

  • Low-Hit-Zone Frequency-Hopping Sequence Sets with Optimal Periodic Partial Hamming Correlation Properties

    Limengnan ZHOU  Hongyu HAN  Xing LIU  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E102-A No:1
      Page(s):
    316-319

    Frequency-hopping sequence (FHS) sets with low-hit-zone (LHZ) have Hamming correlations maintained at a low level as long as the relative time delay between different sequences are limited in a zone around the origin, and thus can be well applied in quasi-synchronous (QS) frequency-hopping multiple-access (FHMA) systems to reduce the mutual interference between different users. Moreover, the periodic partial Hamming correlation (PPHC) properties of employed LHZ-FHS sets usually act as evaluation criterions for the performances of QS-FHMA systems in practice. In this letter, a new class of LHZ-FHS sets is constructed via interleaving techniques. Furthermore, these new LHZ-FHS sets also possess optimal PPHC properties and parameters not included in the related literature.

  • On Searching Maximal-Period Dynamic LFSRs With at Most Four Switches

    Lin WANG  Zhi HU  Deng TANG  

     
    LETTER

      Vol:
    E102-A No:1
      Page(s):
    152-154

    Dynamic linear feedback shift registers (DLFSRs) are a scheme to transfer from one LFSR to another. In cryptography each LFSR included in a DLFSR should generate maximal-length sequences, and the number of switches transferring LFSRs should be small for efficient performance. This corresponding addresses on searching such conditioned DLFSRs. An efficient probabilistic algorithm is given to find such DLFSRs with two or four switches, and it is proved to succeed with nonnegligible probability.

41-60hit(519hit)