The search functionality is under construction.

Keyword Search Result

[Keyword] IP(4738hit)

81-100hit(4738hit)

  • Design of a Compact Triple-Mode Dielectric Resonator BPF with Wide Spurious-Free Performance Open Access

    Fan LIU  Zhewang MA  Weihao ZHANG  Masataka OHIRA  Dongchun QIAO  Guosheng PU  Masaru ICHIKAWA  

     
    PAPER

      Pubricized:
    2022/03/30
      Vol:
    E105-C No:11
      Page(s):
    660-666

    A novel compact 5-pole bandpass filter (BPF) using two different types of resonators, one is coaxial TEM-mode resonator and the other dielectric triple-mode resonator, is proposed in this paper. The coaxial resonator is a simple single-mode resonator, while the triple-mode dielectric resonator (DR) includes one TM01δ mode and two degenerate HE11 modes. An excellent spurious performance of the BPF is obtained due to the different resonant behaviors of these two types of resonators used in the BPF. The coupling scheme of the 5-pole BPF includes two cascade triplets (CTs) which produce two transmission zeros (TZs) and a sharp skirt of the passband. Behaviors of the resonances, the inter-resonance couplings, as well as their tuning methods are investigated in detail. A procedure of mapping the coupling matrix of the BPF to its physical dimensions is developed, and an optimization of these physical dimensions is implemented to achieve best performance of the filter. The designed BPF is operated at 1.84GHz with a bandwidth of 51MHz. The stopband rejection is better than 20dB up to 9.7GHz (about 5.39×f0) except 7.85GHz. Good agreement between the designed and theoretically synthesized responses of the BPF is reached, verifying well the proposed configuration of the BPF and its design method.

  • Non-Orthogonal Physical Layer (NOPHY) Design towards 5G Evolution and 6G

    Xiaolin HOU  Wenjia LIU  Juan LIU  Xin WANG  Lan CHEN  Yoshihisa KISHIYAMA  Takahiro ASAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/04/26
      Vol:
    E105-B No:11
      Page(s):
    1444-1457

    5G has achieved large-scale commercialization across the world and the global 6G research and development is accelerating. To support more new use cases, 6G mobile communication systems should satisfy extreme performance requirements far beyond 5G. The physical layer key technologies are the basis of the evolution of mobile communication systems of each generation, among which three key technologies, i.e., duplex, waveform and multiple access, are the iconic characteristics of mobile communication systems of each generation. In this paper, we systematically review the development history and trend of the three key technologies and define the Non-Orthogonal Physical Layer (NOPHY) concept for 6G, including Non-Orthogonal Duplex (NOD), Non-Orthogonal Multiple Access (NOMA) and Non-Orthogonal Waveform (NOW). Firstly, we analyze the necessity and feasibility of NOPHY from the perspective of capacity gain and implementation complexity. Then we discuss the recent progress of NOD, NOMA and NOW, and highlight several candidate technologies and their potential performance gain. Finally, combined with the new trend of 6G, we put forward a unified physical layer design based on NOPHY that well balances performance against flexibility, and point out the possible direction for the research and development of 6G physical layer key technologies.

  • Hardware Implementation of Euclidean Projection Module Based on Simplified LSA for ADMM Decoding

    Yujin ZHENG  Junwei ZHANG  Yan LIN  Qinglin ZHANG  Qiaoqiao XIA  

     
    LETTER-Coding Theory

      Pubricized:
    2022/05/20
      Vol:
    E105-A No:11
      Page(s):
    1508-1512

    The Euclidean projection operation is the most complex and time-consuming of the alternating direction method of multipliers (ADMM) decoding algorithms, resulting in a large number of resources when deployed on hardware platforms. We propose a simplified line segment projection algorithm (SLSA) and present the hardware design and the quantization scheme of the SLSA. In simulation results, the proposed SLSA module has a better performance than the original algorithm with the same fixed bitwidths due to the centrosymmetric structure of SLSA. Furthermore, the proposed SLSA module with a simpler structure without hypercube projection can reduce time consuming by up to 72.2% and reduce hardware resource usage by more than 87% compared to other Euclidean projection modules in the experiments.

  • Toward Selective Membership Inference Attack against Deep Learning Model

    Hyun KWON  Yongchul KIM  

     
    LETTER

      Pubricized:
    2022/07/26
      Vol:
    E105-D No:11
      Page(s):
    1911-1915

    In this paper, we propose a selective membership inference attack method that determines whether certain data corresponding to a specific class are being used as training data for a machine learning model or not. By using the proposed method, membership or non-membership can be inferred by generating a decision model from the prediction of the inference models and training the confidence values for the data corresponding to the selected class. We used MNIST as an experimental dataset and Tensorflow as a machine learning library. Experimental results show that the proposed method has a 92.4% success rate with 5 inference models for data corresponding to a specific class.

  • An SDN-Based Moving Target Defense as a Countermeasure to Prevent Network Scans Open Access

    Shoya CHIBA  Luis GUILLEN  Satoru IZUMI  Toru ABE  Takuo SUGANUMA  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1400-1407

    This paper proposes a Software-Defined Network (SDN)-based Moving Target Defense (MTD) to protect the network from potential scans in a compromised network. As a unique feature, contrary to traditional MTDs, the proposed MTD can work alongside other tools and countermeasures already deployed in the network (e.g., Intrusion Protection and Detection Systems) without affecting its behavior. Through extensive evaluation, we showed the effectiveness of the proposed mechanism compared to existing solutions in preventing scans of different rates without affecting the network and controller performance.

  • Secondary Ripple Suppression Strategy for a Single-Phase PWM Rectifier Based on Constant Frequency Current Predictive Control

    Hailan ZHOU  Longyun KANG  Xinwei DUAN  Ming ZHAO  

     
    PAPER

      Pubricized:
    2022/03/30
      Vol:
    E105-C No:11
      Page(s):
    667-674

    In the conventional single-phase PWM rectifier, the sinusoidal fluctuating current and voltage on the grid side will generate power ripple with a doubled grid frequency which leads to a secondary ripple in the DC output voltage, and the switching frequency of the conventional model predictive control strategy is not fixed. In order to solve the above two problems, a control strategy for suppressing the secondary ripple based on the three-vector fixed-frequency model predictive current control is proposed. Taking the capacitive energy storage type single-phase PWM rectifier as the research object, the principle of its active filtering is analyzed and a model predictive control strategy is proposed. Simulation and experimental results show that the proposed strategy can significantly reduce the secondary ripple of the DC output voltage, reduce the harmonic content of the input current, and achieve a constant switching frequency.

  • SOME/IP Intrusion Detection System Using Machine Learning

    Jaewoong HEO  Hyunghoon KIM  Hyo Jin JO  

     
    LETTER

      Pubricized:
    2022/07/13
      Vol:
    E105-D No:11
      Page(s):
    1923-1924

    With the development of in-vehicle network technologies, Automotive Ethernet is being applied to modern vehicles. Scalable service-Oriented MiddlewarE over IP (SOME/IP) is an automotive middleware solution that is used for communications of the infotainment domain as well as that of other domains in the vehicle. However, since SOME/IP lacks security, it is vulnerable to a variety of network-based attacks. In this paper, we introduce a new type of intrusion detection system (IDS) leveraging on SOME/IP packet's header information and packet reception time to deal with SOME/IP related network attacks.

  • Multi-Target Position and Velocity Estimation Algorithm Based on Time Delay and Doppler Shift in Passive MIMO Radar

    Yao ZHOU  Hairui YU  Wenjie XU  Siyi YAO  Li WANG  Hongshu LIAO  Wanchun LI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/05/18
      Vol:
    E105-A No:11
      Page(s):
    1466-1477

    In this paper, a passive multiple-input multiple-output (MIMO) radar system with widely separated antennas that estimates the positions and velocities of multiple moving targets by utilizing time delay (TD) and doppler shift (DS) measurements is proposed. Passive radar systems can detect targets by using multiple uncoordinated and un-synchronized illuminators and we assume that all the measurements including TD and DS have been known by a preprocessing method. In this study, the algorithm can be divided into three stages. First, based on location information within a certain range and utilizing the DBSCAN cluster algorithm we can obtain the initial position of each target. In the second stage according to the correlation between the TD measurements of each target in a specific receiver and the DSs, we can find the set of DS measurements for each target. Therefore, the initial speed estimated values can be obtained employing the least squares (LS) method. Finally, maximum likelihood (ML) estimation of a first-order Taylor expansion joint TD and DS is applied for a better solution. Extensive simulations show that the proposed algorithm has a good estimation performance and can achieve the Cramér-Rao lower bound (CRLB) under the condition of moderate measurement errors.

  • Order Statistics Based Low-Power Flash ADC with On-Chip Comparator Selection

    Takehiro KITAMURA  Mahfuzul ISLAM  Takashi HISAKADO  Osami WADA  

     
    PAPER

      Pubricized:
    2022/05/13
      Vol:
    E105-A No:11
      Page(s):
    1450-1457

    High-speed flash ADCs are useful in high-speed applications such as communication receivers. Due to offset voltage variation in the sub-micron processes, the power consumption and the area increase significantly to suppress variation. As an alternative to suppressing the variation, we have developed a flash ADC architecture that selects the comparators based on offset voltage ranking for reference generation. Specifically, with the order statistics as a basis, our method selects the minimum number of comparators to obtain equally spaced reference values. Because the proposed ADC utilizes offset voltages as references, no resistor ladder is required. We also developed a time-domain sorting mechanism for the offset voltages to achieve on-chip comparator selection. We first perform a detailed analysis of the order statistics based selection method and then design a 4-bit ADC in a commercial 65-nm process and perform transistor-level simulation. When using 127 comparators, INLs of 20 virtual chips are in the range of -0.34LSB/+0.29LSB to -0.83LSB/+0.74LSB, and DNLs are in the range of -0.33LSB/+0.24LSB to -0.77LSB/+1.18LSB at 1-GS/s operation. Our ADC achieves the SNDR of 20.9dB at Nyquist-frequency input and the power consumption of 0.84mW.

  • Admittance Spectroscopy Up to 67 GHz in InGaAs/InAlAs Triple-Barrier Resonant Tunneling Diodes

    Kotaro AIKAWA  Michihiko SUHARA  Takumi KIMURA  Junki WAKAYAMA  Takeshi MAKINO  Katsuhiro USUI  Kiyoto ASAKAWA  Kouichi AKAHANE  Issei WATANABE  

     
    BRIEF PAPER

      Pubricized:
    2022/06/30
      Vol:
    E105-C No:10
      Page(s):
    622-626

    S-parameters of InGaAs/InAlAs triple-barrier resonant tunneling diodes (TBRTDs) were measured up to 67 GHz with various mesa areas and various bias voltages. Admittance data of bare TBRTDs are deembedded and evaluated by getting rid of parasitic components with help of electromagnetic simulations for particular fabricated device structures. Admittance spectroscopy up to 67 GHz is applied for bare TBRTDs for the first time and a Kramers-Kronig relation with Lorentzian function is found to be a consistent model for the admittance especially in cases of low bias conditions. Relaxation time included in the Lorentzian function are tentatively evaluated as the order of several pico second.

  • Sub-Terahertz MIMO Spatial Multiplexing in Indoor Propagation Environments Open Access

    Yasutaka OGAWA  Taichi UTSUNO  Toshihiko NISHIMURA  Takeo OHGANE  Takanori SATO  

     
    INVITED PAPER

      Pubricized:
    2022/04/18
      Vol:
    E105-B No:10
      Page(s):
    1130-1138

    A sub-Terahertz band is envisioned to play a great role in 6G to achieve extreme high data-rate communication. In addition to very wide band transmission, we need spatial multiplexing using a hybrid MIMO system. A recently presented paper, however, reveals that the number of observed multipath components in a sub-Terahertz band is very few in indoor environments. A channel with few multipath components is called sparse. The number of layers (streams), i.e. multiplexing gain in a MIMO system does not exceed the number of multipaths. The sparsity may restrict the spatial multiplexing gain of sub-Terahertz systems, and the poor multiplexing gain may limit the data rate of communication systems. This paper describes fundamental considerations on sub-Terahertz MIMO spatial multiplexing in indoor environments. We examined how we should steer analog beams to multipath components to achieve higher channel capacity. Furthermore, for different beam allocation schemes, we investigated eigenvalue distributions of a channel Gram matrix, power allocation to each layer, and correlations between analog beams. Through simulation results, we have revealed that the analog beams should be steered to all the multipath components to lower correlations and to achieve higher channel capacity.

  • Asynchronous NOMA Downlink Based on Single-Carrier Frequency-Domain Equalization

    Tomonari KURAYAMA  Teruyuki MIYAJIMA  Yoshiki SUGITANI  

     
    PAPER

      Pubricized:
    2022/04/06
      Vol:
    E105-B No:10
      Page(s):
    1173-1180

    Non-orthogonal multiple access (NOMA) allows several users to multiplex in the power-domain to improve spectral efficiency. To further improve its performance, it is desirable to reduce inter-user interference (IUI). In this paper, we propose a downlink asynchronous NOMA (ANOMA) scheme applicable to frequency-selective channels. The proposed scheme introduces an intentional symbol offset between the multiplexed signals to reduce IUI, and it employs cyclic-prefixed single-carrier transmission with frequency-domain equalization (FDE) to reduce inter-symbol interference. We show that the mean square error for the FDE of the proposed ANOMA scheme is smaller than that of a conventional NOMA scheme. Simulation results show that the proposed ANOMA with appropriate power allocation achieves a better sum rate compared to the conventional NOMA.

  • Low-Complexity Hybrid Precoding Based on PAST for Millimeter Wave Massive MIMO System Open Access

    Rui JIANG  Xiao ZHOU  You Yun XU  Li ZHANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/04/21
      Vol:
    E105-B No:10
      Page(s):
    1192-1201

    Millimeter wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) systems generally adopt hybrid precoding combining digital and analog precoder as an alternative to full digital precoding to reduce RF chains and energy consumption. In order to balance the relationship between spectral efficiency, energy efficiency and hardware complexity, the hybrid-connected system structure should be adopted, and then the solution process of hybrid precoding can be simplified by decomposing the total achievable rate into several sub-rates. However, the singular value decomposition (SVD) incurs high complexity in calculating the optimal unconstrained hybrid precoder for each sub-rate. Therefore, this paper proposes PAST, a low complexity hybrid precoding algorithm based on projection approximate subspace tracking. The optimal unconstrained hybrid precoder of each sub-rate is estimated with the PAST algorithm, which avoids the high complexity process of calculating the left and right singular vectors and singular value matrix by SVD. Simulations demonstrate that PAST matches the spectral efficiency of SVD-based hybrid precoding in full-connected (FC), hybrid-connected (HC) and sub-connected (SC) system structure. Moreover, the superiority of PAST over SVD-based hybrid precoding in terms of complexity and increases with the number of transmitting antennas.

  • Adaptive Resource Allocation Based on Factor Graphs in Non-Orthogonal Multiple Access Open Access

    Taichi YAMAGAMI  Satoshi DENNO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/04/15
      Vol:
    E105-B No:10
      Page(s):
    1258-1267

    In this paper, we propose a non-orthogonal multiple access with adaptive resource allocation. The proposed non-orthogonal multiple access assigns multiple frequency resources for each device to send packets. Even if the number of devices is more than that of the available frequency resources, the proposed non-orthogonal access allows all the devices to transmit their packets simultaneously for high capacity massive machine-type communications (mMTC). Furthermore, this paper proposes adaptive resource allocation algorithms based on factor graphs that adaptively allocate the frequency resources to the devices for improvement of the transmission performances. This paper proposes two allocation algorithms for the proposed non-orthogonal multiple access. This paper shows that the proposed non-orthogonal multiple access achieves superior transmission performance when the number of the devices is 50% greater than the amount of the resource, i.e., the overloading ratio of 1.5, even without the adaptive resource allocation. The adaptive resource allocation enables the proposed non-orthogonal access to attain a gain of about 5dB at the BER of 10-4.

  • An Efficient Multimodal Aggregation Network for Video-Text Retrieval

    Zhi LIU  Fangyuan ZHAO  Mengmeng ZHANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2022/06/27
      Vol:
    E105-D No:10
      Page(s):
    1825-1828

    In video-text retrieval task, mainstream framework consists of three parts: video encoder, text encoder and similarity calculation. MMT (Multi-modal Transformer) achieves remarkable performance for this task, however, it faces the problem of insufficient training dataset. In this paper, an efficient multimodal aggregation network for video-text retrieval is proposed. Different from the prior work using MMT to fuse video features, the NetVLAD is introduced in the proposed network. It has fewer parameters and is feasible for training with small datasets. In addition, since the function of CLIP (Contrastive Language-Image Pre-training) can be considered as learning language models from visual supervision, it is introduced as text encoder in the proposed network to avoid overfitting. Meanwhile, in order to make full use of the pre-training model, a two-step training scheme is designed. Experiments show that the proposed model achieves competitive results compared with the latest work.

  • Multibeam Patterns Suitable for Massive MIMO Configurations

    Kentaro NISHIMORI  Jiro HIROKAWA  

     
    PAPER

      Pubricized:
    2022/07/13
      Vol:
    E105-B No:10
      Page(s):
    1162-1172

    A multibeam massive multiple input multiple output (MIMO) configuration employs beam selection with high power in the analog part and executes a blind algorithm such as the independent component analysis (ICA), which does not require channel state information in the digital part. Two-dimensional (2-D) multibeams are considered in actual power losses and beam steering errors regarding the multibeam patterns. However, the performance of these 2-D beams depends on the beam pattern of the multibeams, and they are not optimal multibeam patterns suitable for multibeam massive MIMO configurations. In this study, we clarify the performance difference due to the difference of the multibeam pattern and consider the multibeam pattern suitable for the system condition. Specifically, the optimal multibeam pattern was determined with the element spacing and beamwidth of the element directivity as parameters, and the effectiveness of the proposed method was verified via computer simulations.

  • Surrogate-Based EM Optimization Using Neural Networks for Microwave Filter Design Open Access

    Masataka OHIRA  Zhewang MA  

     
    INVITED PAPER

      Pubricized:
    2022/03/15
      Vol:
    E105-C No:10
      Page(s):
    466-473

    A surrogate-based electromagnetic (EM) optimization using neural networks (NNs) is presented for computationally efficient microwave bandpass filter (BPF) design. This paper first describes the forward problem (EM analysis) and the inverse problems (EM design), and the two fundamental issues in BPF designs. The first issue is that the EM analysis is a time-consuming task, and the second one is that EM design highly depends on the structural optimization performed with the help of EM analysis. To accelerate the optimization design, two surrogate models of forward and inverse models are introduced here, which are built with the NNs. As a result, the inverse model can instantaneously guess initial structural parameters with high accuracy by simply inputting synthesized coupling-matrix elements into the NN. Then, the forward model in conjunction with optimization algorithm enables designers to rapidly find optimal structural parameters from the initial ones. The effectiveness of the surrogate-based EM optimization is verified through the structural designs of a typical fifth-order microstrip BPF with multiple couplings.

  • Estimation of Multiple Illuminant Colors Using Color Line Features

    Quan XIU HO  Takao JINNO  Yusuke UCHIMI  Shigeru KURIYAMA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/06/23
      Vol:
    E105-D No:10
      Page(s):
    1751-1758

    The colors of objects in natural images are affected by the color of lighting, and accurately estimating an illuminant's color is indispensable in analyzing scenes lit by colored lightings. Recent lighting environments enhance colorfulness due to the spread of light-emitting diode (LED) lightings whose colors are flexibly controlled in a full visible spectrum. However, existing color estimations mainly focus on the single illuminant of normal color ranges. The estimation of multiple illuminants of unusual color settings, such as blue or red of high chroma, has not been studied yet. Therefore, new color estimations should be developed for multiple illuminants of various colors. In this article, we propose a color estimation for LED lightings using Color Line features, which regards the color distribution as a straight line in a local area. This local estimate is suitable for estimating various colors of multiple illuminants. The features are sampled at many small regions in an image and aggregated to estimate a few global colors using supervised learning with a convolutional neural network. We demonstrate the higher accuracy of our method over existing ones for such colorful lighting environments by producing the image dataset lit by multiple LED lightings in a full-color range.

  • Constant-Round Fair SS-4PC for Private Decision Tree Evaluation

    Hikaru TSUCHIDA  Takashi NISHIDE  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/03/09
      Vol:
    E105-A No:9
      Page(s):
    1270-1288

    Multiparty computation (MPC) is a cryptographic method that enables a set of parties to compute an arbitrary joint function of the private inputs of all parties and does not reveal any information other than the output. MPC based on a secret sharing scheme (SS-MPC) and garbled circuit (GC) is known as the most common MPC schemes. Another cryptographic method, homomorphic encryption (HE), computes an arbitrary function represented as a circuit by using ciphertexts without decrypting them. These technologies are in a trade-off relationship for the communication/round complexities, and the computation cost. The private decision tree evaluation (PDTE) is one of the key applications of these technologies. There exist several constant-round PDTE protocols based on GC, HE, or the hybrid schemes that are secure even if a malicious adversary who can deviate from protocol specifications corrupts some parties. There also exist other protocols based only on SS-MPC that are secure only if a semi-honest adversary who follows the protocol specification corrupts some parties. However, to the best of our knowledge, there are currently no constant-round PDTE protocols based only on SS-MPC that are secure against a malicious adversary. In this work, we propose a constant-round four-party PDTE protocol that achieves malicious security. Our protocol provides the PDTE securely and efficiently even when the communication environment has a large latency.

  • Integral Cryptanalysis on Reduced-Round KASUMI

    Nobuyuki SUGIO  Yasutaka IGARASHI  Sadayuki HONGO  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/04/22
      Vol:
    E105-A No:9
      Page(s):
    1309-1316

    Integral cryptanalysis is one of the most powerful attacks on symmetric key block ciphers. Attackers preliminarily search integral characteristics of a target cipher and use them to perform the key recovery attack. Todo proposed a novel technique named the bit-based division property to find integral characteristics. Xiang et al. extended the Mixed Integer Linear Programming (MILP) method to search integral characteristics of lightweight block ciphers based on the bit-based division property. In this paper, we apply these techniques to the symmetric key block cipher KASUMI which was developed by modifying MISTY1. As a result, we found new 4.5-round characteristics of KASUMI for the first time. We show that 7-round KASUMI is attackable with 263 data and 2120 encryptions.

81-100hit(4738hit)