The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IP(4758hit)

1-20hit(4758hit)

  • Precise Design of an 11-Pole TM010 Mode Dielectric Resonator BPF with Novel Capacitive Coupling Structures Open Access

    Fan LIU  Zhewang MA  Masataka OHIRA  Dongchun QIAO  Guosheng PU  Masaru ICHIKAWA  

     
    PAPER

      Pubricized:
    2024/03/22
      Vol:
    E107-C No:11
      Page(s):
    472-478

    In this paper, a precise design method of high-order bandpass filters (BPFs) with complicated coupling topologies is proposed, and is demonstrated through the design of an 11-pole BPF using TM010 mode dielectric resonators (DRs). A novel Z-shaped coupling structure is proposed which avoids the mixed use of TM010 and TM01δ modes and enables the tuning and assembling of the filter much easier. The coupling topology of the BPF includes three cascade triplets (CTs) of DRs, and both the capacitive and inductive couplings in the CTs are designed independently tunable, which produce consequently three controllable transmission zeros on both sides of the passband of filter. A procedure of mapping the coupling matrix of BPF to its physical dimensions is developed, and an iterative optimization of these physical dimensions is implemented to achieve best performance. The design of the 11-pole BPF is shown highly precise by the excellent agreement between the electromagnetic simulated response of the filter and the desired target specifications.

  • DDMA-MIMO/Capon Observations Using the MU Radar: Beamwidth Verification Using the Moon’s Reflection Open Access

    Tomoya MATSUDA  Koji NISHIMURA  Hiroyuki HASHIGUCHI  

     
    PAPER-Antennas and Propagation

      Vol:
    E107-B No:11
      Page(s):
    754-764

    Phased-array technology is primarily employed in atmospheric and wind profiling radars for meteorological remote sensing. As a novel avenue of advancement in phased-array technology, the Multiple-Input Multiple-Output (MIMO) technique, originally developed for communication systems, has been applied to radar systems. A MIMO radar system can be used to create a virtual receive antenna aperture plane with transmission freedom. The MIMO technique requires orthogonal waveforms on each transmitter to identify the transmit signals using multiple receivers; various methods have been developed to realize the orthogonality. In this study, we focus on the Doppler Division Multiple Access (DDMA) MIMO technique by using slightly different frequencies for the transmit waveforms, which can be separated by different receivers in the Doppler frequency domain. The Middle and Upper atmosphere (MU) radar is a VHF-band phased array atmospheric radar with multi-channel receivers. Additional configurations are necessary, requiring the inclusion of multi-channel transmitters to enable its operation as a MIMO radar. In this study, a comparison between the brightness distribution of the beamformer, utilizing echoes reflected from the moon, and the antenna pattern obtained through calculations revealed a high degree of consistency, which means that the MU radar functions effectively as a MIMO radar. Furthermore, it is demonstrated that the simultaneous application of MIMO and Capon techniques has a mutually enhancing effect.

  • Spatial Anomaly Detection Using Fast xFlow Proxy for Nation-Wide IP Network Open Access

    Shohei KAMAMURA  Yuhei HAYASHI  Takayuki FUJIWARA  

     
    PAPER-Internet

      Vol:
    E107-B No:11
      Page(s):
    728-738

    This paper proposes an anomaly-detection method using the Fast xFlow Proxy, which enables fine-grained measurement of communication traffic. When a fault occurs in services or networks, communication traffic changes from its normal behavior. Therefore, anomalies can be detected by analyzing their autocorrelations. However, in large-scale carrier networks, packets are generally encapsulated and observed as aggregate values, making it difficult to detect minute changes in individual communication flows. Therefore, we developed the Fast xFlow Proxy, which analyzes encapsulated packets in real time and enables flows to be measured at an arbitrary granularity. In this paper, we propose an algorithm that utilizes the Fast xFlow Proxy to detect not only the anomaly occurrence but also its cause, that is, the location of the fault at the end-to-end. The idea is not only to analyze the autocorrelation of a specific flow but also to apply spatial analysis to estimate the fault location by comparing the behavior of multiple flows. Through extensive simulations, we demonstrate that base station, network, and service faults can be detected without any false negative detections.

  • Global Navigation Satellite System Precise Positioning Technology Open Access

    Nobuaki KUBO  

     
    INVITED PAPER-Navigation, Guidance and Control Systems

      Vol:
    E107-B No:11
      Page(s):
    691-705

    In this study, the most recent topics related to the precise global navigation satellite system (GNSS) positioning technology are discussed. Precise positioning here means that the position can be estimated with centimeter-level accuracy. Technologies supporting precise GNSS positioning include an increase in the number of positioning satellites and the availability of correction data. Smartphones are now capable of centimeter-level positioning. For correction data, real-time kinematic positioning (RTK)-GNSS, which has primarily been used in surveying, and the new precise point positioning-real-time kinematic (PPP-RTK) and PPP, are garnering attention. The Japanese Quasi-Zenith Satellite System was among the first to broadcast PPP-RTK and PPP correction data free of charge. RTKLIB has long been popular for both real-time and post-processing precise positioning. Here, I briefly present a method for improving this software. Precise positioning technology remains crucial as the use of GNSS in highly reliable applications, such as advanced driver-assistance systems, autonomous drones, and robots, is increasing. To ensure precise positioning, improving multipath mitigation techniques is essential; therefore, key factors related to these techniques are discussed. I also introduce my efforts to develop software GNSS receivers for young researchers and engineers as a basis for this purpose. This study is aimed at introducing these technologies in light of the most recent trends.

  • SLNR-Based Joint Precoding for RIS Aided Beamspace HAP-NOMA Systems Open Access

    Pingping JI  Lingge JIANG  Chen HE  Di HE  Zhuxian LIAN  

     
    PAPER-Antennas and Propagation

      Vol:
    E107-B No:10
      Page(s):
    645-652

    High altitude platform (HAP), known as line-of-sight dominated communications, effectively enhance the spectral efficiency of wireless networks. However, the line-of-sight links, particularly in urban areas, may be severely deteriorated due to the complex communication environment. The reconfigurable intelligent surface (RIS) is employed to establish the cascaded-link and improve the quality of communication service by smartly reflecting the signals received from HAP to users without direct-link. Motivated by this, the joint precoding scheme for a novel RIS-aided beamspace HAP with non-orthogonal multiple access (HAP-NOMA) system is investigated to maximize the minimum user signal-to-leakage-plus-noise ratio (SLNR) by considering user fairness. Specifically, the SLNR is utilized as metric to design the joint precoding algorithm for a lower complexity, because the isolation between the precoding obtainment and power allocation can make the two parts be attained iteratively. To deal with the formulated non-convex problem, we first derive the statistical upper bound on SLNR based on the random matrix theory in large scale antenna array. Then, the closed-form expressions of power matrix and passive precoding matrix are given by introducing auxiliary variables based on the derived upper bound on SLNR. The proposed joint precoding only depends on the statistical channel state information (SCSI) instead of instantaneous channel state information (ICSI). NOMA serves multi-users simultaneously in the same group to compensate for the loss of spectral efficiency resulted from the beamspace HAP. Numerical results show the effectiveness of the derived statistical upper bound on SLNR and the performance enhancement of the proposed joint precoding algorithm.

  • A Feasible Scheme for the Backward Transmission in the Three-User X Channel with Reciprocal Propagation Delay Open Access

    Feng LIU  Helin WANG  Conggai LI  Yanli XU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2024/04/05
      Vol:
    E107-A No:9
      Page(s):
    1575-1576

    This letter proposes a scheme for the backward transmission of the propagation-delay based three-user X channel, which is reciprocal to the forward transmission. The given scheme successfully delivers 10 expected messages in 6 time-slots by cyclic interference alignment without loss of degrees of freedom, which supports efficient bidirectional transmission between the two ends of the three-user X channel.

  • Stop-Probability-Based Network Topology Discovery Method Open Access

    Yuguang ZHANG  Zhiyong ZHANG  Wei ZHANG  Deming MAO  Zhihong RAO  

     
    PAPER-Network

      Vol:
    E107-B No:9
      Page(s):
    583-594

    Using a limited number of probes has always been a focus in interface-level network topology probing to discover complete network topologies. Stop-set-based network topology probing methods significantly reduce the number of probes sent but suffer from the side effect of incomplete topology information discovery. This study proposes an optimized probing method based on stop probabilities (SPs) that builds on existing stop-set-based network topology discovery methods to address the issue of incomplete topology information owing to multipath routing. The statistics of repeat nodes (RNs) and multipath routing on the Internet are analyzed and combined with the principles of stop-set-based probing methods, highlighting that stopping probing at the first RN compromises the completeness of topology discovery. To address this issue, SPs are introduced to adjust the stopping strategy upon encountering RNs during probing. A method is designed for generating SPs that achieves high completeness and low cost based on the distribution of the number of RNs. Simulation experiments demonstrate that the proposed stop-probability-based probing method almost completely discovers network nodes and links across different regions and times over a two-year period, while significantly reducing probing redundancy. In addition, the proposed approach balances and optimizes the trade-off between complete topology discovery and reduced probing costs compared with existing topology probing methods. Building on this, the factors influencing the probing cost of the proposed method and methods to further reduce the number of probes while ensuring completeness are analyzed. The proposed method yields universally applicable SPs in the current Internet environment.

  • Reduced Peripheral Leakage Current in Pin Photodetectors of Ge on n+-Si by P+ Implantation to Compensate Surface Holes Open Access

    Koji ABE  Mikiya KUZUTANI  Satoki FURUYA  Jose A. PIEDRA-LORENZANA  Takeshi HIZAWA  Yasuhiko ISHIKAWA  

     
    BRIEF PAPER

      Pubricized:
    2024/05/15
      Vol:
    E107-C No:9
      Page(s):
    237-240

    A reduced dark leakage current, without degrading the near-infrared responsivity, is reported for a vertical pin structure of Ge photodiodes (PDs) on n+-Si substrate, which usually shows a leakage current higher than PDs on p+-Si. The peripheral/surface leakage, the dominant leakage in PDs on n+-Si, is significantly suppressed by globally implanting P+ in the i-Si cap layer protecting the fragile surface of i-Ge epitaxial layer before locally implanting B+/BF2+ for the top p+ region of the pin junction. The P+ implantation compensates free holes unintentionally induced due to the Fermi level pinning at the surface/interface of Ge. By preventing the hole conduction from the periphery to the top p+ region under a negative/reverse bias, a reduction in the leakage current of PDs on n+-Si is realized.

  • Type-Enhanced Ensemble Triple Representation via Triple-Aware Attention for Cross-Lingual Entity Alignment Open Access

    Zhishuo ZHANG  Chengxiang TAN  Xueyan ZHAO  Min YANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/05/22
      Vol:
    E107-D No:9
      Page(s):
    1182-1191

    Entity alignment (EA) is a crucial task for integrating cross-lingual and cross-domain knowledge graphs (KGs), which aims to discover entities referring to the same real-world object from different KGs. Most existing embedding-based methods generate aligning entity representation by mining the relevance of triple elements, paying little attention to triple indivisibility and entity role diversity. In this paper, a novel framework named TTEA - Type-enhanced Ensemble Triple Representation via Triple-aware Attention for Cross-lingual Entity Alignment is proposed to overcome the above shortcomings from the perspective of ensemble triple representation considering triple specificity and diversity features of entity role. Specifically, the ensemble triple representation is derived by regarding relation as information carrier between semantic and type spaces, and hence the noise influence during spatial transformation and information propagation can be smoothly controlled via specificity-aware triple attention. Moreover, the role diversity of triple elements is modeled via triple-aware entity enhancement in TTEA for EA-oriented entity representation. Extensive experiments on three real-world cross-lingual datasets demonstrate that our framework makes comparative results.

  • 6T-8T Hybrid SRAM for Lower-Power Neural-Network Processing by Lowering Operating Voltage Open Access

    Ji WU  Ruoxi YU  Kazuteru NAMBA  

     
    LETTER-Computer System

      Pubricized:
    2024/05/20
      Vol:
    E107-D No:9
      Page(s):
    1278-1280

    This letter introduces an innovation for the heterogeneous storage architecture of AI chips, specifically focusing on the integration of six transistors(6T) and eight transistors(8T) hybrid SRAM. Traditional approaches to reducing SRAM power consumption typically involve lowering the operating voltage, a method that often substantially diminishes the recognition rate of neural networks. However, the innovative design detailed in this letter amalgamates the strengths of both SRAM types. It operates at a voltage lower than conventional SRAM, thereby significantly reducing the power consumption in neural networks without compromising performance.

  • Coin-Based Cryptographic Protocols without Hand Operations Open Access

    Yuta MINAMIKAWA  Kazumasa SHINAGAWA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/12/13
      Vol:
    E107-A No:8
      Page(s):
    1178-1185

    Secure computation is a kind of cryptographic techniques that enables to compute a function while keeping input data secret. Komano and Mizuki (International Journal of Information Security 2022) proposed a model of coin-based protocols, which are secure computation protocols using physical coins. They designed AND, XOR, and COPY protocols using so-called hand operations, which move coins from one player’s palm to the other palm. However, hand operations cannot be executed when all players’ hands are occupied. In this paper, we propose coin-based protocols without hand operations. In particular, we design a three-coin NOT protocol, a seven-coin AND protocol, a six-coin XOR protocol, and a five-coin COPY protocol without hand operations. Our protocols use random flips only as shuffle operations and are enough to compute any function since they have the same format of input and output, i.e., committed-format protocols.

  • New Classes of Permutation Quadrinomials Over 𝔽q3 Open Access

    Changhui CHEN  Haibin KAN  Jie PENG  Li WANG  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/12/27
      Vol:
    E107-A No:8
      Page(s):
    1205-1211

    Permutation polynomials have been studied for a long time and have important applications in cryptography, coding theory and combinatorial designs. In this paper, by means of the multivariate method and the resultant, we propose four new classes of permutation quadrinomials over 𝔽q3, where q is a prime power. We also show that they are not quasi-multiplicative equivalent to known ones. Moreover, we compare their differential uniformity with that of some known classes of permutation trinomials for some small q.

  • Feistel Ciphers Based on a Single Primitive Open Access

    Kento TSUJI  Tetsu IWATA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2024/03/29
      Vol:
    E107-A No:8
      Page(s):
    1229-1240

    We consider Feistel ciphers instantiated with tweakable block ciphers (TBCs) and ideal ciphers (ICs). The indistinguishability security of the TBC-based Feistel cipher is known, and the indifferentiability security of the IC-based Feistel cipher is also known, where independently keyed TBCs and independent ICs are assumed. In this paper, we analyze the security of a single-keyed TBC-based Feistel cipher and a single IC-based Feistel cipher. We characterize the security depending on the number of rounds. More precisely, we cover the case of contracting Feistel ciphers that have d ≥ 2 lines, and the results on Feistel ciphers are obtained as a special case by setting d = 2. Our indistinguishability security analysis shows that it is provably secure with d + 1 rounds. Our indifferentiability result shows that, regardless of the number of rounds, it cannot be secure. Our attacks are a type of a slide attack, and we consider a structure that uses a round constant, which is a well-known countermeasure against slide attacks. We show an indifferentiability attack for the case d = 2 and 3 rounds.

  • RIS-Assisted MIMO OFDM Dual-Function Radar-Communication Based on Mutual Information Optimization Open Access

    Nihad A. A. ELHAG  Liang LIU  Ping WEI  Hongshu LIAO  Lin GAO  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2024/03/15
      Vol:
    E107-A No:8
      Page(s):
    1265-1276

    The concept of dual function radar-communication (DFRC) provides solution to the problem of spectrum scarcity. This paper examines a multiple-input multiple-output (MIMO) DFRC system with the assistance of a reconfigurable intelligent surface (RIS). The system is capable of sensing multiple spatial directions while serving multiple users via orthogonal frequency division multiplexing (OFDM). The objective of this study is to design the radiated waveforms and receive filters utilized by both the radar and users. The mutual information (MI) is used as an objective function, on average transmit power, for multiple targets while adhering to constraints on power leakage in specific directions and maintaining each user’s error rate. To address this problem, we propose an optimal solution based on a computational genetic algorithm (GA) using bisection method. The performance of the solution is demonstrated by numerical examples and it is shown that, our proposed algorithm can achieve optimum MI and the use of RIS with the MIMO DFRC system improving the system performance.

  • Triangle Projection Algorithm in ADMM-LP Decoding of LDPC Codes Open Access

    Yun JIANG  Huiyang LIU  Xiaopeng JIAO  Ji WANG  Qiaoqiao XIA  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2024/03/18
      Vol:
    E107-A No:8
      Page(s):
    1364-1368

    In this letter, a novel projection algorithm is proposed in which projection onto a triangle consisting of the three even-vertices closest to the vector to be projected replaces check polytope projection, achieving the same FER performance as exact projection algorithm in both high-iteration and low-iteration regime. Simulation results show that compared with the sparse affine projection algorithm (SAPA), it can improve the FER performance by 0.2 dB as well as save average number of iterations by 4.3%.

  • Functional Decomposition of Symmetric Multiple-Valued Functions and Their Compact Representation in Decision Diagrams Open Access

    Shinobu NAGAYAMA  Tsutomu SASAO  Jon T. BUTLER  

     
    PAPER

      Pubricized:
    2024/05/14
      Vol:
    E107-D No:8
      Page(s):
    922-929

    This paper proposes a decomposition method for symmetric multiple-valued functions. It decomposes a given symmetric multiple-valued function into three parts. By using suitable decision diagrams for the three parts, we can represent symmetric multiple-valued functions compactly. By deriving theorems on sizes of the decision diagrams, this paper shows that space complexity of the proposed representation is low. This paper also presents algorithms to construct the decision diagrams for symmetric multiple-valued functions with low time complexity. Experimental results show that the proposed method represents randomly generated symmetric multiple-valued functions more compactly than the conventional representation method using standard multiple-valued decision diagrams. Symmetric multiple-valued functions are a basic class of functions, and thus, their compact representation benefits many applications where they appear.

  • Delta-Sigma Domain Signal Processing Revisited with Related Topics in Stochastic Computing Open Access

    Takao WAHO  Akihisa KOYAMA  Hitoshi HAYASHI  

     
    PAPER

      Pubricized:
    2024/04/17
      Vol:
    E107-D No:8
      Page(s):
    966-975

    Signal processing using delta-sigma modulated bit streams is reviewed, along with related topics in stochastic computing (SC). The basic signal processing circuits, adders and multipliers, are covered. In particular, the possibility of preserving the noise-shaping properties inherent in delta-sigma modulation during these operations is discussed. Finally, the root mean square error for addition and multiplication is evaluated, and the performance improvement of signal processing in the delta-sigma domain compared with SC is verified.

  • Unveiling Python Version Compatibility Challenges in Code Snippets on Stack Overflow Open Access

    Shiyu YANG  Tetsuya KANDA  Daniel M. GERMAN  Yoshiki HIGO  

     
    PAPER-Software Engineering

      Pubricized:
    2024/04/16
      Vol:
    E107-D No:8
      Page(s):
    1007-1015

    Stack Overflow, a leading Q&A platform for developers, is a substantial reservoir of Python code snippets. Nevertheless, the incompatibility issues between Python versions, particularly Python 2 and Python 3, introduce substantial challenges that can potentially jeopardize the utility of these code snippets. This empirical study dives deep into the challenges of Python version inconsistencies on the interpretation and application of Python code snippets on Stack Overflow. Our empirical study exposes the prevalence of Python version compatibility issues on Stack Overflow. It further emphasizes an apparent deficiency in version-specific identification, a critical element that facilitates the identification and utilization of Python code snippets. These challenges, primarily arising from the lack of backward compatibility between Python’s major versions, pose significant hurdles for developers relying on Stack Overflow for code references and learning. This study, therefore, signifies the importance of proactively addressing these compatibility issues in Python code snippets. It advocates for enhanced tools and strategies to assist developers in efficiently navigating through the Python version complexities on platforms like Stack Overflow. By highlighting these concerns and providing a potential remedy, we aim to contribute to a more efficient and effective programming experience on Stack Overflow and similar platforms.

  • Investigating and Enhancing the Neural Distinguisher for Differential Cryptanalysis Open Access

    Gao WANG  Gaoli WANG  Siwei SUN  

     
    PAPER-Information Network

      Pubricized:
    2024/04/12
      Vol:
    E107-D No:8
      Page(s):
    1016-1028

    At Crypto 2019, Gohr first adopted the neural distinguisher for differential cryptanalysis, and since then, this work received increasing attention. However, most of the existing work focuses on improving and applying the neural distinguisher, the studies delving into the intrinsic principles of neural distinguishers are finite. At Eurocrypt 2021, Benamira et al. conducted a study on Gohr’s neural distinguisher. But for the neural distinguishers proposed later, such as the r-round neural distinguishers trained with k ciphertext pairs or ciphertext differences, denoted as NDcpk_r (Gohr’s neural distinguisher is the special NDcpk_r with K = 1) and NDcdk_r , such research is lacking. In this work, we devote ourselves to study the intrinsic principles and relationship between NDcdk_r and NDcpk_r. Firstly, we explore the working principle of NDcd1_r through a series of experiments and find that it strongly relies on the probability distribution of ciphertext differences. Its operational mechanism bears a strong resemblance to that of NDcp1_r given by Benamira et al.. Therefore, we further compare them from the perspective of differential cryptanalysis and sample features, demonstrating the superior performance of NDcp1_r can be attributed to the relationships between certain ciphertext bits, especially the significant bits. We then extend our investigation to NDcpk_r, and show that its ability to recognize samples heavily relies on the average differential probability of k ciphertext pairs and some relationships in the ciphertext itself, but the reliance between k ciphertext pairs is very weak. Finally, in light of the findings of our research, we introduce a strategy to enhance the accuracy of the neural distinguisher by using a fixed difference to generate the negative samples instead of the random one. Through the implementation of this approach, we manage to improve the accuracy of the neural distinguishers by approximately 2% to 8% for 7-round Speck32/64 and 9-round Simon32/64.

  • Skin Diagnostic Method Using Fontana-Masson Stained Images of Stratum Corneum Cells Open Access

    Shuto HASEGAWA  Koichiro ENOMOTO  Taeko MIZUTANI  Yuri OKANO  Takenori TANAKA  Osamu SAKAI  

     
    PAPER-Biological Engineering

      Pubricized:
    2024/04/19
      Vol:
    E107-D No:8
      Page(s):
    1070-1078

    Melanin, which is responsible for the appearance of spots and freckles, is an important indicator in evaluating skin condition. To assess the efficacy of cosmetics, skin condition scoring is performed by analyzing the distribution and amount of melanin from microscopic images of the stratum corneum cells. However, the current practice of diagnosing skin condition using stratum corneum cells images relies heavily on visual evaluation by experts. The goal of this study is to develop a quantitative evaluation system for skin condition based on melanin within unstained stratum corneum cells images. The proposed system utilizes principal component regression to perform five-level scoring, which is then compared with visual evaluation scores to assess the system’s usefulness. Additionally, we evaluated the impact of indicators related to melanin obtained from images on the scores, and verified which indicators are effective for evaluation. In conclusion, we confirmed that scoring is possible with an accuracy of more than 60% on a combination of several indicators, which is comparable to the accuracy of visual assessment.

1-20hit(4758hit)