Takanori ISOBE Kyoji SHIBUTANI
In this paper, we explore the security of single-key Even-Mansour ciphers against key-recovery attacks. First, we introduce a simple key-recovery attack using key relations on an n-bit r-round single-key Even-Mansour cipher (r-SEM). This attack is feasible with queries of DTr=O(2rn) and $2^{rac{2r}{r + 1}n}$ memory accesses, which is $2^{rac{1}{r + 1}n}$ times smaller than the previous generic attacks on r-SEM, where D and T are the number of queries to the encryption function EK and the internal permutation P, respectively. Next, we further reduce the time complexity of the key recovery attack on 2-SEM by a start-in-the-middle approach. This is the first attack that is more efficient than an exhaustive key search while keeping the query bound of DT2=O(22n). Finally, we leverage the start-in-the-middle approach to directly improve the previous attacks on 2-SEM by Dinur et al., which exploit t-way collisions of the underlying function. Our improved attacks do not keep the bound of DT2=O(22n), but are the most time-efficient attacks among the existing ones. For n=64, 128 and 256, our attack is feasible with the time complexity of about $2^{n} cdot rac{1}{2 n}$ in the chosen-plaintext model, while Dinur et al.'s attack requires $2^{n} cdot rac{{ m log}(n)}{ n} $ in the known-plaintext model.
Hitoshi NISHIMURA Naoya MAKIBUCHI Kazuyuki TASAKA Yasutomo KAWANISHI Hiroshi MURASE
Multiple human tracking is widely used in various fields such as marketing and surveillance. The typical approach associates human detection results between consecutive frames using the features and bounding boxes (position+size) of detected humans. Some methods use an omnidirectional camera to cover a wider area, but ID switch often occurs in association with detections due to following two factors: i) The feature is adversely affected because the bounding box includes many background regions when a human is captured from an oblique angle. ii) The position and size change dramatically between consecutive frames because the distance metric is non-uniform in an omnidirectional image. In this paper, we propose a novel method that accurately tracks humans with an association metric for omnidirectional images. The proposed method has two key points: i) For feature extraction, we introduce local rectification, which reduces the effect of background regions in the bounding box. ii) For distance calculation, we describe the positions in a world coordinate system where the distance metric is uniform. In the experiments, we confirmed that the Multiple Object Tracking Accuracy (MOTA) improved 3.3 in the LargeRoom dataset and improved 2.3 in the SmallRoom dataset.
Lizhong ZHANG Yuan WANG Yandong HE
This work reports a new technique to suppress the undesirable multiple-triggering effect in the typical diode triggered silicon controlled rectifier (DTSCR), which is frequently used as an ESD protection element in the advanced CMOS technologies. The technique is featured by inserting additional N-Well areas under the N+ region of intrinsic SCR, which helps to improve the substrate resistance. As a consequence, the delay of intrinsic SCR is reduced as the required triggering current is largely decreased and multiple-triggering related higher trigger voltage is removed. The novel DTSCR structures can alter the stacked diodes to achieve the precise trigger voltage to meet different ESD protection requirements. All explored DTSCR structures are fabricated in a 65-nm CMOS process. Transmission-line-pulsing (TLP) and Very-Fast-Transmission-line-pulsing (VF-TLP) test systems are adopted to confirm the validity of this technique and the test results accord well with our analysis.
Osama OUDA Slim CHAOUI Norimichi TSUMURA
Biometric template protection techniques have been proposed to address security and privacy issues inherent to biometric-based authentication systems. However, it has been shown that the robustness of most of such techniques against reversibility and linkability attacks are overestimated. Thus, a thorough security analysis of recently proposed template protection schemes has to be carried out. Negative iris recognition is an interesting iris template protection scheme based on the concept of negative databases. In this paper, we present a comprehensive security analysis of this scheme in order to validate its practical usefulness. Although the authors of negative iris recognition claim that their scheme possesses both irreversibility and unlinkability, we demonstrate that more than 75% of the original iris-code bits can be recovered using a single protected template. Moreover, we show that the negative iris recognition scheme is vulnerable to attacks via record multiplicity where an adversary can combine several transformed templates to recover more proportion of the original iris-code. Finally, we demonstrate that the scheme does not possess unlinkability. The experimental results, on the CASIA-IrisV3 Interval public database, support our theory and confirm that the negative iris recognition scheme is susceptible to reversibility, linkability, and record multiplicity attacks.
Nobuhiko WAGATSUMA Mika URABE Ko SAKAI
Figure-ground (FG) segregation has been considered as a fundamental step towards object recognition. We explored plausible mechanisms that estimate global figure-ground segregation from local image features by investigating the human visual system. Physiological studies have reported border-ownership (BO) selective neurons in V2 which signal the local direction of figure (DOF) along a border; however, how local BO signals contribute to global FG segregation has not been clarified. The BO and FG processing could be independent, dependent on each other, or inseparable. The investigation on the differences and similarities between the BO and FG judgements is important for exploring plausible mechanisms that enable global FG estimation from local clues. We performed psychophysical experiments that included two different tasks each of which focused on the judgement of either BO or FG. The perceptual judgments showed consistency between the BO and FG determination while a longer distance in gaze movement was observed in FG segregation than BO discrimination. These results suggest the involvement of distinct neural mechanism for local BO determination and global FG segregation.
Yanxi YANG Jinguang JIANG Meilin HE
The carrier-phase multipath effect can seriously affect the accuracy of GPS-based positioning in static short baseline applications. Although several kinds of methods based on time domain and spatial domain techniques have been proposed to mitigate this error, they are still limited by the accuracy of the multipath model and the effectiveness of the correction strategy. After analyzing the existing methods, a new method based on adaptive thresholding wavelet packet transform (AW) and time domain bootstrap spatial domain search strategy (TB) is presented (AWTB). Taking advantage of adaptive thresholding wavelet packet transform, we enhance the precision of the correction model and the efficiency of the extraction method. In addition, by adopting the proposed time domain bootstrap spatial domain strategy, the accuracy and efficiency of subsequent multipath correction are improved significantly. Specifically, after applying the adaptive thresholding wavelet packet method, the mean improvement rate in the RMS values of the single-difference L1 residuals is about 27.93% compared with the original results. Furthermore, after applying the proposed AWTB method, experiments show that the 3D positioning precision is improved by about 38.51% compared with the original results. Even compared with the method based on stationary wavelet transform (SWT), and the method based on wavelet packets denoising (WPD), the 3D precision is improved by about 26.94% over the SWT method and about 22.96% over the WPD method, respectively. It is worth noting that, although the mean time consumption of the proposed algorithm is larger than the original method, the increased time consumption is not a serious burden for overall performance.
Masahiro TAKIGAWA Shinsuke IBI Seiichi SAMPEI
This paper proposes a successive interference cancellation (SIC) of independent component analysis (ICA) aided spatial division multiple access (SDMA) for Gaussian filtered frequency shift keying (GFSK) in Bluetooth low energy (BLE) systems. The typical SDMA scheme requires estimations of channel state information (CSI) using orthogonal pilot sequences. However, the orthogonal pilot is not embedded in the BLE packet. This fact motivates us to add ICA detector into BLE systems. In this paper, focusing on the covariance matrix of ICA outputs, SIC can be applied with Cholesky decomposition. Then, in order to address the phase ambiguity problems created by the ICA process, we propose a differential detection scheme based on the MAP algorithm. In practical scenarios, it is subject to carrier frequency offset (CFO) as well as symbol timing offset (STO) induced by the hardware impairments present in the BLE peripherals. The packet error rate (PER) performance is evaluated by computer simulations when BLE peripherals simultaneously communicate in the presence of CFO and STO.
Aijing LI Chao DONG Zhimin LI Qihui WU Guodong WU
As a key technology for 5G and beyond, Multi-User Multi-Input Multi-Output (MU-MIMO) can achieve Gbps downlink rate by allowing concurrent transmission from one Access Point (AP) to multiple users. However, the huge overhead of full CSI feedback may overwhelm the gain yielded by beamforming. Although there have been many works on compress CSI to reduce the feedback overhead, the performance of beamforming may decrease because the accuracy of channel state degrades. To address the tradeoff between feedback overhead and accuracy, we present a two-stage Multipath Profile based Feedback protocol (MPF). In the first stage, compared with CSI feedback, the channel state is represented by multipath profile which has a smaller size but is accurate enough for user selection. Meanwhile, we propose an implicit polling scheme to decrease the feedback further. In the second stage, only the selected users send their CSI information to the AP to guarantee the low overhead and accuracy of steering matrix calculation. We implement and evaluate MPF with USRP N210. Experiments show that MPF can outperform alternative schemes in a variety of radio environments.
Hui PENG Pieter BAUWENS Herbert De PAUW Jan DOUTRELOIGNE
A fully integrated 16-phase 8-branch Dickson charge pump is proposed and implemented to decrease the power dissipation due to parasitic capacitance at the bottom plate of the boost capacitor. By using the charge recycling concept, 87% of the power consumption related to parasitic capacitance is saved. In a 4-stage version of this charge pump, a maximum power efficiency of 41% is achieved at 35µA output current and 11V output voltage from a 3.3V supply voltage. The proposed multi-branch charge pump can also reach a very low output voltage ripple of only 0.146% at a load resistance of 1MΩ, which is attributed to the fact that the 8-branch charge pump can transfer charges to the output node eight times consecutively during one clock period. In addition, a high voltage gain of 4.6 is achieved in the 4-stage charge pump at light load conditions. The total chip area is 0.57mm2 in a 0.35µm HV CMOS technology.
This manuscript discusses a new indoor positioning method and proposes a multi-distance function trilateration over k-NN fingerprinting method using radio signals. Generally, the strength of radio signals, referred to received signal strength indicator or RSSI, decreases as they travel in space. Our method employs a list of fingerprints comprised of RSSIs to absorb interference between radio signals, which happens around the transmitters and it also employs multiple distance functions for conversion from distance between fingerprints to the physical distance in order to absorb the interference that happens around the receiver then it performs trilateration between the top three closest fingerprints to locate the receiver's current position. An experiment in positioning performance is conducted in our laboratory and the result shows that our method is viable for a position-level indoor positioning method and it could improve positioning performance by 12.7% of positioning error to 0.406 in meter in comparison with traditional methods.
For embedded systems, verifying both real-time properties and logical validity are important. The embedded system is not only required to the accurate operation but also required to strictly real-time properties. To verify real-time properties is a key problem in model checking. In order to verify real-time properties of assembly program, we develop the simulator to propose the model checking method for verifying assembly programs. Simultaneously, we propose a timed Kripke structure and implement the simulator of the robot's processor to be verified. We propose the timed Kripke structure including the execution time which extends Kripke structure. For the input assembly program, the simulator generates timed Kripke structure by dynamic program analysis. Also, we implement model checker after generating timed Kripke structure in order to verify whether timed Kripke structure satisfies RTCTL formulas. Finally, to evaluate a proposed method, we conduct experiments with the implementation of the verification system. To solve the real problem, we have experimented with real microcontroller software.
Yuji MIZUTANI Hiroto KURIKI Yosuke KODAMA Keiichi MIZUTANI Takeshi MATSUMURA Hiroshi HARADA
The conventional universal filtered-DFT-spread-OFDM (UF-DFTs-OFDM) can drastically improve the out-of-band emission (OOBE) caused by the discontinuity between symbols in the conventional cyclic prefix-based DFTs-OFDM (CP-DFTs-OFDM). However, the UF-DFTs-OFDM degrades the communication quality in a long-delay multipath fading environment due to the frequency-domain ripple derived from the long transition time of the low pass filter (LPF) corresponding to the guard interval (GI). In this paper, we propose an enhanced UF-DFTs-OFDM (eUF-DFTs-OFDM) that achieves significantly low OOBE and high communication quality even in a long-delay multipath fading environment. The eUF-DFTs-OFDM applies an LPF with quite short length in combination with the zero padding (ZP) or the CP process. Then, the characteristics of the OOBE, peak-to-average power ratio (PAPR), and block error rate (BLER) are evaluated by computer simulation with the LTE uplink parameters. The result confirms that the eUF-DFTs-OFDM can improve the OOBE by 22.5dB at the channel-edge compared to the CP-DFTs-OFDM, and also improve the ES/N0 to achieve BLER =10-3 by about 2.5dB for QPSK and 16QAM compared to the UF-DFTs-OFDM. For 64QAM, the proposed eUF-DFTs-ODFDM can eliminate the error floor of the UF-DFTs-OFDM. These results indicate that the proposed eUF-DFTs-OFDM can significantly reduce the OOBE while maintaining the same level of communication quality as the CP-DFTs-OFDM even in long-delay multipath environment.
Kentaro KOJIMA Kodai YAMADA Jun FURUTA Kazutoshi KOBAYASHI
Cross sections that cause single event upsets by heavy ions are sensitive to doping concentration in the source and drain regions, and the structure of the raised source and drain regions especially in FDSOI. Due to the parasitic bipolar effect (PBE), radiation-hardened flip flops with stacked transistors in FDSOI tend to have soft errors, which is consistent with measurement results by heavy-ion irradiation. Device-simulation results in this study show that the cross section is proportional to the silicon thickness of the raised layer and inversely proportional to the doping concentration in the drain. Increasing the doping concentration in the source and drain region enhance the Auger recombination of carriers there and suppresses the parasitic bipolar effect. PBE is also suppressed by decreasing the silicon thickness of the raised layer. Cgg-Vgs and Ids-Vgs characteristics change smaller than soft error tolerance change. Soft error tolerance can be effectively optimized by using these two determinants with only a small impact on transistor characteristics.
This letter reveals that an edge-triggered master-slave flip-flop (FF) using well-known soft error tolerant DICE (dual interlocked storage cell) is vulnerable to soft errors occurring around clock edge. This letter presents a design of a soft error tolerant FF based on the master-slave FF using DICE. The proposed design modifies the connection between the master and slave latches to make the FF not vulnerable to these errors. The hardware overhead is almost the same as that for the original edge-triggered FF using the DICE.
Daichi WATARI Ittetsu TANIGUCHI Takao ONOYE
The decentralized energy network is one of the promising solutions as a next-generation power grid. In this system, each house has a photovoltaic (PV) panel as a renewable energy source and a battery which is an essential component to balance between generation and demand. The common objective of the battery management on such systems is to minimize only the purchased energy from a power company, but battery degradation caused by charge/discharge cycles is also a serious problem. This paper proposes a State-of-Health (SOH) aware system-level battery management methodology for the decentralized energy network. The power distribution problem is often solved with mixed integer programming (MIP), and the proposed MIP formulation takes into account the SOH model. In order to minimize the purchased energy and reduce the battery degradation simultaneously, the optimization problem is divided into two stages: 1) the purchased energy minimization, and 2) the battery aging factor reducing, and the trade-off exploration between the purchased energy and the battery degradation is available. Experimental results show that the proposed method achieves the better trade-off and reduces the battery aging cost by 14% over the baseline method while keeping the purchased energy minimum.
Zhaoyang QIU Qi ZHANG Minhong SUN Jun ZHU
The modern radar signals are in a wide frequency space. The receiving bandwidth of the radar reconnaissance receiver should be wide enough to intercept the modern radar signals. The Nyquist folding receiver (NYFR) is a novel wideband receiving architecture and it has a high intercept probability. Chirp signals are widely used in modern radar system. Because of the wideband receiving ability, the NYFR will receive the concurrent multiple chirp signals. In this letter, we propose a novel parameter estimation algorithm for the multiple chirp signals intercepted by single channel NYFR. Compared with the composite NYFR, the proposed method can save receiving resources. In addition, the proposed approach can estimate the parameters of the chirp signals even the NYFR outputs are under frequency aliasing circumstance. Simulation results show the efficacy of the proposed method.
In this letter, we adopt two multi-carrier relay selections, i.e., bulk and per-subcarrier (PS), to the multi-hop decode-and-forward relaying orthogonal frequency-division multiplexing with index modulation (OFDM-IM) system. Particularly, in the form of average outage probability (AOP), the influence of joint selection and non-joint selection acting on the last two hops on the system is analyzed. The closed-form expressions of AOPs and the asymptotic AOPs expressions at high signal-to-noise ratio are given and verified by numerical simulations. The results show that both bulk and PS can achieve full diversity order and that PS can provide additional power gain compared to bulk when JS is used. The theoretical analyses in this letter provide an insight into the combination of OFDM-IM and cooperative communication.
Francisco J. GARCIA-DE-QUIROS Gianmarco RADICE José A. CARRASCO
When considering the deployment of a radio communications network, the study of multipath interference and its impact on the quality of signal reception is of the outmost importance in order to meet the necessary performance requirements. This work considers specifically the case of the lunar surface as the mission scenario for a community of autonomous mobile exploration robots, which communicate through a radiofrequency network to accomplish their mission. In this application, the low height of the mobile robots makes the influence of multipath interference effects on the performance of the radio communication channel relevant. However, no specific information about lunar soil reflection coefficients characteristics is available for radiofrequency communication bands. This work reviews the literature on the electrical parameter of Lunar soil. From this base, the reflection coefficients are estimated for the assumed radio profile in different communications frequency bands. Finally, the results obtained are discussed.
Yoshiyuki MIHARA Shuichi MIYAZAKI Yasuo OKABE Tetsuya YAMAGUCHI Manabu OKAMOTO
In this article, we propose a method to identify the link layer home network topology, motivated by applications to cost reduction of support centers. If the topology of home networks can be identified automatically and efficiently, it is easier for operators of support centers to identify fault points. We use MAC address forwarding tables (AFTs) which can be collected from network devices. There are a couple of existing methods for identifying a network topology using AFTs, but they are insufficient for our purpose; they are not applicable to some specific network topologies that are typical in home networks. The advantage of our method is that it can handle such topologies. We also implemented these three methods and compared their running times. The result showed that, despite its wide applicability, our method is the fastest among the three.
Satoshi MATSUMOTO Tomoyuki UCHIDA Takayoshi SHOUDAI Yusuke SUZUKI Tetsuhiro MIYAHARA
A regular pattern is a string consisting of constant symbols and distinct variable symbols. The language of a regular pattern is the set of all constant strings obtained by replacing all variable symbols in the regular pattern with non-empty strings. The present paper deals with the learning problem of languages of regular patterns within Angluin's query learning model, which is an established mathematical model of learning via queries in computational learning theory. The class of languages of regular patterns was known to be identifiable from one positive example using a polynomial number of membership queries, in the query learning model. In present paper, we show that the class of languages of regular patterns is identifiable from one positive example using a linear number of membership queries, with respect to the length of the positive example.