The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IP(4758hit)

281-300hit(4758hit)

  • Key-Recovery Security of Single-Key Even-Mansour Ciphers

    Takanori ISOBE  Kyoji SHIBUTANI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E103-A No:7
      Page(s):
    893-905

    In this paper, we explore the security of single-key Even-Mansour ciphers against key-recovery attacks. First, we introduce a simple key-recovery attack using key relations on an n-bit r-round single-key Even-Mansour cipher (r-SEM). This attack is feasible with queries of DTr=O(2rn) and $2^{ rac{2r}{r + 1}n}$ memory accesses, which is $2^{ rac{1}{r + 1}n}$ times smaller than the previous generic attacks on r-SEM, where D and T are the number of queries to the encryption function EK and the internal permutation P, respectively. Next, we further reduce the time complexity of the key recovery attack on 2-SEM by a start-in-the-middle approach. This is the first attack that is more efficient than an exhaustive key search while keeping the query bound of DT2=O(22n). Finally, we leverage the start-in-the-middle approach to directly improve the previous attacks on 2-SEM by Dinur et al., which exploit t-way collisions of the underlying function. Our improved attacks do not keep the bound of DT2=O(22n), but are the most time-efficient attacks among the existing ones. For n=64, 128 and 256, our attack is feasible with the time complexity of about $2^{n} cdot rac{1}{2 n}$ in the chosen-plaintext model, while Dinur et al.'s attack requires $2^{n} cdot rac{{ m log}(n)}{ n} $ in the known-plaintext model.

  • Multiple Human Tracking Using an Omnidirectional Camera with Local Rectification and World Coordinates Representation

    Hitoshi NISHIMURA  Naoya MAKIBUCHI  Kazuyuki TASAKA  Yasutomo KAWANISHI  Hiroshi MURASE  

     
    PAPER

      Pubricized:
    2020/04/10
      Vol:
    E103-D No:6
      Page(s):
    1265-1275

    Multiple human tracking is widely used in various fields such as marketing and surveillance. The typical approach associates human detection results between consecutive frames using the features and bounding boxes (position+size) of detected humans. Some methods use an omnidirectional camera to cover a wider area, but ID switch often occurs in association with detections due to following two factors: i) The feature is adversely affected because the bounding box includes many background regions when a human is captured from an oblique angle. ii) The position and size change dramatically between consecutive frames because the distance metric is non-uniform in an omnidirectional image. In this paper, we propose a novel method that accurately tracks humans with an association metric for omnidirectional images. The proposed method has two key points: i) For feature extraction, we introduce local rectification, which reduces the effect of background regions in the bounding box. ii) For distance calculation, we describe the positions in a world coordinate system where the distance metric is uniform. In the experiments, we confirmed that the Multiple Object Tracking Accuracy (MOTA) improved 3.3 in the LargeRoom dataset and improved 2.3 in the SmallRoom dataset.

  • A Novel Technique to Suppress Multiple-Triggering Effect in Typical DTSCRs under ESD Stress Open Access

    Lizhong ZHANG  Yuan WANG  Yandong HE  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2019/11/29
      Vol:
    E103-C No:5
      Page(s):
    274-278

    This work reports a new technique to suppress the undesirable multiple-triggering effect in the typical diode triggered silicon controlled rectifier (DTSCR), which is frequently used as an ESD protection element in the advanced CMOS technologies. The technique is featured by inserting additional N-Well areas under the N+ region of intrinsic SCR, which helps to improve the substrate resistance. As a consequence, the delay of intrinsic SCR is reduced as the required triggering current is largely decreased and multiple-triggering related higher trigger voltage is removed. The novel DTSCR structures can alter the stacked diodes to achieve the precise trigger voltage to meet different ESD protection requirements. All explored DTSCR structures are fabricated in a 65-nm CMOS process. Transmission-line-pulsing (TLP) and Very-Fast-Transmission-line-pulsing (VF-TLP) test systems are adopted to confirm the validity of this technique and the test results accord well with our analysis.

  • Security Evaluation of Negative Iris Recognition

    Osama OUDA  Slim CHAOUI  Norimichi TSUMURA  

     
    PAPER-Biological Engineering

      Pubricized:
    2020/01/29
      Vol:
    E103-D No:5
      Page(s):
    1144-1152

    Biometric template protection techniques have been proposed to address security and privacy issues inherent to biometric-based authentication systems. However, it has been shown that the robustness of most of such techniques against reversibility and linkability attacks are overestimated. Thus, a thorough security analysis of recently proposed template protection schemes has to be carried out. Negative iris recognition is an interesting iris template protection scheme based on the concept of negative databases. In this paper, we present a comprehensive security analysis of this scheme in order to validate its practical usefulness. Although the authors of negative iris recognition claim that their scheme possesses both irreversibility and unlinkability, we demonstrate that more than 75% of the original iris-code bits can be recovered using a single protected template. Moreover, we show that the negative iris recognition scheme is vulnerable to attacks via record multiplicity where an adversary can combine several transformed templates to recover more proportion of the original iris-code. Finally, we demonstrate that the scheme does not possess unlinkability. The experimental results, on the CASIA-IrisV3 Interval public database, support our theory and confirm that the negative iris recognition scheme is susceptible to reversibility, linkability, and record multiplicity attacks.

  • Perception and Saccades during Figure-Ground Segregation and Border-Ownership Discrimination in Natural Contours

    Nobuhiko WAGATSUMA  Mika URABE  Ko SAKAI  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2020/01/27
      Vol:
    E103-D No:5
      Page(s):
    1126-1134

    Figure-ground (FG) segregation has been considered as a fundamental step towards object recognition. We explored plausible mechanisms that estimate global figure-ground segregation from local image features by investigating the human visual system. Physiological studies have reported border-ownership (BO) selective neurons in V2 which signal the local direction of figure (DOF) along a border; however, how local BO signals contribute to global FG segregation has not been clarified. The BO and FG processing could be independent, dependent on each other, or inseparable. The investigation on the differences and similarities between the BO and FG judgements is important for exploring plausible mechanisms that enable global FG estimation from local clues. We performed psychophysical experiments that included two different tasks each of which focused on the judgement of either BO or FG. The perceptual judgments showed consistency between the BO and FG determination while a longer distance in gaze movement was observed in FG segregation than BO discrimination. These results suggest the involvement of distinct neural mechanism for local BO determination and global FG segregation.

  • Carrier-Phase Multipath Mitigation Based on Adaptive Wavelet Packet Transform and TB Strategy

    Yanxi YANG  Jinguang JIANG  Meilin HE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/10/28
      Vol:
    E103-B No:5
      Page(s):
    591-599

    The carrier-phase multipath effect can seriously affect the accuracy of GPS-based positioning in static short baseline applications. Although several kinds of methods based on time domain and spatial domain techniques have been proposed to mitigate this error, they are still limited by the accuracy of the multipath model and the effectiveness of the correction strategy. After analyzing the existing methods, a new method based on adaptive thresholding wavelet packet transform (AW) and time domain bootstrap spatial domain search strategy (TB) is presented (AWTB). Taking advantage of adaptive thresholding wavelet packet transform, we enhance the precision of the correction model and the efficiency of the extraction method. In addition, by adopting the proposed time domain bootstrap spatial domain strategy, the accuracy and efficiency of subsequent multipath correction are improved significantly. Specifically, after applying the adaptive thresholding wavelet packet method, the mean improvement rate in the RMS values of the single-difference L1 residuals is about 27.93% compared with the original results. Furthermore, after applying the proposed AWTB method, experiments show that the 3D positioning precision is improved by about 38.51% compared with the original results. Even compared with the method based on stationary wavelet transform (SWT), and the method based on wavelet packets denoising (WPD), the 3D precision is improved by about 26.94% over the SWT method and about 22.96% over the WPD method, respectively. It is worth noting that, although the mean time consumption of the proposed algorithm is larger than the original method, the increased time consumption is not a serious burden for overall performance.

  • Successive Interference Cancellation of ICA-Aided SDMA for GFSK Signaling in BLE Systems

    Masahiro TAKIGAWA  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/11/12
      Vol:
    E103-B No:5
      Page(s):
    495-503

    This paper proposes a successive interference cancellation (SIC) of independent component analysis (ICA) aided spatial division multiple access (SDMA) for Gaussian filtered frequency shift keying (GFSK) in Bluetooth low energy (BLE) systems. The typical SDMA scheme requires estimations of channel state information (CSI) using orthogonal pilot sequences. However, the orthogonal pilot is not embedded in the BLE packet. This fact motivates us to add ICA detector into BLE systems. In this paper, focusing on the covariance matrix of ICA outputs, SIC can be applied with Cholesky decomposition. Then, in order to address the phase ambiguity problems created by the ICA process, we propose a differential detection scheme based on the MAP algorithm. In practical scenarios, it is subject to carrier frequency offset (CFO) as well as symbol timing offset (STO) induced by the hardware impairments present in the BLE peripherals. The packet error rate (PER) performance is evaluated by computer simulations when BLE peripherals simultaneously communicate in the presence of CFO and STO.

  • A Two-Stage Feedback Protocol Based on Multipath Profile for MU-MIMO Networks

    Aijing LI  Chao DONG  Zhimin LI  Qihui WU  Guodong WU  

     
    PAPER-Network

      Pubricized:
    2019/11/21
      Vol:
    E103-B No:5
      Page(s):
    559-569

    As a key technology for 5G and beyond, Multi-User Multi-Input Multi-Output (MU-MIMO) can achieve Gbps downlink rate by allowing concurrent transmission from one Access Point (AP) to multiple users. However, the huge overhead of full CSI feedback may overwhelm the gain yielded by beamforming. Although there have been many works on compress CSI to reduce the feedback overhead, the performance of beamforming may decrease because the accuracy of channel state degrades. To address the tradeoff between feedback overhead and accuracy, we present a two-stage Multipath Profile based Feedback protocol (MPF). In the first stage, compared with CSI feedback, the channel state is represented by multipath profile which has a smaller size but is accurate enough for user selection. Meanwhile, we propose an implicit polling scheme to decrease the feedback further. In the second stage, only the selected users send their CSI information to the AP to guarantee the low overhead and accuracy of steering matrix calculation. We implement and evaluate MPF with USRP N210. Experiments show that MPF can outperform alternative schemes in a variety of radio environments.

  • Implementation of a 16-Phase 8-Branch Charge Pump with Advanced Charge Recycling Strategy

    Hui PENG  Pieter BAUWENS  Herbert De PAUW  Jan DOUTRELOIGNE  

     
    PAPER-Electronic Circuits

      Pubricized:
    2019/11/29
      Vol:
    E103-C No:5
      Page(s):
    231-237

    A fully integrated 16-phase 8-branch Dickson charge pump is proposed and implemented to decrease the power dissipation due to parasitic capacitance at the bottom plate of the boost capacitor. By using the charge recycling concept, 87% of the power consumption related to parasitic capacitance is saved. In a 4-stage version of this charge pump, a maximum power efficiency of 41% is achieved at 35µA output current and 11V output voltage from a 3.3V supply voltage. The proposed multi-branch charge pump can also reach a very low output voltage ripple of only 0.146% at a load resistance of 1MΩ, which is attributed to the fact that the 8-branch charge pump can transfer charges to the output node eight times consecutively during one clock period. In addition, a high voltage gain of 4.6 is achieved in the 4-stage charge pump at light load conditions. The total chip area is 0.57mm2 in a 0.35µm HV CMOS technology.

  • Multi-Distance Function Trilateration over k-NN Fingerprinting for Indoor Positioning and Its Evaluation

    Makio ISHIHARA  Ryo KAWASHIMA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/02/03
      Vol:
    E103-D No:5
      Page(s):
    1055-1066

    This manuscript discusses a new indoor positioning method and proposes a multi-distance function trilateration over k-NN fingerprinting method using radio signals. Generally, the strength of radio signals, referred to received signal strength indicator or RSSI, decreases as they travel in space. Our method employs a list of fingerprints comprised of RSSIs to absorb interference between radio signals, which happens around the transmitters and it also employs multiple distance functions for conversion from distance between fingerprints to the physical distance in order to absorb the interference that happens around the receiver then it performs trilateration between the top three closest fingerprints to locate the receiver's current position. An experiment in positioning performance is conducted in our laboratory and the result shows that our method is viable for a position-level indoor positioning method and it could improve positioning performance by 12.7% of positioning error to 0.406 in meter in comparison with traditional methods.

  • Model Checking of Real-Time Properties for Embedded Assembly Program Using Real-Time Temporal Logic RTCTL and Its Application to Real Microcontroller Software

    Yajun WU  Satoshi YAMANE  

     
    PAPER-Software System

      Pubricized:
    2020/01/06
      Vol:
    E103-D No:4
      Page(s):
    800-812

    For embedded systems, verifying both real-time properties and logical validity are important. The embedded system is not only required to the accurate operation but also required to strictly real-time properties. To verify real-time properties is a key problem in model checking. In order to verify real-time properties of assembly program, we develop the simulator to propose the model checking method for verifying assembly programs. Simultaneously, we propose a timed Kripke structure and implement the simulator of the robot's processor to be verified. We propose the timed Kripke structure including the execution time which extends Kripke structure. For the input assembly program, the simulator generates timed Kripke structure by dynamic program analysis. Also, we implement model checker after generating timed Kripke structure in order to verify whether timed Kripke structure satisfies RTCTL formulas. Finally, to evaluate a proposed method, we conduct experiments with the implementation of the verification system. To solve the real problem, we have experimented with real microcontroller software.

  • Enhanced Universal Filtered-DFTs-OFDM for Long-Delay Multipath Environment Open Access

    Yuji MIZUTANI  Hiroto KURIKI  Yosuke KODAMA  Keiichi MIZUTANI  Takeshi MATSUMURA  Hiroshi HARADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/10/08
      Vol:
    E103-B No:4
      Page(s):
    467-475

    The conventional universal filtered-DFT-spread-OFDM (UF-DFTs-OFDM) can drastically improve the out-of-band emission (OOBE) caused by the discontinuity between symbols in the conventional cyclic prefix-based DFTs-OFDM (CP-DFTs-OFDM). However, the UF-DFTs-OFDM degrades the communication quality in a long-delay multipath fading environment due to the frequency-domain ripple derived from the long transition time of the low pass filter (LPF) corresponding to the guard interval (GI). In this paper, we propose an enhanced UF-DFTs-OFDM (eUF-DFTs-OFDM) that achieves significantly low OOBE and high communication quality even in a long-delay multipath fading environment. The eUF-DFTs-OFDM applies an LPF with quite short length in combination with the zero padding (ZP) or the CP process. Then, the characteristics of the OOBE, peak-to-average power ratio (PAPR), and block error rate (BLER) are evaluated by computer simulation with the LTE uplink parameters. The result confirms that the eUF-DFTs-OFDM can improve the OOBE by 22.5dB at the channel-edge compared to the CP-DFTs-OFDM, and also improve the ES/N0 to achieve BLER =10-3 by about 2.5dB for QPSK and 16QAM compared to the UF-DFTs-OFDM. For 64QAM, the proposed eUF-DFTs-ODFDM can eliminate the error floor of the UF-DFTs-OFDM. These results indicate that the proposed eUF-DFTs-OFDM can significantly reduce the OOBE while maintaining the same level of communication quality as the CP-DFTs-OFDM even in long-delay multipath environment.

  • Evaluation of Heavy-Ion-Induced Single Event Upset Cross Sections of a 65-nm Thin BOX FD-SOI Flip-Flops Composed of Stacked Inverters

    Kentaro KOJIMA  Kodai YAMADA  Jun FURUTA  Kazutoshi KOBAYASHI  

     
    PAPER-Electronic Circuits

      Vol:
    E103-C No:4
      Page(s):
    144-152

    Cross sections that cause single event upsets by heavy ions are sensitive to doping concentration in the source and drain regions, and the structure of the raised source and drain regions especially in FDSOI. Due to the parasitic bipolar effect (PBE), radiation-hardened flip flops with stacked transistors in FDSOI tend to have soft errors, which is consistent with measurement results by heavy-ion irradiation. Device-simulation results in this study show that the cross section is proportional to the silicon thickness of the raised layer and inversely proportional to the doping concentration in the drain. Increasing the doping concentration in the source and drain region enhance the Auger recombination of carriers there and suppresses the parasitic bipolar effect. PBE is also suppressed by decreasing the silicon thickness of the raised layer. Cgg-Vgs and Ids-Vgs characteristics change smaller than soft error tolerance change. Soft error tolerance can be effectively optimized by using these two determinants with only a small impact on transistor characteristics.

  • Master-Slave FF Using DICE Capable of Tolerating Soft Errors Occurring Around Clock Edge

    Kazuteru NAMBA  

     
    LETTER-Dependable Computing

      Pubricized:
    2020/01/06
      Vol:
    E103-D No:4
      Page(s):
    892-895

    This letter reveals that an edge-triggered master-slave flip-flop (FF) using well-known soft error tolerant DICE (dual interlocked storage cell) is vulnerable to soft errors occurring around clock edge. This letter presents a design of a soft error tolerant FF based on the master-slave FF using DICE. The proposed design modifies the connection between the master and slave latches to make the FF not vulnerable to these errors. The hardware overhead is almost the same as that for the original edge-triggered FF using the DICE.

  • SOH Aware System-Level Battery Management Methodology for Decentralized Energy Network

    Daichi WATARI  Ittetsu TANIGUCHI  Takao ONOYE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E103-A No:3
      Page(s):
    596-604

    The decentralized energy network is one of the promising solutions as a next-generation power grid. In this system, each house has a photovoltaic (PV) panel as a renewable energy source and a battery which is an essential component to balance between generation and demand. The common objective of the battery management on such systems is to minimize only the purchased energy from a power company, but battery degradation caused by charge/discharge cycles is also a serious problem. This paper proposes a State-of-Health (SOH) aware system-level battery management methodology for the decentralized energy network. The power distribution problem is often solved with mixed integer programming (MIP), and the proposed MIP formulation takes into account the SOH model. In order to minimize the purchased energy and reduce the battery degradation simultaneously, the optimization problem is divided into two stages: 1) the purchased energy minimization, and 2) the battery aging factor reducing, and the trade-off exploration between the purchased energy and the battery degradation is available. Experimental results show that the proposed method achieves the better trade-off and reduces the battery aging cost by 14% over the baseline method while keeping the purchased energy minimum.

  • Parameter Estimation for Multiple Chirp Signals Based on Single Channel Nyquist Folding Receiver

    Zhaoyang QIU  Qi ZHANG  Minhong SUN  Jun ZHU  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:3
      Page(s):
    623-628

    The modern radar signals are in a wide frequency space. The receiving bandwidth of the radar reconnaissance receiver should be wide enough to intercept the modern radar signals. The Nyquist folding receiver (NYFR) is a novel wideband receiving architecture and it has a high intercept probability. Chirp signals are widely used in modern radar system. Because of the wideband receiving ability, the NYFR will receive the concurrent multiple chirp signals. In this letter, we propose a novel parameter estimation algorithm for the multiple chirp signals intercepted by single channel NYFR. Compared with the composite NYFR, the proposed method can save receiving resources. In addition, the proposed approach can estimate the parameters of the chirp signals even the NYFR outputs are under frequency aliasing circumstance. Simulation results show the efficacy of the proposed method.

  • Outage Performance of Multi-Carrier Relay Selections in Multi-Hop OFDM with Index Modulation

    Pengli YANG  Fuqi MU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E103-A No:3
      Page(s):
    638-642

    In this letter, we adopt two multi-carrier relay selections, i.e., bulk and per-subcarrier (PS), to the multi-hop decode-and-forward relaying orthogonal frequency-division multiplexing with index modulation (OFDM-IM) system. Particularly, in the form of average outage probability (AOP), the influence of joint selection and non-joint selection acting on the last two hops on the system is analyzed. The closed-form expressions of AOPs and the asymptotic AOPs expressions at high signal-to-noise ratio are given and verified by numerical simulations. The results show that both bulk and PS can achieve full diversity order and that PS can provide additional power gain compared to bulk when JS is used. The theoretical analyses in this letter provide an insight into the combination of OFDM-IM and cooperative communication.

  • Theoretical Estimation of Lunar Soil Reflection Coefficients in Radiofrequency Communication Bands

    Francisco J. GARCIA-DE-QUIROS  Gianmarco RADICE  José A. CARRASCO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/09/20
      Vol:
    E103-B No:3
      Page(s):
    224-228

    When considering the deployment of a radio communications network, the study of multipath interference and its impact on the quality of signal reception is of the outmost importance in order to meet the necessary performance requirements. This work considers specifically the case of the lunar surface as the mission scenario for a community of autonomous mobile exploration robots, which communicate through a radiofrequency network to accomplish their mission. In this application, the low height of the mobile robots makes the influence of multipath interference effects on the performance of the radio communication channel relevant. However, no specific information about lunar soil reflection coefficients characteristics is available for radiofrequency communication bands. This work reviews the literature on the electrical parameter of Lunar soil. From this base, the reflection coefficients are estimated for the assumed radio profile in different communications frequency bands. Finally, the results obtained are discussed.

  • Identifying Link Layer Home Network Topologies Using HTIP

    Yoshiyuki MIHARA  Shuichi MIYAZAKI  Yasuo OKABE  Tetsuya YAMAGUCHI  Manabu OKAMOTO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/12/03
      Vol:
    E103-D No:3
      Page(s):
    566-577

    In this article, we propose a method to identify the link layer home network topology, motivated by applications to cost reduction of support centers. If the topology of home networks can be identified automatically and efficiently, it is easier for operators of support centers to identify fault points. We use MAC address forwarding tables (AFTs) which can be collected from network devices. There are a couple of existing methods for identifying a network topology using AFTs, but they are insufficient for our purpose; they are not applicable to some specific network topologies that are typical in home networks. The advantage of our method is that it can handle such topologies. We also implemented these three methods and compared their running times. The result showed that, despite its wide applicability, our method is the fastest among the three.

  • An Efficient Learning Algorithm for Regular Pattern Languages Using One Positive Example and a Linear Number of Membership Queries

    Satoshi MATSUMOTO  Tomoyuki UCHIDA  Takayoshi SHOUDAI  Yusuke SUZUKI  Tetsuhiro MIYAHARA  

     
    PAPER

      Pubricized:
    2019/12/23
      Vol:
    E103-D No:3
      Page(s):
    526-539

    A regular pattern is a string consisting of constant symbols and distinct variable symbols. The language of a regular pattern is the set of all constant strings obtained by replacing all variable symbols in the regular pattern with non-empty strings. The present paper deals with the learning problem of languages of regular patterns within Angluin's query learning model, which is an established mathematical model of learning via queries in computational learning theory. The class of languages of regular patterns was known to be identifiable from one positive example using a polynomial number of membership queries, in the query learning model. In present paper, we show that the class of languages of regular patterns is identifiable from one positive example using a linear number of membership queries, with respect to the length of the positive example.

281-300hit(4758hit)