The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ITO(570hit)

41-60hit(570hit)

  • Noise-Robust Distorted Born Iterative Method with Prior Estimate for Microwave Ablation Monitoring Open Access

    Yuriko TAKAISHI  Shouhei KIDERA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2020/10/06
      Vol:
    E104-C No:4
      Page(s):
    148-152

    A noise-robust and accuracy-enhanced microwave imaging algorithm is presented for microwave ablation monitoring of cancer treatment. The ablation impact of dielectric change can be assessed by microwave inverse scattering analysis, where the dimension and dielectric drop of the ablation zone enable safe ablation monitoring. We focus on the distorted Born iterative method (DBIM), which is applicable to highly heterogeneous and contrasted dielectric profiles. As the reconstruction accuracy and convergence speed of DBIM depend largely on the initial estimate of the dielectric profile or noise level, this study exploits a prior estimate of the DBIM for the pre-ablation state to accelerate the convergence speed and introduces the matched-filter-based noise reduction scheme in the DBIM framework. The two-dimensional finite-difference time-domain numerical test with realistic breast phantoms shows that our method significantly enhances the reconstruction accuracy with a lower computational cost.

  • An Exploratory Study of Copyright Inconsistency in the Linux Kernel

    Shi QIU  Daniel M. GERMAN  Katsuro INOUE  

     
    PAPER-Software Engineering

      Pubricized:
    2020/11/17
      Vol:
    E104-D No:2
      Page(s):
    254-263

    Software copyright claims an exclusive right for the software copyright owner to determine whether and under what conditions others can modify, reuse, or redistribute this software. For Free and Open Source Software (FOSS), it is very important to identify the copyright owner who can control those activities with license compliance. Copyright notice is a few sentences mostly placed in the header part of a source file as a comment or in a license document in a FOSS project, and it is an important clue to establish the ownership of a FOSS project. Repositories of FOSS projects contain rich and varied information on the development including the source code contributors who are also an important clue to establish the ownership. In this paper, as a first step of understanding copyright owner, we will explore the situation of the software copyright in the Linux kernel, a typical example of FOSS, by analyzing and comparing two kinds of datasets, copyright notices in source files and source code contributors in the software repositories. The discrepancy between two kinds of analysis results is defined as copyright inconsistency. The analysis result has indicated that copyright inconsistencies are prevalent in the Linux kernel. We have also found that code reuse, affiliation change, refactoring, support function, and others' contributions potentially have impacts on the occurrence of the copyright inconsistencies in the Linux kernel. This study exposes the difficulty in managing software copyright in FOSS, highlighting the usefulness of future work to address software copyright problems.

  • Virtual Vault: A Practical Leakage Resilient Scheme Using Space-Hard Ciphers

    Yuji KOIKE  Takuya HAYASHI  Jun KURIHARA  Takanori ISOBE  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    182-189

    Due to the legal reform on the protection of personal information in US/Japan and the enforcement of the General Data Protection Regulation (GDPR) in Europe, service providers are obliged to more securely manage the sensitive data stored in their server. In order to protect this kind of data, they generally employ a cryptographic encryption scheme and secure key management schemes such as a Hardware Security Module (HSM) and Trusted Platform Module (TPM). In this paper, we take a different approach based on the space-hard cipher. The space-hard cipher has an interesting property called the space hardness. Space hardness guarantees sufficient security against the adversary who gains a part of key data, e.g., 1/4 of key data. Combined with a simple network monitoring technique, we develop a practical leakage resilient scheme Virtual Vault, which is secure against the snapshot adversary who has full access to the memory in the server for a short period. Importantly, Virtual Vault is deployable by only a low-price device for network monitoring, e.g. L2 switch, and software of space-hard ciphers and packet analyzer, while typical solutions require a dedicated hardware for secure key managements such as HSM and TPM. Thus, Virtual Vault is easily added on the existing servers which do not have such dedicated hardware.

  • Effect of Tunnel Pits Radius Variation on the Electric Characteristics of Aluminum Electrolytic Capacitor

    Daisaku MUKAIYAMA  Masayoshi YAMAMOTO  

     
    PAPER-Electronic Components

      Pubricized:
    2020/07/14
      Vol:
    E104-C No:1
      Page(s):
    22-33

    Aluminum Electrolytic Capacitors are widely used as the smoothing capacitors in power converter circuits. Recently, there are a lot of studies to detect the residual life of the smoothing Aluminum Electrolytic Capacitors from the information of the operational circuit, such as the ripple voltage and the ripple current of the smoothing capacitor. To develop this kind of technology, more precise impedance models of Aluminum Electrolytic Capacitors become desired. In the case of the low-temperature operation of the power converters, e.g., photovoltaic inverters, the impedance of the smoothing Aluminum Electrolytic Capacitor is the key to avoid the switching element failure due to the switching surge. In this paper, we introduce the impedance calculation model of Aluminum Electrolytic Capacitors, which provides accurate impedance values in wide temperature and frequency ranges.

  • Fundamental Investigation of a Grating Consisting of InSb-Coated Dielectric Cylinders on a Substrate in the THz Regime

    Jun SHIBAYAMA  Sumire TAKAHASHI  Junji YAMAUCHI  Hisamatsu NAKANO  

     
    PAPER

      Pubricized:
    2020/03/24
      Vol:
    E103-C No:11
      Page(s):
    567-574

    A grating consisting of a periodic array of InSb-coated dielectric cylinders on a substrate is analyzed at THz frequencies using the frequency-dependent finite-difference time-domain method based on the trapezoidal recursive convolution technique. The transmission characteristics of an infinite periodic array are investigated not only at normal incidence but also at oblique incidence. The incident field is shown to be coupled to the substrate due to the guided-mode resonance (GMR), indicating the practical application of a grating coupler. For the sensor application, the frequency shift of the transmission dip is investigated with attention to the variation of the background refractive index. It is found that the shift of the dip involving the surface plasmon resonance is almost ten times as large as that of the dip only from the GMR. We finally analyze a finite periodic array of the cylinders. The field radiation from the array is discussed, when the field propagates through the substrate. It is shown that the radiation direction can be controlled with the frequency of the propagating field.

  • Injection Locking of Rotary Dissipative Solitons in Closed Traveling-Wave Field-Effect Transistor

    Koichi NARAHARA  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2020/05/12
      Vol:
    E103-C No:11
      Page(s):
    693-696

    The injection locking properties of rotary dissipative solitons developed in a closed traveling-wave field-effect transistor (TWFET) are examined. A TWFET can support the waveform-invariant propagation of solitary pulses called dissipative solitons (DS) by balancing dispersion, nonlinearity, dissipation, and field-effect transistor gain. Applying sinusoidal signals to the closed TWFET assumes the injection-locked behavior of the rotary DS; the solitons' velocity is autonomously tuned to match the rotation and external frequencies. This study clarifies the qualitative properties of injection-locked DS using numerical and experimental approaches.

  • Dual-Polarized Metasurface Using Multi-Layer Ceramic Capacitors for Radar Cross Section Reduction

    Thanh-Binh NGUYEN  Naoyuki KINAI  Naobumi MICHISHITA  Hisashi MORISHITA  Teruki MIYAZAKI  Masato TADOKORO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2020/02/18
      Vol:
    E103-B No:8
      Page(s):
    852-859

    This paper proposes a dual-polarized metasurface that utilizes multi-layer ceramic capacitors (MLCCs) for radar cross-section (RCS) reduction in the 28GHz band of the quasi-millimeter band. MLCCs are very small in size; therefore, miniaturization of the unit cell structure of the metamaterial can be expected, and the MLCCs can be periodically loaded onto a narrow object. First, the MLCC structure was modeled as a basic structure, and the effective permeability of the MLCC was determined to investigate the influence of the arrangement direction on MLCC interaction. Next, the unit cell structure of the dual-polarized metasurface was designed for an MLCC set on a dielectric substrate. By analyzing the infinite periodic structure and finite structure, the monostatic reduction characteristics, oblique incidence characteristics, and dual-polarization characteristics of the proposed metasurface were evaluated. In the case of the MLCCs arranged in the same direction, the monostatic RCS reduction was approximately 30dB at 29.8GHz, and decreased when the MLCCs were arranged in a checkerboard pattern. The monostatic RCS reductions for the 5 × 5, 10 × 10, and 20 × 20 divisions were roughly the same, i.e., 10.8, 9.9, and 10.3dB, respectively. Additionally, to validate the simulated results, the proposed dual-polarized metasurface was fabricated and measured. The measured results were found to approximately agree with the simulated results, confirming that the RCS can be reduced for dual-polarization operation.

  • Driver Drowsiness Estimation by Parallel Linked Time-Domain CNN with Novel Temporal Measures on Eye States

    Kenta NISHIYUKI  Jia-Yau SHIAU  Shigenori NAGAE  Tomohiro YABUUCHI  Koichi KINOSHITA  Yuki HASEGAWA  Takayoshi YAMASHITA  Hironobu FUJIYOSHI  

     
    PAPER

      Pubricized:
    2020/04/10
      Vol:
    E103-D No:6
      Page(s):
    1276-1286

    Driver drowsiness estimation is one of the important tasks for preventing car accidents. Most of the approaches are binary classification that classify a driver is significantly drowsy or not. Multi-level drowsiness estimation, that detects not only significant drowsiness but also moderate drowsiness, is helpful to a safer and more comfortable car system. Existing approaches are mostly based on conventional temporal measures which extract temporal information related to eye states, and these measures mainly focus on detecting significant drowsiness for binary classification. For multi-level drowsiness estimation, we propose two temporal measures, average eye closed time (AECT) and soft percentage of eyelid closure (Soft PERCLOS). Existing approaches are also based on a time domain convolutional neural network (CNN) as deep neural network models, of which layers are linked sequentially. The network model extracts features mainly focusing on mono-temporal resolution. We found that features focusing on multi-temporal resolution are effective to multi-level drowsiness estimation, and we propose a parallel linked time-domain CNN to extract the multi-temporal features. We collected an own dataset in a real environment and evaluated the proposed methods with the dataset. Compared with existing temporal measures and network models, Our system outperforms the existing approaches on the dataset.

  • Transmission-Quality-Aware Online Network Design and Provisioning Enabled by Optical Performance Monitoring

    Keisuke KAYANO  Yojiro MORI  Hiroshi HASEGAWA  Ken-ichi SATO  Shoichiro ODA  Setsuo YOSHIDA  Takeshi HOSHIDA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2019/12/04
      Vol:
    E103-B No:6
      Page(s):
    670-678

    The spectral efficiency of photonic networks can be enhanced by the use of higher modulation orders and narrower channel bandwidth. Unfortunately, these solutions are precluded by the margins required to offset uncertainties in system performance. Furthermore, as recently highlighted, the disaggregation of optical transport systems increases the required margin. We propose here highly spectrally efficient networks, whose margins are minimized by transmission-quality-aware adaptive modulation-order/channel-bandwidth assignment enabled by optical performance monitoring (OPM). Their effectiveness is confirmed by experiments on 400-Gbps dual-polarization quadrature phase shift keying (DP-QPSK) and 16-ary quadrature amplitude modulation (DP-16QAM) signals with the application of recently developed Q-factor-based OPM. Four-subcarrier 32-Gbaud DP-QPSK signals within 150/162.5/175GHz and two-subcarrier 32-Gbaud DP-16QAM signals within 75/87.5/100GHz are experimentally analyzed. Numerical network simulations in conjunction with the experimental results demonstrate that the proposed scheme can drastically improve network spectral efficiency.

  • A Release-Aware Bug Triaging Method Considering Developers' Bug-Fixing Loads

    Yutaro KASHIWA  Masao OHIRA  

     
    PAPER-Software Engineering

      Pubricized:
    2019/10/25
      Vol:
    E103-D No:2
      Page(s):
    348-362

    This paper proposes a release-aware bug triaging method that aims to increase the number of bugs that developers can fix by the next release date during open-source software development. A variety of methods have been proposed for recommending appropriate developers for particular bug-fixing tasks, but since these approaches only consider the developers' ability to fix the bug, they tend to assign many of the bugs to a small number of the project's developers. Since projects generally have a release schedule, even excellent developers cannot fix all the bugs that are assigned to them by the existing methods. The proposed method places an upper limit on the number of tasks which are assigned to each developer during a given period, in addition to considering the ability of developers. Our method regards the bug assignment problem as a multiple knapsack problem, finding the best combination of bugs and developers. The best combination is one that maximizes the efficiency of the project, while meeting the constraint where it can only assign as many bugs as the developers can fix during a given period. We conduct the case study, applying our method to bug reports from Mozilla Firefox, Eclipse Platform and GNU compiler collection (GCC). We find that our method has the following properties: (1) it can prevent the bug-fixing load from being concentrated on a small number of developers; (2) compared with the existing methods, the proposed method can assign a more appropriate amount of bugs that each developer can fix by the next release date; (3) it can reduce the time taken to fix bugs by 35%-41%, compared with manual bug triaging;

  • Transferring Adaptive Bit Rate Streaming Quality Models from H.264/HD to H.265/4K-UHD Open Access

    Pierre LEBRETON  Kazuhisa YAMAGISHI  

     
    PAPER-Network

      Pubricized:
    2019/06/25
      Vol:
    E102-B No:12
      Page(s):
    2226-2242

    In this paper the quality of adaptive bit rate video streaming is investigated and two state-of-the-art models, i.e., the NTT audiovisual quality-estimation and ITU-T P.1203 models, are considered. This paper shows how these models can be applied to new conditions, e.g., 4K ultra high definition (4K-UHD) videos encoded using H.265, considering that they were originally designed and trained for HD videos encoded with H.264. Six subjective evaluations involving up to 192 participants and a large variety of test conditions, e.g., durations from 10sec to 3min, coding-quality variation, and stalling events, were conducted on both TV and mobile devices. Using the subjective data, this paper addresses how models and coefficients can be transferred to new conditions. A comparison between state-of-the-art models is conducted, showing the performance of transferred and retrained models. It is found that other video-quality estimation models, such as VMAF, can be used as input of the NTT and ITU-T P.1203 long-term pooling modules, allowing these other video-quality-estimation models to support the specificities of adaptive bit-rate-streaming scenarios. Finally, all retrained coefficients are detailed in this paper allowing future work to directly reuse the results of this study.

  • Understanding Developer Commenting in Code Reviews

    Toshiki HIRAO  Raula GAIKOVINA KULA  Akinori IHARA  Kenichi MATSUMOTO  

     
    PAPER

      Pubricized:
    2019/09/11
      Vol:
    E102-D No:12
      Page(s):
    2423-2432

    Modern code review is a well-known practice to assess the quality of software where developers discuss the quality in a web-based review tool. However, this lightweight approach may risk an inefficient review participation, especially when comments becomes either excessive (i.e., too many) or underwhelming (i.e., too few). In this study, we investigate the phenomena of reviewer commenting. Through a large-scale empirical analysis of over 1.1 million reviews from five OSS systems, we conduct an exploratory study to investigate the frequency, size, and evolution of reviewer commenting. Moreover, we also conduct a modeling study to understand the most important features that potentially drive reviewer comments. Our results find that (i) the number of comments and the number of words in the comments tend to vary among reviews and across studied systems; (ii) reviewers change their behaviours in commenting over time; and (iii) human experience and patch property aspects impact the number of comments and the number of words in the comments.

  • Quantifying Dynamic Leakage - Complexity Analysis and Model Counting-based Calculation - Open Access

    Bao Trung CHU  Kenji HASHIMOTO  Hiroyuki SEKI  

     
    PAPER-Software System

      Pubricized:
    2019/07/11
      Vol:
    E102-D No:10
      Page(s):
    1952-1965

    A program is non-interferent if it leaks no secret information to an observable output. However, non-interference is too strict in many practical cases and quantitative information flow (QIF) has been proposed and studied in depth. Originally, QIF is defined as the average of leakage amount of secret information over all executions of a program. However, a vulnerable program that has executions leaking the whole secret but has the small average leakage could be considered as secure. This counter-intuition raises a need for a new definition of information leakage of a particular run, i.e., dynamic leakage. As discussed in [5], entropy-based definitions do not work well for quantifying information leakage dynamically; Belief-based definition on the other hand is appropriate for deterministic programs, however, it is not appropriate for probabilistic ones.In this paper, we propose new simple notions of dynamic leakage based on entropy which are compatible with existing QIF definitions for deterministic programs, and yet reasonable for probabilistic programs in the sense of [5]. We also investigated the complexity of computing the proposed dynamic leakage for three classes of Boolean programs. We also implemented a tool for QIF calculation using model counting tools for Boolean formulae. Experimental results on popular benchmarks of QIF research show the flexibility of our framework. Finally, we discuss the improvement of performance and scalability of the proposed method as well as an extension to more general cases.

  • Reliability Analysis of Power and Communication Network in Drone Monitoring System

    Fengying MA  Yankai YIN  Wei CHEN  

     
    PAPER

      Pubricized:
    2019/05/02
      Vol:
    E102-B No:10
      Page(s):
    1991-1997

    The distinctive characteristics of unmanned aerial vehicle networks (UAVNs), including highly dynamic network topology, high mobility, and open-air wireless environments, may make UAVNs vulnerable to attacks and threats. Due to the special security requirements, researching in the high reliability of the power and communication network in drone monitoring system become special important. The reliability of the communication network and power in the drone monitoring system has been studied. In order to assess the reliability of the system power supply in the drone emergency monitoring system, the accelerated life tests under constant stress were presented based on the exponential distribution. Through a comparative analysis of lots of factors, the temperature was chosen as the constant accelerated stress parameter. With regard to the data statistical analysis, the type-I censoring sample method was put forward. The mathematical model of the drone monitoring power supply was established and the average life expectancy curve was obtained under different temperatures through the analysis of experimental data. The results demonstrated that the mathematical model and the average life expectancy curve were fit for the actual very well. With overall consideration of the communication network topology structure and network capacity the improved EED-SDP method was put forward in drone monitoring. It is concluded that reliability analysis of power and communication network in drone monitoring system is remarkably important to improve the reliability of drone monitoring system.

  • A 385×385μm2 0.165V 0.27nW Fully-Integrated Supply-Modulated OOK Transmitter in 65nm CMOS for Glasses-Free, Self-Powered, and Fuel-Cell-Embedded Continuous Glucose Monitoring Contact Lens Open Access

    Kenya HAYASHI  Shigeki ARATA  Ge XU  Shunya MURAKAMI  Cong Dang BUI  Atsuki KOBAYASHI  Kiichi NIITSU  

     
    BRIEF PAPER

      Vol:
    E102-C No:7
      Page(s):
    590-594

    This work presents the lowest power consumption sub-mm2 supply-modulated OOK transmitter for self-powering a continuous glucose monitoring (CGM) contact lens. By combining the transmitter with a glucose fuel cell that functions as both the power source and a sensing transducer, a self-powered CGM contact lens was developed. The 385×385μm2 test chip implemented in 65-nm standard CMOS technology operates at 270pW with a supply voltage of 0.165V. Self-powered operation of the transmitter using a 2×2mm2 solid-state glucose fuel cell was thus demonstrated.

  • A Flexible Wireless Sensor Patch for Real-Time Monitoring of Heart Rate and Body Temperature

    Seok-Oh YUN  Jung Hoon LEE  Jin LEE  Choul-Young KIM  

     
    LETTER-Biological Engineering

      Pubricized:
    2019/02/18
      Vol:
    E102-D No:5
      Page(s):
    1115-1118

    Real-time monitoring of heart rate (HR) and body temperature (BT) is crucial for the prognosis and the diagnosis of cardiovascular disease and healthcare. Since current monitoring systems are too rigid and bulky, it is not easy to attach them to the human body. Also, their large current consumption limits the working time. In this paper, we develop a wireless sensor patch for HR and BT by integrating sensor chip, wireless communication chip, and electrodes on the flexible boards that is covered with non-toxic, but skin-friendly adhesive patch. Our experimental results reveal that the flexible wireless sensor patch can efficiently detect early diseases by monitoring the HR and BT in real time.

  • A Parallel Flow Monitoring Technique That Achieves Accurate Delay Measurement

    Kohei WATABE  Shintaro HIRAKAWA  Kenji NAKAGAWA  

     
    PAPER-Network Management/Operation

      Pubricized:
    2018/10/03
      Vol:
    E102-B No:4
      Page(s):
    865-875

    In this paper, a parallel flow monitoring technique that achieves accurate measurement of end-to-end delay of networks is proposed. In network monitoring tasks, network researchers and practitioners usually monitor multiple probe flows to measure delays on multiple paths in parallel. However, when they measure an end-to-end delay on a path, information of flows except for the flow along the path is not utilized in the conventional method. Generally, paths of flows share common parts in parallel monitoring. In the proposed method, information of flows on paths that share common parts, utilizes to measure delay on a path by partially converting the observation results of a flow to those of another flow. We perform simulations to confirm that the observation results of 72 parallel flows of active measurement are appropriately converted between each other. When the 99th-percentile of the end-to-end delay for each flow are measured, the accuracy of the proposed method is doubled compared with the conventional method.

  • Software Engineering Data Analytics: A Framework Based on a Multi-Layered Abstraction Mechanism

    Chaman WIJESIRIWARDANA  Prasad WIMALARATNE  

     
    LETTER-Software Engineering

      Pubricized:
    2018/12/04
      Vol:
    E102-D No:3
      Page(s):
    637-639

    This paper presents a concept of a domain-specific framework for software analytics by enabling querying, modeling, and integration of heterogeneous software repositories. The framework adheres to a multi-layered abstraction mechanism that consists of domain-specific operators. We showcased the potential of this approach by employing a case study.

  • Delta-Sigma ADC Based on Switched-Capacitor Integrator with FIR Filter Structure Open Access

    Satoshi SAIKATSU  Akira YASUDA  

     
    PAPER

      Vol:
    E102-A No:3
      Page(s):
    498-506

    This paper presents a novel delta-sigma modulator that uses a switched-capacitor (SC) integrator with the structure of a finite impulse response (FIR) filter in a loop filter configuration. The delta-sigma analog-to-digital converter (ΔΣADC) is used in various conversion systems to enable low-power, high-accuracy conversion using oversampling and noise shaping. Increasing the gain coefficient of the integrator in the loop filter configuration of the ΔΣADC suppresses the quantization noise that occurs in the signal band. However, there is a trade-off relationship between the integrator gain coefficient and system stability. The SC integrator, which contains an FIR filter, can suppress quantization noise in the signal band without requiring an additional operational amplifier. Additionally, it can realize a higher signal-to-quantization noise ratio. In addition, the poles that are added by the FIR filter structure can improve the system's stability. It is also possible to improve the flexibility of the pole placement in the system. Therefore, a noise transfer function that does not contain a large gain peak is realized. This results in a stable system operation. This paper presents the essential design aspects of a ΔΣADC with an FIR filter. Two types of simulation results are examined for the proposed first- and second-order, and these results confirm the effectiveness of the proposed architecture.

  • Development of Acoustic Nonverbal Information Estimation System for Unconstrained Long-Term Monitoring of Daily Office Activity

    Hitomi YOKOYAMA  Masano NAKAYAMA  Hiroaki MURATA  Kinya FUJITA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2018/11/12
      Vol:
    E102-D No:2
      Page(s):
    331-345

    Aimed at long-term monitoring of daily office conversations without recording the conversational content, a system is presented for estimating acoustic nonverbal information such as utterance duration, utterance frequency, and turn-taking. The system combines a sound localization technique based on the sound energy distribution with 16 beam-forming microphone-array modules mounted in the ceiling for reducing the influence of multiple sound reflection. Furthermore, human detection using a wide field of view camera is integrated to the system for more robust speaker estimation. The system estimates the speaker for each utterance and calculates nonverbal information based on it. An evaluation analyzing data collected over ten 12-hour workdays in an office with three assigned workers showed that the system had 72% speech segmentation detection accuracy and 86% speaker identification accuracy when utterances were correctly detected. Even with false voice detection and incorrect speaker identification and even in cases where the participants frequently made noise or where seven participants had gathered together for a discussion, the order of the amount of calculated acoustic nonverbal information uttered by the participants coincided with that based on human-coded acoustic nonverbal information. Continuous analysis of communication dynamics such as dominance and conversation participation roles through nonverbal information will reveal the dynamics of a group. The main contribution of this study is to demonstrate the feasibility of unconstrained long-term monitoring of daily office activity through acoustic nonverbal information.

41-60hit(570hit)