The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ITO(570hit)

281-300hit(570hit)

  • Sandwich Structure Type RF-MEMS Variable Capacitor with Low Voltage Controllability and Wide Tuning Range

    Takuma NISHIMOTO  Kiichi YAMASHITA  Kenichi OHHATA  

     
    LETTER-Devices/Circuits for Communications

      Vol:
    E91-B No:2
      Page(s):
    572-574

    A sandwich structure type RF-MEMS variable capacitor is proposed, that consists of a movable middle plate, and fixed top and bottom plates having different areas. Simulation results show that the proposed capacitor can operate at a control voltage of less than 3.2 V; it achieves a tuning range of 4.8:1 (capacitance:630-130 fF) in the range of 0 to 3.2 V and at a frequency of 7.5 GHz.

  • Effects of the Temporal Fine Structure in Different Frequency Bands on Mandarin Tone Perception

    Lin YANG  Jianping ZHANG  Jian SHAO  Yonghong YAN  

     
    LETTER-Speech and Hearing

      Vol:
    E91-D No:2
      Page(s):
    371-374

    This letter evaluates the relative contributions of temporal fine structure cues in various frequency bands to Mandarin tone perception using novel "auditory chimaeras". Our results confirm the importance of temporal fine structure cues to lexical tone perception and the dominant region of lexical tone perception is found, namely the second to fifth harmonics can contribute no less than the fundamental frequency itself.

  • New Methods for Maintaining Fairness between Well-Behaved TCP Flows and Tampered-TCP Flows at Edge Routers

    Junichi MARUYAMA  Go HASEGAWA  Masayuki MURATA  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E91-B No:1
      Page(s):
    197-206

    In this paper, we propose new methods which detect tampered-TCP connections at edge routers and protect well-behaved TCP connections from tampered-TCP connections, which results in fairness among TCP connections. The proposed methods monitor the TCP packets at an edge router and estimate the window size or the throughput for each TCP connection. By using estimation results, the proposed methods assess whether each TCP connection is tampered or not and drop packets intentionally if necessary to improve the fairness amongst TCP connections. From the results of simulation experiments, we confirm that the proposed methods can accurately identify tampered-TCP connections and regulate throughput ratio between tampered-TCP connections and competing TCP Reno connections to about 1.

  • Covariance Control for Bilinear Stochastic Systems via Sliding Mode Control Concept

    Koan-Yuh CHANG  Tsung-Lin CHENG  

     
    LETTER-Systems and Control

      Vol:
    E90-A No:12
      Page(s):
    2957-2961

    Based on the concept of sliding mode control, we study the problem of steady state covariance assignment for bilinear stochastic systems. We find that the invariance property of sliding mode control ensures nullity of the matched bilinear term in the system on the sliding mode. By suitably using Ito calculus, the controller u(t) can be designed to force the feedback gain matrix G to achieve the goal of steady state covariance assignment. We also compare our method with other approaches via simulations.

  • Dual Priority Scheduling Based on Power Adjustment Context Switching for Ubiquitous Sensor Network

    Dong-Sun KIM  Taeo HWANG  Seung-Yerl LEE  Kwang-Ho WON  Byung-Soo KIM  Seong-Dong KIM  Duck-Jin CHUNG  

     
    PAPER

      Vol:
    E90-B No:12
      Page(s):
    3419-3425

    The Ubiquitous sensor network (USN) node is required to operate for several months with limited system resources such as memory and power. The typical USN node is in the active state for less than 1% of its several month lifetime and waits in the inactive state for the remaining 99% of its lifetime. This paper suggests a power adjustment dual priority scheduler (PA-DPS) that offers low power consumption while meeting the USN requirements by estimating power consumption in the USN node. PA-DPS has been designed based on the event-driven approach and the dual-priority scheduling structure, which has been conventionally suggested in the real-time system field. From experimental results, PA-DPS reduced the inactive mode current up to 40% under the 1% duty cycle.

  • A Fully Integrated SoC with Digital MAC Processor and Transceiver for Ubiquitous Sensor Network at 868/915 MHz

    Dong-Sun KIM  Hae-Moon SEO  Seung-Yerl LEE  Yeon-Kug MOON  Byung-Soo KIM  Tae-Ho HWANG  Duck-Jin CHUNG  

     
    PAPER

      Vol:
    E90-B No:12
      Page(s):
    3336-3345

    A single-chip ubiquitous sensor network (USN) system-on-a-chip (SoC) for small program memory size and low power has been proposed and integrated in a 0.18-µm CMOS technology. Proposed single-chip USN SoC is mainly consists of radio for 868/915 MHz, analog building block, complete digital baseband physical layer (PHY) and media access control (MAC) functions. The transceiver's analog building block includes a low-noise amplifier, mixer, channel filter, receiver signal-strength indication, frequency synthesizer, voltage-controlled oscillator, and power amplifier. In addition, digital building block consists of differential binary phase-shift keying (DPSK) modulation, demodulation, carrier frequency offset compensation, auto-gain control, embedded 8-bit microcontroller, and digital MAC function. Digital MAC function supports 128 bit advanced encryption standard (AES), cyclic redundancy check (CRC), inter-symbol timing check, MAC frame control, and automatic retransmission. These digital MAC functions reduce the processing power requirements of embedded microcontroller and program memory size by up to 56%. The cascaded noise figure and sensitivity of the overall receiver are 9.5 dB and -99 dBm, respectively. The overall transmitter achieves less than 6.3% error vector magnitude (EVM). The current consumption is 14 mA for reception mode and 16 mA for transmission mode.

  • An Integrated Sleep-Scheduling and Routing Algorithm in Ubiquitous Sensor Networks Based on AHP

    Xiaoling WU  Jinsung CHO  Brian J. D'AURIOL  Sungyoung LEE  Young-Koo LEE  

     
    PAPER

      Vol:
    E90-B No:12
      Page(s):
    3392-3401

    Ubiquitous sensor networks (USNs) are comprised of energy constrained nodes. This limitation has led to the crucial need for energy-aware protocols to produce an efficient network. We propose a sleep scheduling scheme for balancing energy consumption rates in a single hop cluster based network using Analytical Hierarchy Process (AHP). We consider three factors contributing to the optimal nodes scheduling decision and they are the distance to cluster head (CH), residual energy, and sensing coverage overlapping, respectively. We also propose an integrated sleep scheduling and geographical multi-path routing scheme for USNs by AHP. The sleep scheduling is redesigned to adapt the multi-hop case. For the proposed routing protocol, the distance to the destination location, remaining battery capacity, and queue size of candidate sensor nodes in the local communication range are taken into consideration for next hop relay node selection. The proposed schemes are observed to improve network lifetime and conserve energy without compromising desired coverage. In the multi-hop case, it can further reduce the packet loss rate and link failure rate since the buffer capacity is considered.

  • A Generic Localized Broadcast Framework in Mobile Ad Hoc Ubiquitous Sensor Networks

    Hui XU  Brian J. D'AURIOL  Jinsung CHO  Sungyoung LEE  Byeong-Soo JEONG  

     
    PAPER

      Vol:
    E90-B No:12
      Page(s):
    3434-3444

    In this paper, we investigate the critical low coverage problem of position aware localized efficient broadcast in mobile ad hoc ubiquitous sensor networks and propose a generic framework for it. The framework is to determine a small subset of nodes and minimum transmission radiuses based on snapshots of network state (local views) along the broadcast process. To guarantee the accuracy of forward decisions, based on historical location information nodes will predict neighbors' positions at future actual transmission time and then construct predicted and synchronized local views rather than simply collect received "Hello" messages. Several enhancement technologies are also proposed to compensate the inaccuracy of prediction and forward decisions. To verify the effectiveness of our framework we apply existing efficient broadcast algorithms to it. Simulation results show that new algorithms, which are derived from the generic framework, can greatly increase the broadcast coverage ratio.

  • Ubiquitous Networks with Radio Space Extension over Broadband Networks

    Haruhisa ICHIKAWA  Masashi SHIMIZU  Kazunori AKABANE  

     
    PAPER

      Vol:
    E90-B No:12
      Page(s):
    3445-3451

    Many devices are expected to be networked with wireless appliances such as radio frequency identification (RFID) tags and wireless sensors, and the number of such appliances will greatly exceed the number of PCs and mobile telephones. This may lead to an essential change in the network architecture. This paper proposes a new network architecture called the appliance defined ubiquitous network (ADUN), in which wireless appliances will be networked without network protocol standards. Radio space information rather than individual appliance signals is carried over the ADUN in the form of a stream with strong privacy/security control. It should be noted that this is different from the architectural principles of the Internet. We discuss a network-appliance interface that is sustainable over a long period, and show that the ADUN overhead will be within the scope of the broadband network in the near future.

  • A Scalable Model of Shielded Capacitors Using Mirror Image Effects

    Koji ISHIBASHI  Ivan Chee-Hong LAI  Kyoya TAKANO  Minoru FUJISHIMA  

     
    PAPER

      Vol:
    E90-C No:12
      Page(s):
    2237-2244

    Comb capacitors suitable for use in advanced complementary metal-oxide semiconductor (CMOS) technology nodes are frequently constructed from low metal layers located closely above the conductive silicon substrate. This results in high parasitic capacitances across the thin dielectric between the two layers. Therefore, a shield for reducing this parasitic capacitance is proposed in order to use the comb capacitor at high frequency. From electromagnetic (EM) simulation results using a 3D EM simulator, the quality factor (Q-factor) of the proposed shielded comb capacitor for the differential signal improved by 20% at 30-110 GHz compared to the unshielded capacitor. Consequently, a scalable model is proposed, which operates up to millimeter-wave frequencies. The results are verified by experimental data using fabricated comb capacitors from a 90 nm 1P9M CMOS process. Compared with the experimental results, the simulated common-mode and differential-mode S parameters of the model has a root-mean-square (r.m.s.) error of under 2.1%.

  • A Context-Aware Seamless Interoperator Roaming Management Framework in 4G Networks

    Minsoo LEE  Sehyun PARK  

     
    PAPER

      Vol:
    E90-B No:11
      Page(s):
    3015-3023

    The roaming services with the predefined security associations among the entities in various networks are especially complex. We propose a novel architecture to support future context-aware interoperator roaming services throughout 4G networks by using Roaming Coordinators. We design a secure context management model for the practical use of Smart Cards in the secure roaming services. Our architecture solves the interoperator roaming management problems while minimizing the processing overhead on the mobile nodes.

  • A New Ultrasonic Oscillosensor and Its Application in Biological Information Measurement System Aided by Fuzzy Theory

    Yuya KAMOZAKI  Toshiyuki SAWAYAMA  Kazuhiko TANIGUCHI  Syoji KOBASHI  Katsuya KONDO  Yutaka HATA  

     
    PAPER-Biological Engineering

      Vol:
    E90-D No:11
      Page(s):
    1864-1872

    In this paper, we describe a new ultrasonic oscillosensor and its application in a biological information measurement system. This ultrasonic sensor has a cylindrical tank of 26 mm (diameter)20 mm (height) filled with water and an ultrasonic probe. It detects the vibration of the target object by obtaining echo signals reflected from the water surface. This sensor can noninvasively detect the vibration of a patient by placing it under a bed frame. We propose a recognition system for humans in bed. Using this sensor, we could determine whether or not a patient is in the bed. Moreover, we propose a heart rate monitoring system using this sensor. When our system was tested on four volunteers, we successfully detected a heart rate comparable to that in the case of using an electrocardiograph. Fuzzy logic plays a primary role in the recognition. Consequently, this system can noninvasively determine whether a patient is in the bed as well as their heart rate using a constraint-free and compact device.

  • Performance Monitoring of VoIP Flows for Large Network Operations

    Yoshinori KITATSUJI  Satoshi KATSUNO  Katsuyuki YAMAZAKI  Masato TSURU  Yuji OIE  

     
    PAPER

      Vol:
    E90-B No:10
      Page(s):
    2746-2754

    The monitoring of performance in VoIP traffic has become vital because users generally expect VoIP service quality that is as high as that of PSTN services. A lightweight method of processing by extracting VoIP flows from Internet traffics is proposed in this paper. Estimating delay variations and the packet loss ratio using knowledge about specific features and the characteristics of VoIP flows, i.e., the inter-packet gap (IPG) which is constant in VoIP flows, is also proposed. Simulation with actual traffic trace is used to evaluate the method, and this revealed that delay variations (IPG variance) can be accurately estimated by monitoring only a few percentage of all flows. The proposed method can be used as a first-alert tool to monitor large amounts of flows to detect signs of degradation in VoIP flows. The method can be used by ISPs to estimate whether VoIP flow performance is adequate within their networks and at ingress from other ISPs.

  • A Digitally Assisted Gain and Offset Error Cancellation Technique for a CMOS Pipelined ADC with a 1.5-bit Bit-Block Architecture

    Hiroki SAKURAI  Shigeto TANAKA  Yasuhiro SUGIMOTO  

     
    PAPER-Analog Signal Processing

      Vol:
    E90-A No:10
      Page(s):
    2272-2279

    This paper proposes a very simple method of eliminating the gain and offset errors caused by mismatches of elements, such as capacitors, for a high-speed CMOS pipelined ADC with a 1.5-bit architecture. The gain and offset errors in a bit-block due to capacitor mismatch are analog-to-digital (A-D) converted without correcting errors, but by exchanging capacitors at every clock. The obtained results are digital codes at the output of the ADC, and they contain positive and negative errors in turn. The two consecutive codes are then added in digital form, thus canceling the errors. This results in the two-fold oversampling operation. As the distortion component arises when the input signal frequency increases, a front-end SHA is used to completely eliminate distortion up to the Nyquist frequency. The behavioral simulation of a 14-bit ADC reveals that this CMOS pipelined ADC with a 1.5-bit bit-block architecture, even without a front-end SHA, has more than 70 dB of spurious-free dynamic range (SFDR) for up to an 8 MHz input signal when each of the upper three bit-blocks has gain and offset errors of +0.8% when the clock frequency is 102.4 MHz. Using an SHA in front further improves the SFDR to 95 dB up to the signal frequency bandwidth of 25.6 MHz.

  • An Energy Management Circuit for Self-Powered Ubiquitous Sensor Modules Using Vibration-Based Energy

    Jun PAN  Yasuaki INOUE  Zheng LIANG  

     
    PAPER-Nonlinear Circuits

      Vol:
    E90-A No:10
      Page(s):
    2116-2123

    An energy management circuit is proposed for self-powered ubiquitous sensor modules using vibration-based energy. With the proposed circuit, the sensor modules work with low duty cycle operation. Moreover, a two-tank circuit as a part of the energy management circuit is utilized to solve the problem that the average power density of ambient energy always varies with time while the power consumption of the sensor modules is constant and larger than it. In addition, the long start-up time problem is also avoided with the timing control of the proposed energy management circuit. The CMOS implementation and silicon verification results of the proposed circuit are also presented. Its validity is further confirmed with a vibration-based energy generation. The sensor module is used to supervise the vibration of machines and transfer the vibration signal discontinuously. A piezoelectric element acts as the vibration-to-electricity converter to realize battery-free operation.

  • Detecting and Guarding against Kernel Backdoors through Packet Flow Differentials Open Access

    Cheolho LEE  Kiwook SOHN  

     
    PAPER

      Vol:
    E90-B No:10
      Page(s):
    2638-2645

    In this paper, we present a novel technique to detect and defeat kernel backdoors which cannot be identified by conventional security solutions. We focus on the fact that since the packet flows of common network applications go up and down through the whole network subsystem but kernel backdoors utilize only the lower layers of the subsystem, we can detect kernel backdoors by employing two host-based monitoring sensors (one at higher layer and the other at lower layer) and by inspecting the packet flow differentials. We also provide strategies to mitigate false positives and negatives and to defeat kernel backdoors. To evaluate the effectiveness of the proposed technique, we implemented a detection system (KbGuard) and performed experiments in a simulated environment. The evaluation results indicate that our approach can effectively detect and deactivate kernel backdoors with a high detection rate. We also believe that our research can help prevent stealthy threats of kernel backdoors.

  • Investigation on Seasonal Water Area Change in Lake Sakata Based on POLSAR Image Analysis

    Ryoichi SATO  Yuki YAJIMA  Yoshio YAMAGUCHI  Hiroyoshi YAMADA  

     
    PAPER-Sensing

      Vol:
    E90-B No:9
      Page(s):
    2369-2375

    This paper examines seasonal change of the true water area of Lake "Sakata" by using Polarimetric Synthetic Aperture Radar (POLSAR) image analysis. The true water area includes not only the body of water but also the water area under emerged-plants and/or floating-leave plants in the lake. Statistical POLSAR image analysis is carried out for both X- and L-band data, based on the three-component scattering power decomposition method, where the decomposed components are surface scattering, double-bounce scattering and volume scattering components. From the results of the image analysis for the L-band POLSAR data acquired by Pi-SAR system, it is found that strong double-bounce scattering can be observed at the vicinity of the boundary region between water area and the surrounding emerged-plants area in early and middle summer. This phenomenon is an important factor for environmental monitoring. To verify the generating mechanism of the double-bounce scattering, the Finite-Difference Time-Domain (FDTD) polarimetric scattering analysis is also executed for a simplified boundary model, which simulates the local boundary region around the lake and consists of lots of vertical thin dielectric pillars on a perfect electric conductor (PEC) plate or on a PEC and dielectric hybrid plate. Taking into account the polarimetric feature of the double-bounce scattering obtained by both the FDTD and POLSAR image analyses, one can distinguish the actual water area from the bush of the emerged-plants around the lake, even when the water area is concealed by emerged-plants and/or floating-leave plants. Consequently, it is found that by using the proposed approach, one can estimate the true water area seasonal change for the lake and the surrounding wetland.

  • An Ultra-Wideband (UWB) Bandpass Filter Using Broadside-Coupled Structure and Lumped-Capacitor-Loaded Shunt Stub Resonators

    Keren LI  Yasuhisa YAMAMOTO  Daisuke KURITA  Osamu HASHIMOTO  

     
    PAPER-Passive Devices/Circuits

      Vol:
    E90-C No:9
      Page(s):
    1736-1742

    This paper presents an ultra-wideband (UWB) bandpass filter using a combination of broadside-coupled structure and lumped-capacitor-loaded shunt stub resonator. The broadside-coupled microstrip-to-coplanar waveguide structure provides an ultra-wide bandpass filtering operation and keeps a good stopband at lower frequencies from DC at the same time. The lumped-capacitor-loaded shunt stub resonator creates two transmission zeros (attenuation poles which can be located at the outsides of the two bandedges of the UWB bandpass filter to improve the out-band performance by selecting a suitable combination of the length of the shunt stubs and the capacitance of the loaded chip capacitors. The filter was designed based on electromagnetic simulation for broadside-coupled structure, microwave circuit simulation and experiments for determining the transmission zeros. The filter was fabricated on a one-layer dielectric substrate. The measured results demonstrated that the developed UWB bandpass filter has good performance: low insertion loss about 0.46 dB and low group delay about 0.26 ns at the center of the passband and very flat over the whole passband, and less than -10 dB reflection over the passband. The implemented transmission zeros, particularly at the low frequency end, dramatically improved the out-band performance, leading the filter satisfy the FCC's spectrum mask not only for indoor but also for outdoor applications. These poles improved also the skirt performance at both bandedges of the filter. A lowpass filter has been also introduced and integrated with the proposed bandpass filter to have a further improvement of the out-band performance at the high frequency end. The filters integrated with lowpass section exhibit excellent filter performance: almost satisfying the FCC's spectrum mask from DC to 18 GHz. The developed UWB bandpass filter has a compact size of 4 cm1.5 cm, or 4.8 cm1.5 cm with lowpass section implemented.

  • Ontology-Based Context Modeling and Reasoning for U-HealthCare

    Eun Jung KO  Hyung Jik LEE  Jeun Woo LEE  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E90-D No:8
      Page(s):
    1262-1270

    In order to prepare the health care industry for an increasingly aging society, a ubiquitous health care infrastructure is certainly needed. In a ubiquitous computing environment, it is important that all applications and middleware should be executed on an embedded system. To provide personalized health care services to users anywhere and anytime, a context-aware framework should convert low-level context to high-level context. Therefore, ontology and rules were used in this research to convert low-level context to high-level context. In this paper, we propose context modeling and context reasoning in a context-aware framework which is executed on an embedded wearable system in a ubiquitous computing environment for U-HealthCare. The objective of this research is the development of the standard ontology foundation for health care services and context modeling. A system for knowledge inference technology and intelligent service deduction is also developed in order to recognize a situation and provide customized health care service. Additionally, the context-aware framework was tested experimentally.

  • Critical Band Subspace-Based Speech Enhancement Using SNR and Auditory Masking Aware Technique

    Jia-Ching WANG  Hsiao-Ping LEE  Jhing-Fa WANG  Chung-Hsien YANG  

     
    PAPER-Speech and Hearing

      Vol:
    E90-D No:7
      Page(s):
    1055-1062

    In this paper, a new subspace-based speech enhancement algorithm is presented. First, we construct a perceptual filterbank from psycho-acoustic model and incorporate it in the subspace-based enhancement approach. This filterbank is created through a five-level wavelet packet decomposition. The masking properties of the human auditory system are then derived based on the perceptual filterbank. Finally, the prior SNR and the masking threshold of each critical band are taken to decide the attenuation factor of the optimal linear estimator. Five different types of in-car noises in TAICAR database were used in our evaluation. The experimental results demonstrated that our approach outperformed conventional subspace and spectral subtraction methods.

281-300hit(570hit)