The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] NIC(2720hit)

301-320hit(2720hit)

  • Compact InP Stokes-Vector Modulator and Receiver Circuits for Short-Reach Direct-Detection Optical Links Open Access

    Takuo TANEMURA  Yoshiaki NAKANO  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    594-601

    To meet the demand for continuous increase in data traffic, full usage of polarization freedom of light is becoming inevitable in the next-generation optical communication and datacenter networks. In particular, Stokes-vector modulation direct-detection (SVM-DD) formats are expected as potentially cost-effective method to transmit multi-level signals without using costly coherent transceivers in the short-reach links. For the SVM-DD formats to be practical, both the transmitter and receiver need to be substantially simpler, smaller, and lower-cost as compared to coherent counterparts. To this end, we have recently proposed and demonstrated novel SV modulator and receiver circuits realized on monolithic InP platforms. With compact non-interferometric configurations, relatively simple fabrication procedures, and compatibility with other active photonic components, the proposed devices should be attractive candidate in realizing low-cost monolithic transceivers for SVM formats. In this paper, we review our approaches as well as recent progresses and provide future prospects.

  • Novel Secure Communication Based on Chaos Synchronization

    Bo WANG  Xiaohua ZHANG  Xiucheng DONG  

     
    LETTER-Nonlinear Problems

      Vol:
    E101-A No:7
      Page(s):
    1132-1135

    In this paper, the problem on secure communication based on chaos synchronization is investigated. The dual channel information transmitting technology is proposed to increase the security of secure communication system. Based on chaos synchronization, a new digital secure communication scheme is presented for a class of master-slave systems. Finally some numerical simulation examples are given to demonstrate the effectiveness of the given results.

  • An Approach for Virtual Network Function Deployment Based on Pooling in vEPC

    Quan YUAN  Hongbo TANG  Yu ZHAO  Xiaolei WANG  

     
    PAPER-Network

      Pubricized:
    2017/12/08
      Vol:
    E101-B No:6
      Page(s):
    1398-1410

    Network function virtualization improves the flexibility of infrastructure resource allocation but the application of commodity facilities arouses new challenges for systematic reliability. To meet the carrier-class reliability demanded from the 5G mobile core, several studies have tackled backup schemes for the virtual network function deployment. However, the existing backup schemes usually sacrifice the efficiency of resource allocation and prevent the sharing of infrastructure resources. To solve the dilemma of balancing the high level demands of reliability and resource allocation in mobile networks, this paper proposes an approach for the problem of pooling deployment of virtualized network functions in virtual EPC network. First, taking pooling of VNFs into account, we design a virtual network topology for virtual EPC. Second, a node-splitting algorithm is proposed to make best use of substrate network resources. Finally, we realize the dynamic adjustment of pooling across different domains. Compared to the conventional virtual topology design and mapping method (JTDM), this approach can achieve fine-grained management and overall scheduling of node resources; guarantee systematic reliability and optimize global view of network. It is proven by a network topology instance provided by SNDlib that the approach can reduce total resource cost of the virtual network and increase the ratio of request acceptance while satisfy the high-demand reliability of the system.

  • Phase Shift and Control in Superconducting Hybrid Structures Open Access

    Taro YAMASHITA  

     
    INVITED PAPER

      Vol:
    E101-C No:5
      Page(s):
    378-384

    The physics and applications of superconducting phase shifts and their control in superconducting systems are reviewed herein. The operation principle of almost all superconducting devices is related to the superconducting phase, and an efficient control of the phase is crucial for improving the performance and scalability. Furthermore, employing new methods to shift or control the phase may lead to the development of novel superconducting device applications, such as cryogenic memory and quantum computing devices. Recently, as a result of the progress in nanofabrication techniques, superconducting phase shifts utilizing π states have been realized. In this review, following a discussion of the basic physics of phase propagation and shifts in hybrid superconducting structures, interesting phenomena and device applications in phase-shifted superconducting systems are presented. In addition, various possibilities for developing electrically and magnetically controllable 0 and π junctions are presented; these possibilities are expected to be useful for future devices.

  • Dual-Polarized Phased Array Based Polarization State Modulation for Physical-Layer Secure Communication

    Zhangkai LUO  Huali WANG  

     
    PAPER-Digital Signal Processing

      Vol:
    E101-A No:5
      Page(s):
    740-747

    In this paper, a dual-polarized phased array based polarization state modulation method is proposed to enhance the physical-layer security in millimeter-wave (mm-wave) communication systems. Indeed, we utilize two polarized beams to transmit the two components of the polarized signal, respectively. By randomly selecting the transmitting antennas, both the amplitude and the phase of two beams vary randomly in undesired directions, which lead to the PM constellation structure distortion in side lobes, thus the transmission security is enhanced since the symbol error rate increases at the eavesdropper side. To enhance the security performance when the eavesdropper is close to the legitimate receiver and located in main beam, the artificial noise based on the orthogonal vector approach is inserted randomly between two polarized beams, which can further distort the constellation structure in undesired directions and improve the secrecy capacity in main beam as well. Finally, theoretical analysis and simulation results demonstrate the proposed method can improve the transmission security in mm-wave communication systems.

  • Energy/Space-Efficient Rapid Single-Flux-Quantum Circuits by Using π-Shifted Josephson Junctions

    Tomohiro KAMIYA  Masamitsu TANAKA  Kyosuke SANO  Akira FUJIMAKI  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    385-390

    We present a concept of an advanced rapid single-flux-quantum (RSFQ) logic circuit family using the combination of 0-shifted and π-shifted Josephson junctions. A π-shift in the current-phase relationship can be obtained in several types of Josephson junctions, such as Josephson junctions containing a ferromagnet barrier layer, depending on its thickness and temperature. We use a superconducting quantum interference devices composed of a pair of 0- and π-shifted Josephson junctions (0-π SQUIDs) as a basic circuit element. Unlike the conventional RSFQ logic, bistability is obtained by spontaneous circular currents without using a large superconductor loop, and the state can be flipped by smaller driving currents. These features lead to energy- and/or space-efficient logic gates. In this paper, we show several example circuits where we represent signals by flips of the states of a 0-π SQUID. We obtained successful operation of the circuits from numerical simulation.

  • Relay Selection Scheme Based on Path Throughput for Device-to-Device Communication in Public Safety LTE

    Taichi OHTSUJI  Kazushi MURAOKA  Hiroaki AMINAKA  Dai KANETOMO  Yasuhiko MATSUNAGA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/11/13
      Vol:
    E101-B No:5
      Page(s):
    1319-1327

    Public safety networks need to more effectively meet the increasing demands for images or videos to be shared among first responders and incident commanders. Long term evolution (LTE) networks are considered to be candidates to achieve such broadband services. Capital expenditures in deploying base stations need to be decreased to introduce LTE for public safety. However, out-of-coverage areas tend to occur in cell edge areas or inside buildings because the cell areas of base stations for public safety networks are larger than those for commercial networks. The 3rd Generation Partnership Program (3GPP) in Release 13 has investigated device-to-device (D2D) based relay communication as a means to fill out-of-coverage areas in public safety LTE (PS-LTE). This paper proposes a relay selection scheme based on effective path throughput from an out-of-coverage terminal to a base station via an in-coverage relay terminal, which enables the optimal relay terminal to be selected. System level simulation results assuming on radii of 20km or less revealed that the proposed scheme could provide better user ratios that satisfied the throughput requirements for video transmission than the scheme standardized in 3GPP. Additionally, an evaluation that replicates actual group of fire-fighters indicated that the proposed scheme enabled 90% of out-of-coverage users to achieve the required throughput, i.e., 1.0Mbps, to transmit video images.

  • Towards Ultra-High-Speed Cryogenic Single-Flux-Quantum Computing Open Access

    Koki ISHIDA  Masamitsu TANAKA  Takatsugu ONO  Koji INOUE  

     
    INVITED PAPER

      Vol:
    E101-C No:5
      Page(s):
    359-369

    CMOS microprocessors are limited in their capacity for clock speed improvement because of increasing computing power, i.e., they face a power-wall problem. Single-flux-quantum (SFQ) circuits offer a solution with their ultra-fast-speed and ultra-low-power natures. This paper introduces our contributions towards ultra-high-speed cryogenic SFQ computing. The first step is to design SFQ microprocessors. From qualitatively and quantitatively evaluating past-designed SFQ microprocessors, we have found that revisiting the architecture of SFQ microprocessors and on-chip caches is the first critical challenge. On the basis of cross-layer discussions and analysis, we came to the conclusion that a bit-parallel gate-level pipeline architecture is the best solution for SFQ designs. This paper summarizes our current research results targeting SFQ microprocessors and on-chip cache architectures.

  • Non-Orthogonal Multiple Access in Wireless Powered Communication Networks with SIC Constraints

    Bin LYU  Zhen YANG  Guan GUI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/09/29
      Vol:
    E101-B No:4
      Page(s):
    1094-1101

    This paper studies a wireless powered communication network (WPCN) with non-orthogonal multiple access (NOMA) under successive interference cancellation (SIC) constraints, where the users first harvest energy from the power station and then transmit data to the information receiver simultaneously. Under this setup, we investigate the system throughput maximization problem. We first formulate an optimization problem for a general case, which is non-convex. To derive the optimal solution, new variables are introduced to transform the initial problem into a convex optimization problem. For a special case, i.e., two-user case, the optimal solution is derived as a closed-form expression. Simulations on the effect of SIC constraints show the importance of the distinctness among users' channels for the proposed model.

  • On Implementing an Automatic Headline Generation for Discussion BBS Systems —Cases of Citizens' Deliberations for Communities—

    Katsuhide FUJITA  Ryosuke WATANABE  

     
    PAPER-Creativity Support Systems and Decision Support Systems

      Pubricized:
    2018/01/19
      Vol:
    E101-D No:4
      Page(s):
    865-873

    Recently, the opportunity to discuss topics on a variety of online discussion bulletin boards has been increasing. However, it can be difficult to understand the contents of each discussion as the number of posts increases. Therefore, it is important to generate headlines that can automatically summarize each post in order to understand the contents of each discussion at a glance. In this paper, we propose a method to extract and generate post headlines for online discussion bulletin boards, automatically. We propose templates with multiple patterns to extract important sentences from the posts. In addition, we propose a method to generate headlines by matching the templates with the patterns. Then, we evaluate the effectiveness of our proposed method using questionnaires.

  • Harvest-Then-Transceive: Throughput Maximization in Full-Duplex Wireless-Powered Communication Networks

    KyungRak LEE  SungRyung CHO  JaeWon LEE  Inwhee JOE  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/09/29
      Vol:
    E101-B No:4
      Page(s):
    1128-1141

    This paper proposes the mesh-topology based wireless-powered communication network (MT-WPCN), which consists of a hybrid-access point (H-AP) and nodes. The H-AP broadcasts energy to all nodes by wireless, and the nodes harvest the energy and then communicate with other nodes including the H-AP. For the communication in the MT-WPCN, we propose the harvest-then-transceive protocol to ensure that the nodes can harvest energy from the H-AP and transmit information selectively to the H-AP or other nodes, which is not supported in most protocols proposed for the conventional WPCN. In the proposed protocol, we consider that the energy harvesting can be interrupted at nodes, since the nodes cannot harvest energy during transmission or reception. We also consider that the harvested energy is consumed by the reception of information from other nodes. In addition, the energy reservation model is required to guarantee the QoS, which reserves the infimum energy to receive information reliably by the transmission power control. Under these considerations, first, we design the half harvest-then-transceive protocol, which indicates that a node transmits information only to other nodes which do not transmit information yet, for investing the effect of the energy harvesting interruption. Secondly, we also design the full harvest-then-transceive protocol for the information exchange among nodes and compatibility with the conventional star-topology based WPCN, which indicates that a node can transmit information to any network unit, i.e., the H-AP and all nodes. We study the sum-throughput maximization in the MT-WPCN based on the half and full harvest-then-transceive protocols, respectively. Furthermore, the amount of harvested energy is analytically compared according to the energy harvesting interruption in the protocols. Simulation results show that the proposed MT-WPCN outperforms the conventional star-topology based WPCN in terms of the sum-throughput maximization, when wireless information transmission among nodes occurs frequently.

  • A 28-GHz Fractional-N Frequency Synthesizer with Reference and Frequency Doublers for 5G Mobile Communications in 65nm CMOS

    Hanli LIU  Teerachot SIRIBURANON  Kengo NAKATA  Wei DENG  Ju Ho SON  Dae Young LEE  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E101-C No:4
      Page(s):
    187-196

    This paper presents a 27.5-29.6GHz fractional-N frequency synthesizer using reference and frequency doublers to achieve low in-band and out-of-band phase-noise for 5G mobile communications. A consideration of the baseband carrier recovery circuit helps estimate phase noise requirement for high modulation scheme. The push-push amplifier and 28GHz balun help achieving differential signals with low out-of-band phase noise while consuming low power. A charge pump with gated offset as well as reference doubler help reducing PD noise resulting in low in-band phase noise while sampling loop filter helps reduce spurs. The proposed synthesizer has been implemented in 65nm CMOS technology achieving an in-band and out-of-band phase noise of -78dBc/Hz and -126dBc/Hz, respectively. It consumes only a total power of 33mW. The jitter-power figure-of-merit (FOM) is -231dB which is the highest among the state of the art >20GHz fractional-N PLLs using a low reference clock (<200MHz). The measured reference spurs are less than -80dBc.

  • vEPC Optimal Resource Assignment Method for Accommodating M2M Communications

    Kazuki TANABE  Hiroki NAKAYAMA  Tsunemasa HAYASHI  Katsunori YAMAOKA  

     
    PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    637-647

    The 5G mobile network environment has been studied and developed, and the concept of a vEPC (Virtualized Evolved Packet Core) has been introduced as a framework for Network Functions Virtualization (NFV). Machine-to-Machine (M2M) communications in 5G networks require much faster response than are possible in 4G networks. However, if both the control plane (C-plane) and the data plane (D-plane) functions of the EPC are migrated into a single vEPC server, M2M devices and other user equipments (UEs) share the same resources. To accommodate delay-sensitive M2M sessions in vEPC networks, not only signaling performance on the C-plane but also packet processing performance on the D-plane must be optimized. In this paper, we propose a method for optimizing resource assignment of C-plane and D-plane Virtualized Network Functions (VNFs) in a vEPC server, called the vEPC-ORA method. We distinguish the communications of M2M devices and smartphones and model the vEPC server by using queueing theory. Numerical analysis of optimal resource assignment shows that our proposed method minimizes the blocking rates of M2M sessions and smartphone sessions. We also confirmed that the mean packet processing time is kept within the allowable delay for each communication type, as long as the vEPC server has enough VM resources. Moreover, we study a resource granularity effect on the optimal resource assignment. Numerical analysis under a fixed number of hardware resources of MME and S/P-GW is done for various resource granularities of the vEPC server. The evaluation results of numerical analyses showed that the vEPC-ORA method derives the optimal resource assignment in practical calculation times.

  • A Method for Gathering Sensor Data for Fish-Farm Monitoring Considering the Transmission-Range Volume

    Koichi ISHIDA  Yoshiaki TANIGUCHI  Nobukazu IGUCHI  

     
    LETTER-Information Network

      Pubricized:
    2017/12/12
      Vol:
    E101-D No:3
      Page(s):
    808-811

    We have proposed a fish-farm monitoring system. In our system, the transmission range of acoustic waves from sensors attached to the undersides of the fish is not omnidirectional because of obstruction from the bodies of the fish. In addition, energy-efficient control is highly important in our system to avoid the need to replace the batteries. In this letter, we propose a data-gathering method for fish-farm monitoring without the use of control packets so that energy-efficient control is possible. Instead, our method uses the transmission-range volume as calculated from the location of the sensor node to determine the timing of packet transmission. Through simulation evaluations, we show that the data-gathering performance of our proposed method is better than that of comparative methods.

  • Realizability of Choreography Given by Two Scenarios

    Toshiki KINOSHITA  Toshiyuki MIYAMOTO  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    345-356

    For a service-oriented architecture-based system, the problem of synthesizing a concrete model (i.e., behavioral model) for each peer configuring the system from an abstract specification-which is referred to as choreography-is known as the choreography realization problem. A flow of interaction of peers is called a scenario. In our previous study, we showed conditions and an algorithm to synthesize concrete models when choreography is given by one scenario. In this paper, we extend the study for choreography given by two scenarios. We show necessary and sufficient conditions on the realizability of choreography under both cases where there exist conflicts between scenarios and no conflicts exist.

  • An Efficient Handover Measurement Technique for Millimeter-Wave Cellular Communications

    Jasper Meynard P. ARANA  Rothna PEC  Yong Soo CHO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/08/07
      Vol:
    E101-B No:2
      Page(s):
    592-602

    An efficient handover measurement technique is proposed for millimeter-wave (mm-wave) cellular systems with directional antenna beams. As the beam synchronization signal (BSS) carries the cell ID and the beam ID in a hierarchal manner, handover events (interbeam handover and intercell handover) are distinguished at the physical layer. The proposed signal metrics are shown to be effective in detecting the beam boundaries and cell boundaries in mm-wave cellular systems, which allows to distinguish interbeam handover from intercell handover. The proposed handover measurement technique is shown to reduce the processing time significantly using the proposed signal metrics produced by the BSS.

  • A Low-Power Pulse-Shaped Duobinary ASK Modulator for IEEE 802.11ad Compliant 60GHz Transmitter in 65nm CMOS

    Bangan LIU  Yun WANG  Jian PANG  Haosheng ZHANG  Dongsheng YANG  Aravind Tharayil NARAYANAN  Dae Young LEE  Sung Tae CHOI  Rui WU  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:2
      Page(s):
    126-134

    An energy efficient modulator for an ultra-low-power (ULP) 60-GHz IEEE transmitter is presented in this paper. The modulator consists of a differential duobinary coder and a semi-digital finite-impulse-response (FIR) pulse-shaping filter. By virtue of differential duobinary coding and pulse shaping, the transceiver successfully solves the adjacent-channel-power-ratio (ACPR) issue of conventional on-off-keying (OOK) transceivers. The proposed differential duobinary code adopts an over-sampling precoder, which relaxes timing requirement and reduces power consumption. The semi-digital FIR eliminates the power hungry digital multipliers and accumulators, and improves the power efficiency through optimization of filter parameters. Fabricated in a 65nm CMOS process, this modulator occupies a core area of 0.12mm2. With a throughput of 1.7Gbps/2.6Gbps, power consumption of modulator is 24.3mW/42.8mW respectively, while satisfying the IEEE 802.11ad spectrum mask.

  • Demultiplexing Method of Variable Capacity Optical OFDM Signal Using Time Lens-Based Optical Fourier Transform Open Access

    Koichi TAKIGUCHI  Takaaki NAKAGAWA  Takaaki MIWA  

     
    PAPER-Optoelectronics

      Vol:
    E101-C No:2
      Page(s):
    112-117

    We propose and demonstrate a method that can demultiplex an optical OFDM signal with various capacity based on time lens-based optical Fourier transform. The proposed tunable optical OFDM signal demultiplexer is composed of a phase modulator and a tunable chromatic dispersion emulator. The spectrum of the variable capacity OFDM signal is transformed into Nyquist time-division multiplexing pulses with the optical Fourier transform, and the OFDM sub-carrier channels are dumultiplexed in the time-domain. We also propose a simple method for approximating and generating quadratic waveform to drive the phase modulator. After explaining the operating principle of the method and the design of some parameters in detail, we show successful demultiplexing of 4×8 and 4×10 Gbit/s optical OFDM signals with our proposed method as the preliminary investigation results.

  • Performance Evaluation of Variable Bandwidth Channel Allocation Scheme in Multiple Subcarrier Multiple Access

    Nitish RAJORIA  Hiromu KAMEI  Jin MITSUGI  Yuusuke KAWAKITA  Haruhisa ICHIKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/03
      Vol:
    E101-B No:2
      Page(s):
    564-572

    Multiple Subcarrier Multiple Access (MSMA) enables concurrent sensor data streamings from multiple wireless and batteryless sensors using the principle of subcarrier backscatter used extensively in passive RFID. Since the interference cancellation performance of MSMA depends on the Signal to Interference plus Noise Ratio of each subcarrier, the choice of channel allocation scheme is essential. Since the channel allocation is a combinatorial problem, obtaining the true optimal allocation requires a vast amount of examinations which is impracticable in a system where we have tens of sensor RF tags. It is particularly true when we have variable distance and variable bandwidth sensor RF tags. This paper proposes a channel allocation scheme in the variable distance and variable bandwidth MSMA system based on a newly introduced performance index, total contamination power, to prioritize indecision cases. The performance of the proposal is evaluated with existing methods in terms of average communication capacity and system fairness using MATLAB Monte Carlo simulation to reveal its advantage. The accuracy of the simulation is also verified with the result obtained from the brute force method.

  • An Overview of China Millimeter-Wave Multiple Gigabit Wireless Local Area Network System Open Access

    Wei HONG  Shiwen HE  Haiming WANG  Guangqi YANG  Yongming HUANG  Jixing CHEN  Jianyi ZHOU  Xiaowei ZHU  Nianzhu ZHANG  Jianfeng ZHAI  Luxi YANG  Zhihao JIANG  Chao YU  

     
    INVITED PAPER

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    262-276

    This paper presents an overview of the advance of the China millimeter-wave multiple gigabit (CMMG) wireless local area network (WLAN) system which operates in the 45 GHz frequency band. The CMMG WLAN system adopts the multiple antennas technologies to support data rate up to 15Gbps. During the progress of CMMG WLAN standardization, some new key technologies were introduced to adapt the millimeter-wave characteristic, including the usage of the zero correlation zone (ZCZ) sequence, a novel lower density parity check code (LDPC)-based packet encoding, and multiple input multiple output (MIMO) single carrier transmission. Extensive numerical results and system prototype test are also given to validate the performance of the technologies adopted by CMMG WLAN system.

301-320hit(2720hit)