The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PA(8249hit)

581-600hit(8249hit)

  • Experimental Performance Study of STBC-Based Cooperative and Diversity Relaying

    Makoto MIYAGOSHI  Hidekazu MURATA  

     
    LETTER-Communication Theory and Signals

      Vol:
    E103-A No:5
      Page(s):
    798-801

    The packet error rate (PER) performance of multi-hop STBC based cooperative and diversity relaying systems are studied. These systems consist of a source, a destination, and two relay stations in each hop. From in-lab experiments, it is confirmed that the cooperative relaying system has better PER performance than the diversity relaying system with highly correlated channels.

  • Identification and Sensing of Wear Debris Caused by Fretting Wear of Electrical Connectors

    Yanyan LUO  Zhaopan ZHANG  Xiongwei WU  Jingyuan SU  

     
    PAPER-Electromechanical Devices and Components

      Pubricized:
    2019/12/09
      Vol:
    E103-C No:5
      Page(s):
    246-253

    An electrical capacitance tomography (ECT) method was used to detect fretting wear behavior of electrical connectors. The specimens used in this study were contacts of type-M round two-pin electrical connectors. The experiments consisted of running a series of vibration tests at each frequency combined with one g levels. During each test run, the measured capacitance per pair of electrodes was monitored as a performance characteristic, which is induced by the wear debris generated by the fretting wear of electrical connectors. The fretted surface is examined using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) analysis to assess the surface profile, extent of fretting damage and elemental distribution across the contact zone and then compared to the capacitance values. The results exhibit that with the increase of the fretting cycles or the vibration frequency, the characteristic value of the wear debris between the contacts of electrical connector gradually increases and the wear is more serious. Measured capacitance values are consistent with SEM and EDS analysis.

  • Loss Analysis from Capacitance between Windings in Multilayer Transformer and Loss Improvement by Winding Layer Layout Considering Working Voltage

    Toshiyuki WATANABE  Tetsuya OSHIKATA  Kimihiro NISHIJIMA  Fujio KUROKAWA  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2019/11/12
      Vol:
    E103-B No:5
      Page(s):
    517-523

    An LLC converter has high efficiency and low noise and has thus recently attracted attention in the field of power supplies for use in information and communication systems. A planar transformer is thought to be particularly effective in a high-frequency switching power supply because an ideal primary-secondary interleave structure can be formed by the multilayer structure, and the alternating-current (AC) resistance can be reduced. Based on these facts, we investigated the use of planar transformers in LLC converters. However, high-frequency oscillation, which is not observed in a normal winding transformer, appears in the secondary side current, and the power supply loss is also higher. Our investigation found that the current oscillation and an increase in loss were caused by a primary-secondary capacitance of the transformer. This paper presents countermeasures used to reduce the capacitance between the primary and secondary windings, and a new layer structure for the transformer that reduces the capacitance. The loss is calculated through a simulation and experimentally, and good agreement is obtained. The proposed transformer offers the high efficiency of 98.1% in a 200 W, 12 V output power supply.

  • Carrier-Phase Multipath Mitigation Based on Adaptive Wavelet Packet Transform and TB Strategy

    Yanxi YANG  Jinguang JIANG  Meilin HE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/10/28
      Vol:
    E103-B No:5
      Page(s):
    591-599

    The carrier-phase multipath effect can seriously affect the accuracy of GPS-based positioning in static short baseline applications. Although several kinds of methods based on time domain and spatial domain techniques have been proposed to mitigate this error, they are still limited by the accuracy of the multipath model and the effectiveness of the correction strategy. After analyzing the existing methods, a new method based on adaptive thresholding wavelet packet transform (AW) and time domain bootstrap spatial domain search strategy (TB) is presented (AWTB). Taking advantage of adaptive thresholding wavelet packet transform, we enhance the precision of the correction model and the efficiency of the extraction method. In addition, by adopting the proposed time domain bootstrap spatial domain strategy, the accuracy and efficiency of subsequent multipath correction are improved significantly. Specifically, after applying the adaptive thresholding wavelet packet method, the mean improvement rate in the RMS values of the single-difference L1 residuals is about 27.93% compared with the original results. Furthermore, after applying the proposed AWTB method, experiments show that the 3D positioning precision is improved by about 38.51% compared with the original results. Even compared with the method based on stationary wavelet transform (SWT), and the method based on wavelet packets denoising (WPD), the 3D precision is improved by about 26.94% over the SWT method and about 22.96% over the WPD method, respectively. It is worth noting that, although the mean time consumption of the proposed algorithm is larger than the original method, the increased time consumption is not a serious burden for overall performance.

  • Patient-Specific ECG Classification with Integrated Long Short-Term Memory and Convolutional Neural Networks

    Jiaquan WU  Feiteng LI  Zhijian CHEN  Xiaoyan XIANG  Yu PU  

     
    PAPER-Biological Engineering

      Pubricized:
    2020/02/13
      Vol:
    E103-D No:5
      Page(s):
    1153-1163

    This paper presents an automated patient-specific ECG classification algorithm, which integrates long short-term memory (LSTM) and convolutional neural networks (CNN). While LSTM extracts the temporal features, such as the heart rate variance (HRV) and beat-to-beat correlation from sequential heartbeats, CNN captures detailed morphological characteristics of the current heartbeat. To further improve the classification performance, adaptive segmentation and re-sampling are applied to align the heartbeats of different patients with various heart rates. In addition, a novel clustering method is proposed to identify the most representative patterns from the common training data. Evaluated on the MIT-BIH arrhythmia database, our algorithm shows the superior accuracy for both ventricular ectopic beats (VEB) and supraventricular ectopic beats (SVEB) recognition. In particular, the sensitivity and positive predictive rate for SVEB increase by more than 8.2% and 8.8%, respectively, compared with the prior works. Since our patient-specific classification does not require manual feature extraction, it is potentially applicable to embedded devices for automatic and accurate arrhythmia monitoring.

  • Successive Interference Cancellation of ICA-Aided SDMA for GFSK Signaling in BLE Systems

    Masahiro TAKIGAWA  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/11/12
      Vol:
    E103-B No:5
      Page(s):
    495-503

    This paper proposes a successive interference cancellation (SIC) of independent component analysis (ICA) aided spatial division multiple access (SDMA) for Gaussian filtered frequency shift keying (GFSK) in Bluetooth low energy (BLE) systems. The typical SDMA scheme requires estimations of channel state information (CSI) using orthogonal pilot sequences. However, the orthogonal pilot is not embedded in the BLE packet. This fact motivates us to add ICA detector into BLE systems. In this paper, focusing on the covariance matrix of ICA outputs, SIC can be applied with Cholesky decomposition. Then, in order to address the phase ambiguity problems created by the ICA process, we propose a differential detection scheme based on the MAP algorithm. In practical scenarios, it is subject to carrier frequency offset (CFO) as well as symbol timing offset (STO) induced by the hardware impairments present in the BLE peripherals. The packet error rate (PER) performance is evaluated by computer simulations when BLE peripherals simultaneously communicate in the presence of CFO and STO.

  • A Two-Stage Feedback Protocol Based on Multipath Profile for MU-MIMO Networks

    Aijing LI  Chao DONG  Zhimin LI  Qihui WU  Guodong WU  

     
    PAPER-Network

      Pubricized:
    2019/11/21
      Vol:
    E103-B No:5
      Page(s):
    559-569

    As a key technology for 5G and beyond, Multi-User Multi-Input Multi-Output (MU-MIMO) can achieve Gbps downlink rate by allowing concurrent transmission from one Access Point (AP) to multiple users. However, the huge overhead of full CSI feedback may overwhelm the gain yielded by beamforming. Although there have been many works on compress CSI to reduce the feedback overhead, the performance of beamforming may decrease because the accuracy of channel state degrades. To address the tradeoff between feedback overhead and accuracy, we present a two-stage Multipath Profile based Feedback protocol (MPF). In the first stage, compared with CSI feedback, the channel state is represented by multipath profile which has a smaller size but is accurate enough for user selection. Meanwhile, we propose an implicit polling scheme to decrease the feedback further. In the second stage, only the selected users send their CSI information to the AP to guarantee the low overhead and accuracy of steering matrix calculation. We implement and evaluate MPF with USRP N210. Experiments show that MPF can outperform alternative schemes in a variety of radio environments.

  • Broadband RF Power Amplifier with Combination of Large Signal X-Parameter and Real Frequency Techniques

    Ragavan KRISHNAMOORTHY  Narendra KUMAR  Andrei GREBENNIKOV  Binboga Siddik YARMAN  Harikrishnan RAMIAH  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2019/11/27
      Vol:
    E103-C No:5
      Page(s):
    225-230

    A new design approach of broadband RF power amplifier (PA) is introduced in this work with combination of large signal X-parameter and Real-Frequency Technique (RFT). A theoretical analysis of large signal X-parameter is revisited, and a simplification method is introduced to determine the optimum large signal impedances of a Gallium Nitride HEMT (GaN HEMT) device. With the optimum impedance extraction over the wide frequency range (0.3 to 2.0 GHz), a wideband matching network is constructed employing RFT and the final design is implemented with practical mixed-lumped elements. The prototype broadband RF PA demonstrates an output power of 40 dBm. The average drain efficiency of the PA is found to be more than 60%; while exhibiting acceptable flat gain performance (12±0.25 dB) over the frequency band of (0.3-2.0 GHz). The PA designed using the proposed approach yields in small form factor and relatively lower production cost over those of similar PAs designed with the classical methods. It is expected that the newly proposed design method will be utilized to construct power amplifiers for radio communications applications.

  • Multiple Regular Expression Pattern Monitoring over Probabilistic Event Streams

    Kento SUGIURA  Yoshiharu ISHIKAWA  

     
    PAPER

      Pubricized:
    2020/02/03
      Vol:
    E103-D No:5
      Page(s):
    982-991

    As smartphones and IoT devices become widespread, probabilistic event streams, which are continuous analysis results of sensing data, have received a lot of attention. One of the applications of probabilistic event streams is monitoring of time series events based on regular expressions. That is, we describe a monitoring query such as “Has the tracked object moved from RoomA to RoomB in the past 30 minutes?” by using a regular expression, and then check whether corresponding events occur in a probabilistic event stream with a sliding window. Although we proposed the fundamental monitoring method of time series events in our previous work, three problems remain: 1) it is based on an unusual assumption about slide size of a sliding window, 2) the grammar of pattern queries did not include “negation”, and 3) it was not optimized for multiple monitoring queries. In this paper, we propose several techniques to solve the above problems. First, we remove the assumption about slide size, and propose adaptive slicing of sliding windows for efficient probability calculation. Second, we calculate the occurrence probability of a negation pattern by using an inverted DFA. Finally, we propose the merge of multiple DFAs based on disjunction to process multiple queries efficiently. Experimental results using real and synthetic datasets demonstrate effectiveness of our approach.

  • Air Quality Index Forecasting via Deep Dictionary Learning

    Bin CHEN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2020/02/20
      Vol:
    E103-D No:5
      Page(s):
    1118-1125

    Air quality index (AQI) is a non-dimensional index for the description of air quality, and is widely used in air quality management schemes. A novel method for Air Quality Index Forecasting based on Deep Dictionary Learning (AQIF-DDL) and machine vision is proposed in this paper. A sky image is used as the input of the method, and the output is the forecasted AQI value. The deep dictionary learning is employed to automatically extract the sky image features and achieve the AQI forecasting. The idea of learning deeper dictionary levels stemmed from the deep learning is also included to increase the forecasting accuracy and stability. The proposed AQIF-DDL is compared with other deep learning based methods, such as deep belief network, stacked autoencoder and convolutional neural network. The experimental results indicate that the proposed method leads to good performance on AQI forecasting.

  • Cost-Sensitive and Sparse Ladder Network for Software Defect Prediction

    Jing SUN  Yi-mu JI  Shangdong LIU  Fei WU  

     
    LETTER-Software Engineering

      Pubricized:
    2020/01/29
      Vol:
    E103-D No:5
      Page(s):
    1177-1180

    Software defect prediction (SDP) plays a vital role in allocating testing resources reasonably and ensuring software quality. When there are not enough labeled historical modules, considerable semi-supervised SDP methods have been proposed, and these methods utilize limited labeled modules and abundant unlabeled modules simultaneously. Nevertheless, most of them make use of traditional features rather than the powerful deep feature representations. Besides, the cost of the misclassification of the defective modules is higher than that of defect-free ones, and the number of the defective modules for training is small. Taking the above issues into account, we propose a cost-sensitive and sparse ladder network (CSLN) for SDP. We firstly introduce the semi-supervised ladder network to extract the deep feature representations. Besides, we introduce the cost-sensitive learning to set different misclassification costs for defective-prone and defect-free-prone instances to alleviate the class imbalance problem. A sparse constraint is added on the hidden nodes in ladder network when the number of hidden nodes is large, which enables the model to find robust structures of the data. Extensive experiments on the AEEEM dataset show that the CSLN outperforms several state-of-the-art semi-supervised SDP methods.

  • Enhanced Secure Transmission for Indoor Visible Light Communications

    Sheng-Hong LIN  Jin-Yuan WANG  Ying XU  Jianxin DAI  

     
    LETTER-Information Network

      Pubricized:
    2020/02/25
      Vol:
    E103-D No:5
      Page(s):
    1181-1184

    This letter investigates the secure transmission improvement scheme for indoor visible light communications (VLC) by using the protected zone. Firstly, the system model is established. For the input signal, the non-negativity and the dimmable average optical intensity constraint are considered. Based on the system model, the secrecy capacity for VLC without considering the protected zone is obtained. After that, the protected zone is determined, and the construction of the protected zone is also provided. Finally, the secrecy capacity for VLC with the protected zone is derived. Numerical results show that the secure performance of VLC improves dramatically by employing the protected zone.

  • Loss-Driven Channel Pruning of Convolutional Neural Networks

    Xin LONG  Xiangrong ZENG  Chen CHEN  Huaxin XIAO  Maojun ZHANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/02/17
      Vol:
    E103-D No:5
      Page(s):
    1190-1194

    The increase in computation cost and storage of convolutional neural networks (CNNs) severely hinders their applications on limited-resources devices in recent years. As a result, there is impending necessity to accelerate the networks by certain methods. In this paper, we propose a loss-driven method to prune redundant channels of CNNs. It identifies unimportant channels by using Taylor expansion technique regarding to scaling and shifting factors, and prunes those channels by fixed percentile threshold. By doing so, we obtain a compact network with less parameters and FLOPs consumption. In experimental section, we evaluate the proposed method in CIFAR datasets with several popular networks, including VGG-19, DenseNet-40 and ResNet-164, and experimental results demonstrate the proposed method is able to prune over 70% channels and parameters with no performance loss. Moreover, iterative pruning could be used to obtain more compact network.

  • Enhanced Universal Filtered-DFTs-OFDM for Long-Delay Multipath Environment Open Access

    Yuji MIZUTANI  Hiroto KURIKI  Yosuke KODAMA  Keiichi MIZUTANI  Takeshi MATSUMURA  Hiroshi HARADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/10/08
      Vol:
    E103-B No:4
      Page(s):
    467-475

    The conventional universal filtered-DFT-spread-OFDM (UF-DFTs-OFDM) can drastically improve the out-of-band emission (OOBE) caused by the discontinuity between symbols in the conventional cyclic prefix-based DFTs-OFDM (CP-DFTs-OFDM). However, the UF-DFTs-OFDM degrades the communication quality in a long-delay multipath fading environment due to the frequency-domain ripple derived from the long transition time of the low pass filter (LPF) corresponding to the guard interval (GI). In this paper, we propose an enhanced UF-DFTs-OFDM (eUF-DFTs-OFDM) that achieves significantly low OOBE and high communication quality even in a long-delay multipath fading environment. The eUF-DFTs-OFDM applies an LPF with quite short length in combination with the zero padding (ZP) or the CP process. Then, the characteristics of the OOBE, peak-to-average power ratio (PAPR), and block error rate (BLER) are evaluated by computer simulation with the LTE uplink parameters. The result confirms that the eUF-DFTs-OFDM can improve the OOBE by 22.5dB at the channel-edge compared to the CP-DFTs-OFDM, and also improve the ES/N0 to achieve BLER =10-3 by about 2.5dB for QPSK and 16QAM compared to the UF-DFTs-OFDM. For 64QAM, the proposed eUF-DFTs-ODFDM can eliminate the error floor of the UF-DFTs-OFDM. These results indicate that the proposed eUF-DFTs-OFDM can significantly reduce the OOBE while maintaining the same level of communication quality as the CP-DFTs-OFDM even in long-delay multipath environment.

  • Ergodic Capacity of Composite Fading Channels in Cognitive Radios with Series Formula for Product of κ-µ and α-µ Fading Distributions

    He HUANG  Chaowei YUAN  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/10/08
      Vol:
    E103-B No:4
      Page(s):
    458-466

    In this study, product of two independent and non-identically distributed (i.n.i.d.) random variables (RVs) for κ-µ fading distribution and α-µ fading distribution is considered. The statistics of the product of RVs has been broadly applied in a large number of communications fields, such as cascaded fading channels, multiple input multiple output (MIMO) systems, radar communications and cognitive radios (CR). Exact close-form expressions of probability density function (PDF) and cumulative distribution function (CDF) with exact series formulas for the product of two i.n.i.d. fading distributions κ-µ and α-µ are deduced more accurately to represent the provided product expressions and generalized composite multipath shadowing models. Furthermore, ergodic channel capacity (ECC) is obtained to measure maximum fading channel capacity. At last, interestingly unlike κ-µ, η-µ, α-µ in [9], [17], [18], these analytical results are validated with Monte Carlo simulations and it shows that for provided κ-µ/α-µ model, non-linear parameter has more important influence than multipath component in PDF and CDF, and when the ratio between the total power of the dominant components and the total power of the scattered waves is same, higher α can significantly improve channel capacity over composite fading channels.

  • Korean-Vietnamese Neural Machine Translation with Named Entity Recognition and Part-of-Speech Tags

    Van-Hai VU  Quang-Phuoc NGUYEN  Kiem-Hieu NGUYEN  Joon-Choul SHIN  Cheol-Young OCK  

     
    PAPER-Natural Language Processing

      Pubricized:
    2020/01/15
      Vol:
    E103-D No:4
      Page(s):
    866-873

    Since deep learning was introduced, a series of achievements has been published in the field of automatic machine translation (MT). However, Korean-Vietnamese MT systems face many challenges because of a lack of data, multiple meanings of individual words, and grammatical diversity that depends on context. Therefore, the quality of Korean-Vietnamese MT systems is still sub-optimal. This paper discusses a method for applying Named Entity Recognition (NER) and Part-of-Speech (POS) tagging to Vietnamese sentences to improve the performance of Korean-Vietnamese MT systems. In terms of implementation, we used a tool to tag NER and POS in Vietnamese sentences. In addition, we had access to a Korean-Vietnamese parallel corpus with more than 450K paired sentences from our previous research paper. The experimental results indicate that tagging NER and POS in Vietnamese sentences can improve the quality of Korean-Vietnamese Neural MT (NMT) in terms of the Bi-Lingual Evaluation Understudy (BLEU) and Translation Error Rate (TER) score. On average, our MT system improved by 1.21 BLEU points or 2.33 TER scores after applying both NER and POS tagging to the Vietnamese corpus. Due to the structural features of language, the MT systems in the Korean to Vietnamese direction always give better BLEU and TER results than translation machines in the reverse direction.

  • Compiler Software Coherent Control for Embedded High Performance Multicore

    Boma A. ADHI  Tomoya KASHIMATA  Ken TAKAHASHI  Keiji KIMURA  Hironori KASAHARA  

     
    PAPER

      Vol:
    E103-C No:3
      Page(s):
    85-97

    The advancement of multicore technology has made hundreds or even thousands of cores processor on a single chip possible. However, on a larger scale multicore, a hardware-based cache coherency mechanism becomes overwhelmingly complicated, hot, and expensive. Therefore, we propose a software coherence scheme managed by a parallelizing compiler for shared-memory multicore systems without a hardware cache coherence mechanism. Our proposed method is simple and efficient. It is built into OSCAR automatic parallelizing compiler. The OSCAR compiler parallelizes the coarse grain task, analyzes stale data and line sharing in the program, then solves those problems by simple program restructuring and data synchronization. Using our proposed method, we compiled 10 benchmark programs from SPEC2000, SPEC2006, NAS Parallel Benchmark (NPB), and MediaBench II. The compiled binaries then are run on Renesas RP2, an 8 cores SH-4A processor, and a custom 8-core Altera Nios II system on Altera Arria 10 FPGA. The cache coherence hardware on the RP2 processor is only available for up to 4 cores. The RP2's cache coherence hardware can also be turned off for non-coherence cache mode. The Nios II multicore system does not have any hardware cache coherence mechanism; therefore, running a parallel program is difficult without any compiler support. The proposed method performed as good as or better than the hardware cache coherence scheme while still provided the correct result as the hardware coherence mechanism. This method allows a massive array of shared memory CPU cores in an HPC setting or a simple non-coherent multicore embedded CPU to be easily programmed. For example, on the RP2 processor, the proposed software-controlled non-coherent-cache (NCC) method gave us 2.6 times speedup for SPEC 2000 “equake” with 4 cores against sequential execution while got only 2.5 times speedup for 4 cores MESI hardware coherent control. Also, the software coherence control gave us 4.4 times speedup for 8 cores with no hardware coherence mechanism available.

  • Graph Cepstrum: Spatial Feature Extracted from Partially Connected Microphones

    Keisuke IMOTO  

     
    PAPER-Speech and Hearing

      Pubricized:
    2019/12/09
      Vol:
    E103-D No:3
      Page(s):
    631-638

    In this paper, we propose an effective and robust method of spatial feature extraction for acoustic scene analysis utilizing partially synchronized and/or closely located distributed microphones. In the proposed method, a new cepstrum feature utilizing a graph-based basis transformation to extract spatial information from distributed microphones, while taking into account whether any pairs of microphones are synchronized and/or closely located, is introduced. Specifically, in the proposed graph-based cepstrum, the log-amplitude of a multichannel observation is converted to a feature vector utilizing the inverse graph Fourier transform, which is a method of basis transformation of a signal on a graph. Results of experiments using real environmental sounds show that the proposed graph-based cepstrum robustly extracts spatial information with consideration of the microphone connections. Moreover, the results indicate that the proposed method more robustly classifies acoustic scenes than conventional spatial features when the observed sounds have a large synchronization mismatch between partially synchronized microphone groups.

  • Parameter Estimation for Multiple Chirp Signals Based on Single Channel Nyquist Folding Receiver

    Zhaoyang QIU  Qi ZHANG  Minhong SUN  Jun ZHU  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:3
      Page(s):
    623-628

    The modern radar signals are in a wide frequency space. The receiving bandwidth of the radar reconnaissance receiver should be wide enough to intercept the modern radar signals. The Nyquist folding receiver (NYFR) is a novel wideband receiving architecture and it has a high intercept probability. Chirp signals are widely used in modern radar system. Because of the wideband receiving ability, the NYFR will receive the concurrent multiple chirp signals. In this letter, we propose a novel parameter estimation algorithm for the multiple chirp signals intercepted by single channel NYFR. Compared with the composite NYFR, the proposed method can save receiving resources. In addition, the proposed approach can estimate the parameters of the chirp signals even the NYFR outputs are under frequency aliasing circumstance. Simulation results show the efficacy of the proposed method.

  • Parallelization of Boost and Buck Type DC-DC Converters by Individual Passivity-Based Control Open Access

    Yuma MURAKAWA  Yuhei SADANDA  Takashi HIKIHARA  

     
    PAPER-Systems and Control

      Vol:
    E103-A No:3
      Page(s):
    589-595

    This paper discusses the parallelization of boost and buck converters. Passivity-based control is applied to each converter to achieve the asymptotic stability of the system. The ripple characteristics, error characteristics, and time constants of the parallelized converters are discussed with considering the dependency on the feedback gains. The numerical results are confirmed to coincide with the results in the experiment for certain feedback gains. The stability of the system is also discussed in simulation and experiment. The results will be a step to achieve the design of parallel converters.

581-600hit(8249hit)