The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

3521-3540hit(16314hit)

  • Compact Electro-Optic Single Sideband Modulators Utilizing Miniaturized Branch-Line Couplers on LiNbO3 Substrate

    Katsuyuki YAMAMOTO  Tadashi KAWAI  Akira ENOKIHARA  Tetsuya KAWANISHI  

     
    PAPER-MWP Device and Application

      Vol:
    E98-C No:8
      Page(s):
    769-776

    Optical single sideband (SSB) modulation with the Mach-Zehnder (MZ) interferometer was realized by integrating the modulation electrode with the branch-line coupler (BLC) as a 90-degree hybrid onto the modulator substrate. In this paper, BLCs of the microsrtip-line structure were miniaturized on modulator substrates, LiNbO3 (LN), to realize more compact optical SSB modulators. We introduced two techniques of miniaturizing the BLC, one is using periodically installed open-circuited stabs and the other is installing series capacitors. Compared with a conventional pattern of the BLC, an area of the miniaturized BLC by using periodically installed open-circuited stubs was reduced to about 50%, and that by installing series capacitors was done to about 60%. The operation of these miniaturized BLCs was experimentally confirmed as the 90-degree hybrid at around 10GHz. Output ports of each miniaturized BLC were directly connected with the modulation electrode on the modulator substrate. Thereby, we fabricated two types of compact SSB modulators for 1550nm light wavelength. In the experiments, the optical SSB modulation was successfully confirmed by the output light spectra and the sideband suppression ratio of more than 30dB were observed.

  • One to Six Wavelength Multicasting of RZ-OOK Based on Picosecond-Width-Tunable Pulse Source with Distributed Raman Amplification

    Irneza ISMAIL  Quang NGUYEN-THE  Motoharu MATSUURA  Naoto KISHI  

     
    PAPER-Advanced Photonics

      Vol:
    E98-C No:8
      Page(s):
    816-823

    All-optical 1-to-6 wavelength multicasting of a 10-Gb/s picosecond-tunable-width converted return-to-zero (RZ)-on-off-keying (OOK) data signal using a wideband-parametric pulse source from a distributed Raman amplifier (DRA) is experimentally demonstrated. Width-tunable wavelength multicasting within the C-band with approximately 40.6-nm of separation with various compressed RZ data signal inputs have been proposed and demonstrated. The converted multicast pulse widths can be flexibly controlled down to 2.67 ps by tuning the Raman pump powers of the DRA. Nearly equal pulse widths at all multicast wavelengths are obtained. Furthermore, wide open eye patterns and penalties less than 1.2 dB at the 10-9 bit-error-rate (BER) level are found.

  • Waveform Conversion and Wavelength Multicasting with Pulsewidth Tunability Using Raman Amplification Multiwavelength Pulse Compressor

    Quynh NGUYEN QUANG NHU  Quang NGUYEN-THE  Hung NGUYEN TAN  Motoharu MATSUURA  Naoto KISHI  

     
    PAPER-Advanced Photonics

      Vol:
    E98-C No:8
      Page(s):
    824-831

    A combination of nonreturn-to-zero (NRZ)-to-return-to-zero (RZ) waveform conversion and wavelength multicasting with pulsewidth tunability is experimentally demonstrated. A NRZ data signal is injected into a highly nonlinear fiber (HNLF)-based four-wave mixing (FWM) switch with four RZ clocks compressed by a Raman amplification-based multiwavelength pulse compressor (RA-MPC). The NRZ signal is multicast and converted to RZ signals in a continuously wide pulsewidth tuning range between around 12.17 and 4.68 ps by changing the Raman pump power of the RA-MPC. Error-free operations of the converted RZ signals with different pulsewidths are achieved with negative power penalties compared with the back-to-back NRZ signal and the small variation among received powers of RZ output channels at a bit-error-rate (BER) of 10-9. The NRZ-to-RZ waveform conversion and wavelength multicasting without using the RA-MPC are also successfully implemented.

  • A Note on Irreversible 2-Conversion Sets in Subcubic Graphs

    Asahi TAKAOKA  Shuichi UENO  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2015/05/14
      Vol:
    E98-D No:8
      Page(s):
    1589-1591

    Irreversible k-conversion set is introduced in connection with the mathematical modeling of the spread of diseases or opinions. We show that the problem to find a minimum irreversible 2-conversion set can be solved in O(n2log 6n) time for graphs with maximum degree at most 3 (subcubic graphs) by reducing it to the graphic matroid parity problem, where n is the number of vertices in a graph. This affirmatively settles an open question posed by Kyncl et al. (2014).

  • One-Step Error Detection and Correction Approach for Voice Word Processor

    Junhwi CHOI  Seonghan RYU  Kyusong LEE  Gary Geunbae LEE  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2015/05/20
      Vol:
    E98-D No:8
      Page(s):
    1517-1525

    We propose a one-step error detection and correction interface for a voice word processor. This correction interface performs analysis region detection, user intention understanding and error correction utterance recognition, all from a single user utterance input. We evaluate the performance of each component first, and then compare the effectiveness of our interface to two previous interfaces. Our evaluation demonstrates that each component is technically superior to the baselines and that our one-step error detection and correction method yields an error correction interface that is more convenient and natural than the two previous interfaces.

  • A TMR Mitigation Method Based on Readback Signal in Bit-Patterned Media Recording

    Wiparat BUSYATRAS  Chanon WARISARN  Lin M. M. MYINT  Piya KOVINTAVEWAT  

     
    PAPER-Storage Technology

      Vol:
    E98-C No:8
      Page(s):
    892-898

    Track mis-registration (TMR) is one of the major problems in high-density magnetic recording systems such as bit-patterned media recording (BPMR). In general, TMR results from the misalignment between the center of the read head and that of the main track, which can deteriorate the system performance. Although TMR can be handled by a servo system, this paper proposes a novel method to alleviate the TMR effect, based on the readback signal. Specifically, the readback signal is directly used to estimate a TMR level and is then further processed by the suitable target and equalizer designed for such a TMR level. Simulation results indicate that the proposed method can sufficiently estimate the TMR level and then helps improve the system performance if compared to the conventional receiver that does not employ a TMR mitigation method, especially when an areal density is high and/or a TMR level is large.

  • Using Designed Structure of Visual Content to Understand Content-Browsing Behavior

    Erina ISHIKAWA  Hiroaki KAWASHIMA  Takashi MATSUYAMA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2015/05/08
      Vol:
    E98-D No:8
      Page(s):
    1526-1535

    Studies on gaze analysis have revealed some of the relationships between viewers' gaze and their internal states (e.g., interests and intentions). However, understanding content browsing behavior in uncontrolled environments is still challenging because human gaze can be very complex; it is affected not only by viewers' states but also by the spatio-semantic structures of visual content. This study proposes a novel gaze analysis framework which introduces the content creators' point of view to understand the meaning of browsing behavior. Visual content such as web pages, digital articles and catalogs are comprised of structures intentionally designed by content creators, which we refer to as designed structure. This paper focuses on two design factors of designed structure: spatial structure of content elements (content layout), and their relationships such as “being in the same group”. The framework was evaluated with an experiment involving 12 participants, wherein the participant's state was estimated from their gaze behavior. The results from the experiment show that the use of design structure improved estimation accuracies of user states compared to other baseline methods.

  • White Balancing by Using Multiple Images via Intrinsic Image Decomposition

    Ryo MATSUOKA  Tatsuya BABA  Mia RIZKINIA  Masahiro OKUDA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2015/05/14
      Vol:
    E98-D No:8
      Page(s):
    1562-1570

    Using a flash/no-flash image pair, we propose a novel white-balancing technique that can effectively correct the color balance of a complex scene under multiple light sources. In the proposed method, by using multiple images of the same scene taken under different lighting conditions, we estimate the reflectance component of the scene and the multiple shading components of each image. The reflectance component is a specific object color which does not depend on scene illumination and the shading component is a shading effect caused by the illumination lights. Then, we achieve white balancing by appropriately correcting the estimated shading components. The proposed method achieves better performance than conventional methods, especially under colored illumination and mixed lighting conditions.

  • TherWare: Thermal-Aware Placement and Routing Framework for 3D FPGAs with Location-Based Heat Balance

    Ya-Shih HUANG  Han-Yuan CHANG  Juinn-Dar HUANG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E98-A No:8
      Page(s):
    1796-1805

    The emerging three-dimensional (3D) technology is considered as a promising solution for achieving better performance and easier heterogeneous integration. However, the thermal issue becomes exacerbated primarily due to larger power density and longer heat dissipation paths. The thermal issue would also be critical once FPGAs step into the 3D arena. In this article, we first construct a fine-grained thermal resistive model for 3D FPGAs. We show that merely reducing the total power consumption and/or minimizing the power density in vertical direction is not enough for a thermal-aware 3D FPGA backend (placement and routing) flow. Then, we propose our thermal-aware backend flow named TherWare considering location-based heat balance. In the placement stage, TherWare not only considers power distribution of logic tiles in both lateral and vertical directions but also minimizes the interconnect power. In the routing stage, TherWare concentrates on overall power minimization and evenness of power distribution at the same time. Experimental results show that TherWare can significantly reduce the maximum temperature, the maximum temperature gradient, and the temperature deviation only at the cost of a minor increase in delay and runtime as compared with present arts.

  • Method of Spread Spectrum Watermarking Using Quantization Index Modulation for Cropped Images

    Takahiro YAMAMOTO  Masaki KAWAMURA  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2015/04/16
      Vol:
    E98-D No:7
      Page(s):
    1306-1315

    We propose a method of spread spectrum digital watermarking with quantization index modulation (QIM) and evaluate the method on the basis of IHC evaluation criteria. The spread spectrum technique can make watermarks robust by using spread codes. Since watermarks can have redundancy, messages can be decoded from a degraded stego-image. Under IHC evaluation criteria, it is necessary to decode the messages without the original image. To do so, we propose a method in which watermarks are generated by using the spread spectrum technique and are embedded by QIM. QIM is an embedding method that can decode without an original image. The IHC evaluation criteria include JPEG compression and cropping as attacks. JPEG compression is lossy compression. Therefore, errors occur in watermarks. Since watermarks in stego-images are out of synchronization due to cropping, the position of embedded watermarks may be unclear. Detecting this position is needed while decoding. Therefore, both error correction and synchronization are required for digital watermarking methods. As countermeasures against cropping, the original image is divided into segments to embed watermarks. Moreover, each segment is divided into 8×8 pixel blocks. A watermark is embedded into a DCT coefficient in a block by QIM. To synchronize in decoding, the proposed method uses the correlation between watermarks and spread codes. After synchronization, watermarks are extracted by QIM, and then, messages are estimated from the watermarks. The proposed method was evaluated on the basis of the IHC evaluation criteria. The PSNR had to be higher than 30 dB. Ten 1920×1080 rectangular regions were cropped from each stego-image, and 200-bit messages were decoded from these regions. Their BERs were calculated to assess the tolerance. As a result, the BERs were less than 1.0%, and the average PSNR was 46.70 dB. Therefore, our method achieved a high image quality when using the IHC evaluation criteria. In addition, the proposed method was also evaluated by using StirMark 4.0. As a result, we found that our method has robustness for not only JPEG compression and cropping but also additional noise and Gaussian filtering. Moreover, the method has an advantage in that detection time is small since the synchronization is processed in 8×8 pixel blocks.

  • RX v2: Renesas's New-Generation MCU Processor

    Sugako OTANI  Hiroyuki KONDO  

     
    PAPER

      Vol:
    E98-C No:7
      Page(s):
    544-549

    RXv2 is the new generation of Renesas's processor architecture for microcontrollers with high-capacity flash memory. An enhanced instruction set and pipeline structure with an advanced fetch unit (AFU) provide an effective balance between power consumption performance and high processing performance. Enhanced instructions such as DSP function and floating point operation and a five-stage dual-issue pipeline synergistically boost the performance of digital signal applications. The RXv2 processor delivers 1.9 - 3.7 the cycle performance of the RXv1 in these applications. The decrease of the number of Flash memory accesses by AFU is a dominant determiner of reducing power consumption. AFU of RXv2 benefits from adopting branch target cache, which has a comparatively smaller area than that of typical cache systems. High code density delivers low power consumption by reducing instruction memory bandwidth. The implementation of RXv2 delivers up to 46% reduction in static code size, up to 30% reduction in dynamic code size relative to RISC architectures. RXv2 reaches 4.0 Coremark per MHz and operates up to 240MHz. The RXv2 processor delivers approximately more than 2.2 - 5.7x the power efficiency of the RXv1. The RXv2 microprocessor achieves the best possible computing performance in various applications such as building automation, medical, motor control, e-metering, and home appliances which lead to the higher memory capacity, frequency and processing performance.

  • An Evaluation on Two-Handed and One-Handed Control Methods for Positioning Object in Immersive Virtual Environments

    Noritaka OSAWA  Kikuo ASAI  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2015/03/20
      Vol:
    E98-D No:7
      Page(s):
    1316-1324

    A two-handed distance control method is proposed for precisely and efficiently manipulating a virtual 3D object by hand in an immersive virtual reality environment. The proposed method enhances direct manipulation by hand and is used to precisely control and efficiently adjust the position of an object and the viewpoint using the distance between the two hands. The two-handed method is evaluated and compared with the previously proposed one-handed speed control method, which adjusts the position of an object in accordance with the speed of one hand. The results from experimental evaluation show that two-handed methods, which make position and viewpoint adjustments, are the best among six combinations of control and adjustment methods.

  • Suppression of Mode Conversion by Using Tightly Coupled Asymmetrically Tapered Bend in Differential Lines

    Yoshitaka TOYOTA  Shohei KAN  Kengo IOKIBE  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1188-1195

    In this paper, we propose a tightly coupled asymmetrically tapered bend to suppress differential-to-common mode conversion caused by bend discontinuity in a pair of differential lines. Tightly coupled symmetrically tapered bends have been so far proposed to suppress the mode conversion by decreasing the path difference in the bend. This approach makes the path difference shorter so that the differential lines are coupled more tightly but the path difference of twice the sum of the line width and the line separation still remains. To suppress the remaining path difference, this paper introduces the use of asymmetric tapers. In addition, two-section tapers are applied to reduce differential-mode reflection increased by the tapers and hence improve differential-mode propagation. A full-wave simulation of a right-angled bend demonstrates that the forward differential-to-common mode conversion is decreased by almost 30 dB compared to the symmetrically tapered bend and that the differential-mode reflection coefficient is reduced to the same amount as that of the classic bend. Also, the generality of the proposed bend structure is discussed.

  • An Effective Suspicious Timing-Error Prediction Circuit Insertion Algorithm Minimizing Area Overhead

    Shinnosuke YOSHIDA  Youhua SHI  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER

      Vol:
    E98-A No:7
      Page(s):
    1406-1418

    As process technologies advance, timing-error correction techniques have become important as well. A suspicious timing-error prediction (STEP) technique has been proposed recently, which predicts timing errors by monitoring the middle points, or check points of several speed-paths in a circuit. However, if we insert STEP circuits (STEPCs) in the middle points of all the paths from primary inputs to primary outputs, we need many STEPCs and thus require too much area overhead. How to determine these check points is very important. In this paper, we propose an effective STEPC insertion algorithm minimizing area overhead. Our proposed algorithm moves the STEPC insertion positions to minimize inserted STEPC counts. We apply a max-flow and min-cut approach to determine the optimal positions of inserted STEPCs and reduce the required number of STEPCs to 1/10-1/80 and their area to 1/5-1/8 compared with a naive algorithm. Furthermore, our algorithm realizes 1.12X-1.5X overclocking compared with just inserting STEPCs into several speed-paths.

  • Statistical Timing Modeling Based on a Lognormal Distribution Model for Near-Threshold Circuit Optimization

    Jun SHIOMI  Tohru ISHIHARA  Hidetoshi ONODERA  

     
    PAPER

      Vol:
    E98-A No:7
      Page(s):
    1455-1466

    Near-threshold computing has emerged as one of the most promising solutions for enabling highly energy efficient and high performance computation of microprocessors. This paper proposes architecture-level statistical static timing analysis (SSTA) models for the near-threshold voltage computing where the path delay distribution is approximated as a lognormal distribution. First, we prove several important theorems that help consider architectural design strategies for high performance and energy efficient near-threshold computing. After that, we show the numerical experiments with Monte Carlo simulations using a commercial 28nm process technology model and demonstrate that the properties presented in the theorems hold for the practical near-threshold logic circuits.

  • Equation-Based Transmission Power Control for Wearable Sensor Systems

    Namgi KIM  Jin-a HONG  Byoung-Dai LEE  

     
    LETTER-Systems and Control

      Vol:
    E98-A No:7
      Page(s):
    1558-1561

    In emerging wearable sensor systems, it is crucial to save energy because these systems are severely energy-constrained. For making the sensors in these systems energy efficient, transmission power control (TPC) is widely used, and thus far, many TPC algorithms have been proposed in the literature. However, these TPC algorithms do not always work well in all wireless body channel conditions, which are capriciously varied due to diverse sensor environments such as sensor placements, body movements, and body locations. In this paper, we propose a simple TPC algorithm that quickly and stably approaches the optimal transmission power level and works well in all wearable sensor environments. We experimentally evaluated the proposed TPC algorithm and proved that it works well under all wireless body channel conditions.

  • Intra Prediction Using an Advanced Most Probable Mode in H.264/AVC

    Yeon-Kyeong JEONG  Woon-Young YEO  Jong-Ki HAN  

     
    LETTER-Image

      Vol:
    E98-A No:7
      Page(s):
    1588-1591

    The mode of intra prediction in H.264/AVC is encoded based on the most probable mode (MPM). To increase coding efficiency, the probability of the case that MPM is equal to coding mode of the current block should increase. In this paper we propose an efficient scheme to make MPM which is matched for the spatial direction property of pixels in the current block. Simulation results show that the proposed scheme gives significant coding gains when compared with the conventional techniques.

  • Low-Jitter Design for Second-Order Time-to-Digital Converter Using Frequency Shift Oscillators

    Keisuke OKUNO  Toshihiro KONISHI  Shintaro IZUMI  Masahiko YOSHIMOTO  Hiroshi KAWAGUCHI  

     
    PAPER

      Vol:
    E98-A No:7
      Page(s):
    1475-1481

    We present a low-jitter design for a 10-bit second-order frequency shift oscillator time-to-digital converter (FSOTDC). As described herein, we analyze the relation between performance and FSOTDC parameters and provide insight to support the design of the FSOTDC. Results show that an oscillator jitter limits the FSOTDC resolution, particularly during the first stage. To estimate and design an FSOTDC, the frequency shift oscillator requires an inverter of a certain size. In a standard 65-nm CMOS process, an SNDR of 64dB is achievable at an input signal frequency of 10kHz and a sampling clock of 2MHz. Measurements of the test chip confirmed that the measurements match the analyses.

  • Error Evaluation of an F0-Adaptive Spectral Envelope Estimator in Robustness against the Additive Noise and F0 Error

    Masanori MORISE  

     
    LETTER-Speech and Hearing

      Pubricized:
    2015/04/02
      Vol:
    E98-D No:7
      Page(s):
    1405-1408

    This paper describes an evaluation of a temporally stable spectral envelope estimator proposed in our past research. The past research demonstrated that the proposed algorithm can synthesize speech that is as natural as the input speech. This paper focuses on an objective comparison, in which the proposed algorithm is compared with two modern estimation algorithms in terms of estimation performance and temporal stability. The results show that the proposed algorithm is superior to the others in both aspects.

  • Quasistatic Approximation for Exposure Assessment of Wireless Power Transfer Open Access

    Ilkka LAAKSO  Takuya SHIMAMOTO  Akimasa HIRATA  Mauro FELIZIANI  

     
    INVITED PAPER

      Vol:
    E98-B No:7
      Page(s):
    1156-1163

    Magnetic resonant coupling between two coils allows effective wireless transfer of power over distances in the range of tens of centimeters to a few meters. The strong resonant magnetic field also extends to the immediate surroundings of the power transfer system. When a user or bystander is exposed to this magnetic field, electric fields are induced in the body. For the purposes of human and product safety, it is necessary to evaluate whether these fields satisfy the human exposure limits specified in international guidelines and standards. This work investigates the effectiveness of the quasistatic approximation for computational modeling human exposure to the magnetic fields of wireless power transfer systems. It is shown that, when valid, this approximation can greatly reduce the computational requirements of the assessment of human exposure. Using the quasistatic modeling approach, we present an example of the assessment of human exposure to the non-uniform magnetic field of a realistic WPT system for wireless charging of an electric vehicle battery, and propose a coupling factor for practical determination of compliance with the international exposure standards.

3521-3540hit(16314hit)