The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

3581-3600hit(16314hit)

  • Suppression of Mode Conversion by Using Tightly Coupled Asymmetrically Tapered Bend in Differential Lines

    Yoshitaka TOYOTA  Shohei KAN  Kengo IOKIBE  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1188-1195

    In this paper, we propose a tightly coupled asymmetrically tapered bend to suppress differential-to-common mode conversion caused by bend discontinuity in a pair of differential lines. Tightly coupled symmetrically tapered bends have been so far proposed to suppress the mode conversion by decreasing the path difference in the bend. This approach makes the path difference shorter so that the differential lines are coupled more tightly but the path difference of twice the sum of the line width and the line separation still remains. To suppress the remaining path difference, this paper introduces the use of asymmetric tapers. In addition, two-section tapers are applied to reduce differential-mode reflection increased by the tapers and hence improve differential-mode propagation. A full-wave simulation of a right-angled bend demonstrates that the forward differential-to-common mode conversion is decreased by almost 30 dB compared to the symmetrically tapered bend and that the differential-mode reflection coefficient is reduced to the same amount as that of the classic bend. Also, the generality of the proposed bend structure is discussed.

  • Performance Evaluations of Transmit Diversity Schemes with Synchronization Signals for LTE Downlink

    Satoshi NAGATA  Yoshihisa KISHIYAMA  Motohiro TANNO  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E98-B No:6
      Page(s):
    1110-1124

    This paper presents the effect of transmit diversity on the initial and neighboring cell search time performance and the most appropriate transmit diversity scheme based on system-level simulations employing synchronization signals for the Long Term Evolution (LTE) downlink. The synchronization signals including the primary synchronization signal (PSS) and secondary synchronization signal (SSS) are the first physical channel that a set of user equipment (UE) acquires at the initial radio-link connection. The transmit diversity candidates assumed in the paper are Precoding Vector Switching (PVS), Cyclic Delay Diversity (CDD), Time Switched Transmit Diversity (TSTD), and Frequency Switched Transmit Diversity (FSTD), which are all suitable for simple blind detection at a UE. System-level simulation results show that transmit diversity is effective in improving the detection probabilities of the received PSS timing and PSS sequence in the first step and those of the SSS sequence and radio frame timing in the second step of the cell search process. We also show that PVS achieves fast cell search time performance of less than approximately 20ms at the location probability of 90% regardless of the inter-cell site distance up to 10km. Hence, we conclude that PVS is the best transmit diversity scheme for the synchronization signals from the viewpoint of decreasing the initial and neighboring cell search times.

  • An I/O-Sized ADC with Second-Order TDC and MOM Capacitor Voltage-to-Time Converter

    Keisuke OKUNO  Toshihiro KONISHI  Shintaro IZUMI  Masahiko YOSHIMOTO  Hiroshi KAWAGUCHI  

     
    PAPER

      Vol:
    E98-C No:6
      Page(s):
    489-495

    We present an I/O-size second-order analog to digital converter (ADC) combined with a time-to-digital converter (TDC) and a voltage-to-time converter (VTC). Our proposed VTC is optimized for metal--oxide--metal (MOM) capacitances, and is charged to the MOM capacitances by an input voltage. In a standard 65-nm CMOS process, a signal to noise and distortion ratio (SNDR) of 50,dB (8 bits) is achievable at an input signal frequency of 78,kHz and a sampling rate of 20,MHz, where the respective area and power are 6468,mm$^{mathrm{2}}$ and 509 $mu$W. The measured maximum integral nonlinearity (INL) of the proposed ADC is $-$1.41 LSBs. The active area of the proposed ADC is smaller than an I/O buffer. The proposed ADC is useful as an ADC I/O.

  • Performance Analysis and Optimum Resource Allocation in Mobile Multihop Relay System

    Taejoon KIM  Seong Gon CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:6
      Page(s):
    1078-1085

    This paper analyzes the performance of a mobile multihop relay (MMR) system which uses intermediate mobile relay stations (RSs) to increase service coverage area and capacity of a communication system. An analytical framework for an MMR system is introduced, and a scheme for allocating the optimum radio resources to an MMR system is presented. It is very challenging to develop an analytical framework for an MMR system because more than two wireless links should be considered in analyzing the performance of such a system. Here, the joint effect of a finite queue length and an adaptive modulation and coding (AMC) scheme in both a base station (BS) and an RS are considered. The traffic characteristics from BS to RS are analyzed, and a three-dimensional finite-state Markov chain (FSMC) is built for the RS which considers incoming traffic from the BS as well. The RS packet loss rate and the RS average throughput are also derived. Moreover, maximum throughput is achieved by optimizing the amount of radio resources to be allocated to the wireless link between a BS and an RS.

  • Face Recognition Across Poses Using a Single 3D Reference Model

    Gee-Sern HSU  Hsiao-Chia PENG  Ding-Yu LIN  Chyi-Yeu LIN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2015/02/24
      Vol:
    E98-D No:6
      Page(s):
    1238-1246

    Face recognition across pose is generally tackled by either 2D based or 3D based approaches. The 2D-based often require a training set from which the cross-pose multi-view relationship can be learned and applied for recognition. The 3D based are mostly composed of 3D surface reconstruction of each gallery face, synthesis of 2D images of novel views using the reconstructed model, and match of the synthesized images to the probes. The depth information provides crucial information for arbitrary poses but more methods are yet to be developed. Extended from a latest face reconstruction method using a single 3D reference model and a frontal registered face, this study focuses on using the reconstructed 3D face for recognition. The recognition performance varies with poses, the closer to the front, the better. Several ways to improve the performance are attempted, including different numbers of fiducial points for alignment, multiple reference models considered in the reconstruction phase, and both frontal and profile poses available in the gallery. These attempts make this approach competitive to the state-of-the-art methods.

  • Improving Width-3 Joint Sparse Form to Attain Asymptotically Optimal Complexity on Average Case

    Hiroshi IMAI  Vorapong SUPPAKITPAISARN  

     
    LETTER

      Vol:
    E98-A No:6
      Page(s):
    1216-1222

    In this paper, we improve a width-3 joint sparse form proposed by Okeya, Katoh, and Nogami. After the improvement, the representation can attain an asymtotically optimal complexity found in our previous work. Although claimed as optimal by the authors, the average computation time of multi-scalar multiplication obtained by the representation is 563/1574n+o(n)≈0.3577n+o(n). That number is larger than the optimal complexity 281/786n+o(n)≈0.3575n+o(n) found in our previous work. To optimize the width-3 joint sparse form, we add more cases to the representation. After the addition, we can show that the complexity is updated to 281/786n+o(n)≈0.3575n+o(n), which implies that the modified representation is asymptotically optimal. Compared to our optimal algorithm in the previous work, the modified width-3 joint sparse form uses less dynamic memory, but it consumes more static memory.

  • A Forward/Reverse Body Bias Generator with Wide Supply-Range down to Threshold Voltage

    Norihiro KAMAE  Akira TSUCHIYA  Hidetoshi ONODERA  

     
    PAPER

      Vol:
    E98-C No:6
      Page(s):
    504-511

    A forward/reverse body bias generator (BBG) which operates under wide supply-range is proposed. Fine-grained body biasing (FGBB) is effective to reduce variability and increase energy efficiency on digital LSIs. Since FGBB requires a number of BBGs to be implemented, simple design is preferred. We propose a BBG with charge pumps for reverse body bias and the BBG operates under wide supply-range from 0.5,V to 1.2,V. Layout of the BBG was designed in a cell-based flow with an AES core and fabricated in a 65~nm CMOS process. Area of the AES core is 0.22 mm$^2$ and area overhead of the BBG is 2.3%. Demonstration of the AES core shows a successful operation with the supply voltage from 0.5,V to 1.2,V which enables the reduction of power dissipation, for example, of 17% at 400,MHz operation.

  • Wireless Distance Estimation Based on Error Correction of Bluetooth RSSI

    Joon-young JUNG  Dong-oh KANG  Jang-ho CHOI  Changseok BAE  Dae-young KIM  

     
    PAPER-Network

      Vol:
    E98-B No:6
      Page(s):
    1018-1031

    In this paper, we propose an error-correction low-pass filter (EC-LPF) algorithm for estimating the wireless distance between devices. To measure this distance, the received signal strength indication (RSSI) is a popularly used method because the RSSI of a wireless signal, such as Wi-Fi and Bluetooth, can be measured easily without the need for additional hardware. However, estimating the wireless distance using an RSSI is known to be difficult owing to the occurrence of inaccuracies. To examine the inaccuracy characteristics of Bluetooth RSSI, we conduct a preliminary test to discover the relationship between the actual distance and Bluetooth RSSI under several different environments. The test results verify that the main reason for inaccuracy is the existence of measurement errors in the raw Bluetooth RSSI data. In this paper, the EC-LPF algorithm is proposed to reduce measurement errors by alleviating fluctuations in a Bluetooth signal with responsiveness for real-time applications. To evaluate the effectiveness of the EC-LPF algorithm, distance accuracies of different filtering algorithms are compared, namely, a low-pass filer (LPF), a Kalman filter, a particle filter, and the EC-LPF algorithm under two different environments: an electromagnetic compatibility (EMC) chamber and an indoor hall. The EC-LPF algorithm achieves the best performance in both environments in terms of the coefficient of determination, standard deviation, measurement range, and response time. In addition, we also implemented a meeting room application to verify the feasibility of the EC-LPF algorithm. The results prove that the EC-LPF algorithm distinguishes the inside and outside areas of a meeting room without error.

  • Optimal Reporting Order for Superposition Cooperative Spectrum Sensing in Cognitive Radio Networks

    Hiep VU-VAN  Insoo KOO  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E98-A No:6
      Page(s):
    1346-1350

    In cognitive radio (CR), superposition cooperative spectrum sensing (SPCSS) is able to offer a much improved sensing reliability compared to individual sensing. Because of the differences in sensing channel condition, the reporting order for each cognitive radio user (CU) will highly affect the sensing performance of the network. In this paper, we propose an algorithm to assign the best reporting order to each CU in order to maximize sensing performance under SPCSS. The numerical results show that the proposed scheme can obtain the same performance as the optimal scheme.

  • Improved Detection Scheme Based on Lattice-Reduction and Threshold Algorithm in MIMO-OFDM Systems

    Jae-Jeong KIM  Hyoung-Kyu SONG  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E98-A No:6
      Page(s):
    1343-1345

    In this letter, an enhanced detection scheme using threshold and lattice-reduction algorithm is proposed. The first step of the proposed detection scheme finds another basis channel matrix H' which has good properties from the channel matrix H by using lattice-reduction algorithm. And QRD-M detection scheme using threshold algorithm is executed in the next step. Simulation results show that the proposed method has better performance than the conventional QRD-M detection scheme at high SNR. Also, it reduces candidate symbols because of the threshold algorithm.

  • Rain Sensing Using Dual-Frequency Measurements from Small-Scale Millimeter-Wave Network

    Hung V. LE  Capsoni CARLO  Nebuloni ROBERTO  Luini LORENZO  Takuichi HIRANO  Toru TANIGUCHI  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:6
      Page(s):
    1040-1049

    Dense millimeter-wave networks are a promising candidate for next-generation cellular systems enabling multiple gigabit-per-second data rates. A major disadvantage of millimeter-wave systems is signal disruption by rain, and here we propose a novel method for rain sensing using dual-frequency measurements at 25 and 38GHz from a small-scale Tokyo Institute of Technology (Tokyo Tech) millimeter-wave network. A real-time algorithm is developed for estimating the rain rate from attenuation using both ITU-R relationships and new coefficients that consider the effects of the rain Drop Size Distribution (DSD). The suggested procedure is tested on measured data, and its performance is evaluated. The results show that the proposed algorithm yields estimates that agree very well with rain gauge data.

  • Blind Interference Suppression Scheme by Eigenvector Beamspace CMA Adaptive Array with Subcarrier Transmission Power Assignment for Spectrum Superposing

    Kazuki MARUTA  Jun MASHINO  Takatoshi SUGIYAMA  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:6
      Page(s):
    1050-1057

    This paper proposes a novel blind adaptive array scheme with subcarrier transmission power assignment (STPA) for spectrum superposing in cognitive radio networks. The Eigenvector Beamspace Adaptive Array (EBAA) is known to be one of the blind adaptive array algorithms that can suppress inter-system interference without any channel state information (CSI). However, EBAA has difficulty in suppressing interference signals whose Signal to Interference power Ratio (SIR) values at the receiver are around 0dB. With the proposed scheme, the ST intentionally provides a level difference between subcarriers. At the receiver side, the 1st eigenvector of EBAA is applied to the received signals of the subcarrier assigned higher power and the 2nd eigenvector is applied to those assigned lower power. In order to improve interference suppression performance, we incorporate Beamspace Constant Modulus Algorithm (BSCMA) into EBAA (E-BSCMA). Additionally, STPA is effective in reducing the interference experienced by the primary system. Computer simulation results show that the proposed scheme can suppress interference signals received with SIR values of around 0dB while improving operational SIR for the primary system. It can enhance the co-existing region of 2 systems that share a spectrum.

  • Secrecy Capacity of Wiretap Channels with Additive Colored Gaussian Noise

    Hachiro FUJITA  

     
    PAPER-Information Theory

      Vol:
    E98-A No:6
      Page(s):
    1276-1287

    Wyner has shown in his seminal paper on (discrete memoryless) wiretap channels that if the channel between the sender and an eavesdropper is a degraded version of the channel between the sender and the legitimate receiver, then the sender can reliably and securely transmit a message to the receiver, while the eavesdropper obtains absolutely no information about the message. Later, Leung-Yan-Cheong and Hellman extended Wyner's result to the case where the noise is white Gaussian. In this paper we extend the white Gaussian wiretap channel to the colored Gaussian case and show the finite block length secrecy capacity of colored Gaussian wiretap channels. We also show the asymptotic secrecy capacity of a specific colored Gaussian wiretap channel for which optimal power allocation can be found by a water-filling procedure.

  • Adding Robustness to Cascade Control of DC Motor Velocity via Disturbance Observers

    In Hyuk KIM  Young Ik SON  

     
    LETTER-Systems and Control

      Vol:
    E98-A No:6
      Page(s):
    1305-1309

    Since the conventional cascade controller for electric motor drives requires accurate information about the system parameters and load conditions to achieve a desired performance, this paper presents a new practical control structure to improve the robust performance against parameter uncertainties. Two first-order disturbance observers (DOB) are incorporated with the cascade structure, to preserve the nominal performance. The analysis of the robust performance of the DOB is presented by using the singular perturbation theory. Simulation results suggest that the proposed controller can be used effectively as an additional compensator to the conventional cascade scheme.

  • A Model-Checking Approach for Fault Analysis Based on Configurable Model Extraction

    Hideto OGAWA  Makoto ICHII  Tomoyuki MYOJIN  Masaki CHIKAHISA  Yuichiro NAKAGAWA  

     
    PAPER-Model Checking

      Pubricized:
    2015/02/17
      Vol:
    E98-D No:6
      Page(s):
    1150-1160

    A practical model-checking (MC) approach for fault analysis, that is one of the most cost-effective tasks in software development, is proposed. The proposed approach is based on a technique, named “Program-oriented Modeling” (POM) for extracting a model from source code. The framework of model extraction by POM provides configurable abstraction based on user-defined transformation rules, and it supports trial-and-error model extraction. An environment for MC called POM/MC was also built. POM/MC analyzes C source code to extract Promela models used for the SPIN model checker. It was applied to an industrial software system to evaluate the efficiency of the configurable model extraction by POM for fault analysis. Moreover, it was shown that the proposed MC approach can reduce the effort involved in analyzing software faults by MC.

  • Two Lower Bounds for Shortest Double-Base Number System

    Parinya CHALERMSOOK  Hiroshi IMAI  Vorapong SUPPAKITPAISARN  

     
    LETTER-Algorithms and Data Structures

      Vol:
    E98-A No:6
      Page(s):
    1310-1312

    In this letter, we derive two lower bounds for the number of terms in a double-base number system (DBNS), when the digit set is {1}. For a positive integer n, we show that the number of terms obtained from the greedy algorithm proposed by Dimitrov, Imbert, and Mishra [1] is $Thetaleft( rac{log n}{log log n} ight)$. Also, we show that the number of terms in the shortest double-base chain is Θ(log n).

  • Performance Analysis of Distributed Broadcasting in IEEE 802.11p MAC Protocol

    Daein JEONG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:6
      Page(s):
    1086-1094

    In this paper, we propose an analysis of broadcasting in the IEEE 802.11p MAC protocol. We consider multi-channel operation which is specifically designed for VANET (Vehicular Ad hoc Networks) applications. This protocol supports channel switching; the device alternates between the CCH (Control Channel) and the SCH (Service Channel) during the fixed synchronization interval. It helps vehicles with a single transceiver to access the CCH periodically during which time they acquire or broadcast safety-related messages. Confining the broadcasting opportunity to the deterministic CCH interval entails a non-typical approach to the analysis. Our analysis is carried out considering 1) the time dependency of the system behavior caused by the channel switching, 2) the mutual influence among the vehicles using a multi-dimensional stochastic process, and 3) the generation of messages distributed over the CCH interval. The proposed analysis enables the prediction of the successful delivery ratio and the delay of the broadcast messages. Furthermore, we propose a refinement of the analysis to take account of the effects of hidden nodes on the system performance. The simulation results show that the proposed analysis is quite accurate in describing both the delivery ratio and delay, as well as in reflecting the hidden node effects. The benefits derived from the distributed generation of traffic are also evidenced by the results of experiments.

  • Compressed Sensing Signal Recovery via Creditability-Estimation Based Matching Pursuit

    Yizhong LIU  Tian SONG  Yiqi ZHUANG  Takashi SHIMAMOTO  Xiang LI  

     
    PAPER-Digital Signal Processing

      Vol:
    E98-A No:6
      Page(s):
    1234-1243

    This paper proposes a novel greedy algorithm, called Creditability-Estimation based Matching Pursuit (CEMP), for the compressed sensing signal recovery. As proved in the algorithm of Stagewise Orthogonal Matching Pursuit (StOMP), two Gaussian distributions are followed by the matched filter coefficients corresponding to and without corresponding to the actual support set of the original sparse signal, respectively. Therefore, the selection for each support point is interpreted as a process of hypothesis testing, and the preliminarily selected support set is supposed to consist of rejected atoms. A hard threshold, which is controlled by an input parameter, is used to implement the rejection. Because the Type I error may happen during the hypothesis testing, not all the rejected atoms are creditable to be the true support points. The creditability of each preliminarily selected support point is evaluated by a well-designed built-in mechanism, and the several most creditable ones are adaptively selected into the final support set without being controlled by any extra external parameters. Moreover, the proposed CEMP does not necessitate the sparsity level to be a priori control parameter in operation. In order to verify the performance of the proposed algorithm, Gaussian and Pulse Amplitude Modulation sparse signals are measured in the noiseless and noisy cases, and the experiments of the compressed sensing signal recoveries by several greedy algorithms including CEMP are implemented. The simulation results show the proposed CEMP can achieve the best performances of the recovery accuracy and robustness as a whole. Besides, the experiment of the compressed sensing image recovery shows that CEMP can recover the image with the highest Peak Signal to Noise Ratio (PSNR) and the best visual quality.

  • A Bias-Free Adaptive Beamformer with GSC-APA

    Yun-Ki HAN  Jae-Woo LEE  Han-Sol LEE  Woo-Jin SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:6
      Page(s):
    1295-1299

    We propose a novel bias-free adaptive beamformer employing an affine projection algorithm with the optimal regularization parameter. The generalized sidelobe canceller affine projection algorithm suffers from a bias of a weight vectors under the condition of no reference signals for output of an array in the beamforming application. First, we analyze the bias in the algorithm and prove that the bias can be eliminated through a large regularization parameter. However, this causes slow convergence at the initial state, so the regularization parameter should be controlled. Through the optimization of the regularization parameter, the proposed method achieves fast convergence without the bias at the steady-state. Experimental results show that the proposed beamformer not only removes the bias but also achieves both fast convergence and high steady-state output signal-to-interference-plus-noise ratio.

  • New Construction of Optimal p2-Ary Low Correlation Zone Sequence Sets

    Yubo LI  Kai LIU  Chengqian XU  

     
    PAPER-Information Theory

      Vol:
    E98-A No:6
      Page(s):
    1288-1294

    In this correspondence, a generic method of constructing optimal p2-ary low correlation zone sequence sets is proposed. Firstly p2-ary column sequence sets are constructed, then p2-ary LCZ sequence sets with parameters (pn-1, pm-1, (pn-1)/(pm-1),1) are constructed by using column sequences and interleaving technique. The resultant p2-ary LCZ sequence sets are optimal with respect to the Tang-Fan-Matsufuji bound.

3581-3600hit(16314hit)