The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

441-460hit(16314hit)

  • An Interpretation Method on Amplitude Intensities for Response Waveforms of Backward Transient Scattered Field Components by a 2-D Coated Metal Cylinder

    Keiji GOTO  Toru KAWANO  

     
    PAPER

      Pubricized:
    2022/09/29
      Vol:
    E106-C No:4
      Page(s):
    118-126

    In this paper, we propose an interpretation method on amplitude intensities for response waveforms of backward transient scattered field components for both E- and H-polarizations by a 2-D coated metal cylinder. A time-domain (TD) asymptotic solution, which is referred to as a TD Fourier transform method (TD-FTM), is derived by applying the FTM to a backward transient scattered field expressed by an integral form. The TD-FTM is represented by a combination of a direct geometric optical ray (DGO) and a reflected GO (RGO) series. We use the TD-FTM to derive amplitude intensity ratios (AIRs) between adjacent backward transient scattered field components. By comparing the numerical values of the AIRs with those of the influence factors that compose the AIRs, major factor(s) can be identified, thereby allowing detailed interpretation method on the amplitude intensities for the response waveforms of backward transient scattered field components. The accuracy and practicality of the TD-FTM are evaluated by comparing it with three reference solutions. The effectiveness of an interpretation method on the amplitude intensities for response waveforms of backward transient scattered field components is revealed by identifying major factor(s) affecting the amplitude intensities.

  • Band Characteristics of a Polarization Splitter with Circular Cores and Hollow Pits

    Midori NAGASAKA  Taiki ARAKAWA  Yutaro MOCHIDA  Kazunori KAMEDA  Shinichi FURUKAWA  

     
    PAPER

      Pubricized:
    2022/10/17
      Vol:
    E106-C No:4
      Page(s):
    127-135

    In this study, we discuss a structure that realizes a wideband polarization splitter comprising fiber 1 with a single core and fiber 2 with circular pits, which touch the top and bottom of a single core. The refractive index profile of the W type was adopted in the core of fiber 1 to realize the wideband. We compared the maximum bandwidth of BW-15 (bandwidth at an extinction ratio of -15dB) for the W type obtained in this study with those (our previous results) of BW-15 for the step and graded types with cores and pits at the same location; this comparison clarified that the maximum bandwidth of BW-15 for the W type is 5.22 and 4.96 times wider than those of step and graded types, respectively. Furthermore, the device length at the maximum bandwidth improved, becoming slightly shorter. The main results of the FPS in this study are all obtained by numerical analysis based on our proposed MM-DM (a method that combines the multipole method and the difference method for the inhomogeneous region). Our MM-DM is a quite reliable method for high accuracy analysis of the FPS composed of inhomogeneous circular regions.

  • Fundamental Study on Grasping Growth State of Paddy Rice Using Quad-Polarimetric SAR Data

    Tatsuya IKEUCHI  Ryoichi SATO  Yoshio YAMAGUCHI  Hiroyoshi YAMADA  

     
    BRIEF PAPER

      Pubricized:
    2022/08/30
      Vol:
    E106-C No:4
      Page(s):
    144-148

    In this brief paper, we examine polarimetric scattering characteristics for understanding seasonal change of paddy rice growth by using quad-polarimetric synthetic aperture radar (SAR) data in the X-band. Here we carry out polarimetric scattering measurement for a simplified paddy rice model in an anechoic chamber at X-band frequency to acquire the the quad polarimetric SAR data from the model. The measurements are performed several times for each growth stage of the paddy rice corresponding to seasonal change. The model-based scattering power decomposition is used for the examination of polarimetric features of the paddy rice model. It is found from the result of the polarimetric SAR image analysis for the measurement data that the growth state of the paddy rice in each stage can be understood by considering the ratio of the decomposition powers, when the planting direction of the paddy rice is not only normal but also oblique to radar direction. We can also see that orientation angle compensation (OAC) is useful for improving the accuracy of the growth stage observation in late vegetative stage for oblique planting case.

  • Influence Propagation Based Influencer Detection in Online Forum

    Wen GU  Shohei KATO  Fenghui REN  Guoxin SU  Takayuki ITO  Shinobu HASEGAWA  

     
    PAPER

      Pubricized:
    2022/11/07
      Vol:
    E106-D No:4
      Page(s):
    433-442

    Influential user detection is critical in supporting the human facilitator-based facilitation in the online forum. Traditional approaches to detect influential users in the online forum focus on the statistical activity information such as the number of posts. However, statistical activity information cannot fully reflect the influence that users bring to the online forum. In this paper, we propose to detect the influencers from the influence propagation perspective and focus on the influential maximization (IM) problem which aims at choosing a set of users that maximize the influence propagation from the entire social network. An online forum influence propagation network (OFIPN) is proposed to model the influence from an individual user perspective and influence propagation between users, and a heuristic algorithm that is proposed to find influential users in OFIPN. Experiments are conducted by simulations with a real-world social network. Our empirical results show the effectiveness of the proposed algorithm.

  • DualMotion: Global-to-Local Casual Motion Design for Character Animations

    Yichen PENG  Chunqi ZHAO  Haoran XIE  Tsukasa FUKUSATO  Kazunori MIYATA  Takeo IGARASHI  

     
    PAPER

      Pubricized:
    2022/12/07
      Vol:
    E106-D No:4
      Page(s):
    459-468

    Animating 3D characters using motion capture data requires basic expertise and manual labor. To support the creativity of animation design and make it easier for common users, we present a sketch-based interface DualMotion, with rough sketches as input for designing daily-life animations of characters, such as walking and jumping. Our approach enables to combine global motions of lower limbs and the local motion of the upper limbs in a database by utilizing a two-stage design strategy. Users are allowed to design a motion by starting with drawing a rough trajectory of a body/lower limb movement in the global design stage. The upper limb motions are then designed by drawing several more relative motion trajectories in the local design stage. We conduct a user study and verify the effectiveness and convenience of the proposed system in creative activities.

  • A Methodology on Converting 10-K Filings into a Machine Learning Dataset and Its Applications

    Mustafa SAMI KACAR  Semih YUMUSAK  Halife KODAZ  

     
    PAPER

      Pubricized:
    2022/10/12
      Vol:
    E106-D No:4
      Page(s):
    477-487

    Companies listed on the stock exchange are required to share their annual reports with the U.S. Securities and Exchange Commission (SEC) within the first three months following the fiscal year. These reports, namely 10-K Filings, are presented to public interest by the SEC through an Electronic Data Gathering, Analysis, and Retrieval database. 10-K Filings use standard file formats (xbrl, html, pdf) to publish the financial reports of the companies. Although the file formats propose a standard structure, the content and the meta-data of the financial reports (e.g. tag names) is not strictly bound to a pre-defined schema. This study proposes a data collection and data preprocessing method to semantify the financial reports and use the collected data for further analysis (i.e. machine learning). The analysis of eight different datasets, which were created during the study, are presented using the proposed data transformation methods. As a use case, based on the datasets, five different machine learning algorithms were utilized to predict the existence of the corresponding company in the S&P 500 index. According to the strong machine learning results, the dataset generation methodology is successful and the datasets are ready for further use.

  • GConvLoc: WiFi Fingerprinting-Based Indoor Localization Using Graph Convolutional Networks

    Dongdeok KIM  Young-Joo SUH  

     
    LETTER-Information Network

      Pubricized:
    2023/01/13
      Vol:
    E106-D No:4
      Page(s):
    570-574

    We propose GConvLoc, a WiFi fingerprinting-based indoor localization method utilizing graph convolutional networks. Using the graph structure, we can consider the fingerprint data of the reference points and their location labels in addition to the fingerprint data of the test point at inference time. Experimental results show that GConvLoc outperforms baseline methods that do not utilize graphs.

  • ConvNeXt-Haze: A Fog Image Classification Algorithm for Small and Imbalanced Sample Dataset Based on Convolutional Neural Network

    Fuxiang LIU  Chen ZANG  Lei LI  Chunfeng XU  Jingmin LUO  

     
    PAPER

      Pubricized:
    2022/11/22
      Vol:
    E106-D No:4
      Page(s):
    488-494

    Aiming at the different abilities of the defogging algorithms in different fog concentrations, this paper proposes a fog image classification algorithm for a small and imbalanced sample dataset based on a convolution neural network, which can classify the fog images in advance, so as to improve the effect and adaptive ability of image defogging algorithm in fog and haze weather. In order to solve the problems of environmental interference, camera depth of field interference and uneven feature distribution in fog images, the CutBlur-Gauss data augmentation method and focal loss and label smoothing strategies are used to improve the accuracy of classification. It is compared with the machine learning algorithm SVM and classical convolution neural network classification algorithms alexnet, resnet34, resnet50 and resnet101. This algorithm achieves 94.5% classification accuracy on the dataset in this paper, which exceeds other excellent comparison algorithms at present, and achieves the best accuracy. It is proved that the improved algorithm has better classification accuracy.

  • An Efficient Combined Bit-Width Reducing Method for Ising Models

    Yuta YACHI  Masashi TAWADA  Nozomu TOGAWA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2023/01/12
      Vol:
    E106-D No:4
      Page(s):
    495-508

    Annealing machines such as quantum annealing machines and semiconductor-based annealing machines have been attracting attention as an efficient computing alternative for solving combinatorial optimization problems. They solve original combinatorial optimization problems by transforming them into a data structure called an Ising model. At that time, the bit-widths of the coefficients of the Ising model have to be kept within the range that an annealing machine can deal with. However, by reducing the Ising-model bit-widths, its minimum energy state, or ground state, may become different from that of the original one, and hence the targeted combinatorial optimization problem cannot be well solved. This paper proposes an effective method for reducing Ising model's bit-widths. The proposed method is composed of two processes: First, given an Ising model with large coefficient bit-widths, the shift method is applied to reduce its bit-widths roughly. Second, the spin-adding method is applied to further reduce its bit-widths to those that annealing machines can deal with. Without adding too many extra spins, we efficiently reduce the coefficient bit-widths of the original Ising model. Furthermore, the ground state before and after reducing the coefficient bit-widths is not much changed in most of the practical cases. Experimental evaluations demonstrate the effectiveness of the proposed method, compared to existing methods.

  • CAMRI Loss: Improving the Recall of a Specific Class without Sacrificing Accuracy

    Daiki NISHIYAMA  Kazuto FUKUCHI  Youhei AKIMOTO  Jun SAKUMA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/01/23
      Vol:
    E106-D No:4
      Page(s):
    523-537

    In real world applications of multiclass classification models, misclassification in an important class (e.g., stop sign) can be significantly more harmful than in other classes (e.g., no parking). Thus, it is crucial to improve the recall of an important class while maintaining overall accuracy. For this problem, we found that improving the separation of important classes relative to other classes in the feature space is effective. Existing methods that give a class-sensitive penalty for cross-entropy loss do not improve the separation. Moreover, the methods designed to improve separations between all classes are unsuitable for our purpose because they do not consider the important classes. To achieve the separation, we propose a loss function that explicitly gives loss for the feature space, called class-sensitive additive angular margin (CAMRI) loss. CAMRI loss is expected to reduce the variance of an important class due to the addition of a penalty to the angle between the important class features and the corresponding weight vectors in the feature space. In addition, concentrating the penalty on only the important class hardly sacrifices separating the other classes. Experiments on CIFAR-10, GTSRB, and AwA2 showed that CAMRI loss could improve the recall of a specific class without sacrificing accuracy. In particular, compared with GTSRB's second-worst class recall when trained with cross-entropy loss, CAMRI loss improved recall by 9%.

  • Multimodal Named Entity Recognition with Bottleneck Fusion and Contrastive Learning

    Peng WANG  Xiaohang CHEN  Ziyu SHANG  Wenjun KE  

     
    PAPER-Natural Language Processing

      Pubricized:
    2023/01/18
      Vol:
    E106-D No:4
      Page(s):
    545-555

    Multimodal named entity recognition (MNER) is the task of recognizing named entities in multimodal context. Existing methods focus on utilizing co-attention mechanism to discover the relationships between multiple modalities. However, they still have two deficiencies: First, current methods fail to fuse the multimodal representations in a fine-grained way, which may bring noise of visual modalities. Second, current methods ignore bridging the semantic gap between heterogeneous modalities. To solve the above issues, we propose a novel MNER method with bottleneck fusion and contrastive learning (BFCL). Specifically, we first incorporate the transformer-based bottleneck fusion mechanism, subsequently, information between different modalities can only be exchanged through several bottleneck tokens, thus reducing the noise propagation. Then we propose two decoupled image-text contrastive losses to align the unimodal representations, making the representations of semantically similar modalities closer, while the representations of semantically different modalities farther away. Experimental results demonstrate that our method is competitive to the state-of-the-art models, and achieves 74.54% and 85.70% F1-scores on Twitter-2015 and Twitter-2017 datasets, respectively.

  • Why and How People View Lyrics While Listening to Music on a Smartphone

    Kosetsu TSUKUDA  Masahiro HAMASAKI  Masataka GOTO  

     
    PAPER-Music Information Processing

      Pubricized:
    2023/01/18
      Vol:
    E106-D No:4
      Page(s):
    556-564

    Why and how do people view lyrics? Although various lyrics-based music systems have been proposed, this fundamental question remains unexplored. Better understanding of lyrics viewing behavior would be beneficial for both researchers and music streaming platforms to improve their lyrics-based systems. Therefore, in this paper, we investigate why and how people view lyrics, especially when they listen to music on a smartphone. To answer “why,” we conduct a questionnaire-based online user survey involving 206 participants. To answer “how,” we analyze over 23 million lyrics request logs sent from the smartphone application of a music streaming service. Our analysis results suggest several reusable insights, including the following: (1) People have high demand for viewing lyrics to confirm what the artist sings, more deeply understand the lyrics, sing the song, and figure out the structure such as verse and chorus. (2) People like to view lyrics after returning home at night and before going to sleep rather than during the daytime. (3) People usually view the same lyrics repeatedly over time. Applying these insights, we also discuss application examples that could enable people to more actively view lyrics and listen to new songs, which would not only diversify and enrich people's music listening experiences but also be beneficial especially for music streaming platforms.

  • TEBAS: A Time-Efficient Balance-Aware Scheduling Strategy for Batch Processing Jobs

    Zijie LIU  Can CHEN  Yi CHENG  Maomao JI  Jinrong ZOU  Dengyin ZHANG  

     
    LETTER-Software Engineering

      Pubricized:
    2022/12/28
      Vol:
    E106-D No:4
      Page(s):
    565-569

    Common schedulers for long-term running services that perform task-level optimization fail to accommodate short-living batch processing (BP) jobs. Thus, many efficient job-level scheduling strategies are proposed for BP jobs. However, the existing scheduling strategies perform time-consuming objective optimization which yields non-negligible scheduling delay. Moreover, they tend to assign BP jobs in a centralized manner to reduce monetary cost and synchronization overhead, which can easily cause resource contention due to the task co-location. To address these problems, this paper proposes TEBAS, a time-efficient balance-aware scheduling strategy, which spreads all tasks of a BP job into the cluster according to the resource specifications of a single task based on the observation that computing tasks of a BP job commonly possess similar features. The experimental results show the effectiveness of TEBAS in terms of scheduling efficiency and load balancing performance.

  • Group Sparse Reduced Rank Tensor Regression for Micro-Expression Recognition

    Sunan LI  Yuan ZONG  Cheng LU  Chuangan TANG  Yan ZHAO  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2023/01/05
      Vol:
    E106-D No:4
      Page(s):
    575-578

    To overcome the challenge in micro-expression recognition that it only emerge in several small facial regions with low intensity, some researchers proposed facial region partition mechanisms and introduced group sparse learning methods for feature selection. However, such methods have some shortcomings, including the complexity of region division and insufficient utilization of critical facial regions. To address these problems, we propose a novel Group Sparse Reduced Rank Tensor Regression (GSRRTR) to transform the fearure matrix into a tensor by laying blocks and features in different dimensions. So we can process grids and texture features separately and avoid interference between grids and features. Furthermore, with the use of Tucker decomposition, the feature tensor can be decomposed into a product of core tensor and a set of matrix so that the number of parameters and the computational complexity of the scheme will decreased. To evaluate the performance of the proposed micro-expression recognition method, extensive experiments are conducted on two micro expression databases: CASME2 and SMIC. The experimental results show that the proposed method achieves comparable recognition rate with less parameters than state-of-the-art methods.

  • Exploring Effect of Residual Electric Charges on Cryptographic Circuits: Extended Version

    Mitsuru SHIOZAKI  Takeshi SUGAWARA  Takeshi FUJINO  

     
    PAPER

      Pubricized:
    2022/09/15
      Vol:
    E106-A No:3
      Page(s):
    281-293

    We study a new transistor-level side-channel leakage caused by charges trapped in between stacked transistors namely residual electric charges (RECs). Building leakage models is important in designing countermeasures against side-channel attacks (SCAs). The conventional work showed that even a transistor-level leakage is measurable with a local electromagnetic measurement. One example is the current-path leak [1], [2]: an attacker can distinguish the number of transistors in the current path activated during a signal transition. Addressing this issue, Sugawara et al. proposed to use a mirror circuit that has the same number of transistors on its possible current paths. We show that this countermeasure is insufficient by showing a new transistor-level leakage, caused by RECs, not covered in the previous work. RECs can carry the history of the gate's state over multiple clock cycles and changes the gate's electrical behavior. We experimentally verify that RECs cause exploitable side-channel leakage. We also propose a countermeasure against REC leaks and designed advanced encryption standard-128 (AES-128) circuits using IO-masked dual-rail read-only memory with a 180-nm complementary metal-oxide-semiconductor (CMOS) process. We compared the resilience of our AES-128 circuits against EMA attacks with and without our countermeasure and investigated an RECs' effect on physically unclonable functions (PUFs). We further extend RECs to physically unclonable function. We demonstrate that RECs affect the performance of arbiter and ring-oscillator PUFs through experiments using our custom chips fabricated with 180- and 40-nm CMOS processes*.

  • APVAS: Reducing the Memory Requirement of AS_PATH Validation by Introducing Aggregate Signatures into BGPsec

    Ouyang JUNJIE  Naoto YANAI  Tatsuya TAKEMURA  Masayuki OKADA  Shingo OKAMURA  Jason Paul CRUZ  

     
    PAPER

      Pubricized:
    2023/01/11
      Vol:
    E106-A No:3
      Page(s):
    170-184

    The BGPsec protocol, which is an extension of the border gateway protocol (BGP) for Internet routing known as BGPsec, uses digital signatures to guarantee the validity of routing information. However, the use of digital signatures in routing information on BGPsec causes a lack of memory in BGP routers, creating a gaping security hole in today's Internet. This problem hinders the practical realization and implementation of BGPsec. In this paper, we present APVAS (AS path validation based on aggregate signatures), a new protocol that reduces the memory consumption of routers running BGPsec when validating paths in routing information. APVAS relies on a novel aggregate signature scheme that compresses individually generated signatures into a single signature. Furthermore, we implement a prototype of APVAS on BIRD Internet Routing Daemon and demonstrate its efficiency on actual BGP connections. Our results show that the routing tables of the routers running BGPsec with APVAS have 20% lower memory consumption than those running the conventional BGPsec. We also confirm the effectiveness of APVAS in the real world by using 800,000 routes, which are equivalent to the full route information on a global scale.

  • A Generic Construction of CCA-Secure Identity-Based Encryption with Equality Test against Insider Attacks

    Keita EMURA  Atsushi TAKAYASU  

     
    PAPER

      Pubricized:
    2022/05/30
      Vol:
    E106-A No:3
      Page(s):
    193-202

    Identity-based encryption with equality test (IBEET) is a generalization of the traditional identity-based encryption (IBE) and public key searchable encryption, where trapdoors enable users to check whether two ciphertexts of distinct identities are encryptions of the same plaintext. By definition, IBEET cannot achieve indistinguishability security against insiders, i.e., users who have trapdoors. To address this issue, IBEET against insider attacks (IBEETIA) was later introduced as a dual primitive. While all users of IBEETIA are able to check whether two ciphertexts are encryptions of the same plaintext, only users who have tokens are able to encrypt plaintexts. Hence, IBEETIA is able to achieve indistinguishability security. On the other hand, the definition of IBEETIA weakens the notion of IBE due to its encryption inability. Nevertheless, known schemes of IBEETIA made use of rich algebraic structures such as bilinear groups and lattices. In this paper, we propose a generic construction of IBEETIA without resorting to rich algebraic structures. In particular, the only building blocks of the proposed construction are symmetric key encryption and pseudo-random permutations in the standard model. If a symmetric key encryption scheme satisfies CCA security, our proposed IBEETIA scheme also satisfies CCA security.

  • Short Lattice Signature Scheme with Tighter Reduction under Ring-SIS Assumption

    Kaisei KAJITA  Go OHTAKE  Kazuto OGAWA  Koji NUIDA  Tsuyoshi TAKAGI  

     
    PAPER

      Pubricized:
    2022/09/08
      Vol:
    E106-A No:3
      Page(s):
    228-240

    We propose a short signature scheme under the ring-SIS assumption in the standard model. Specifically, by revisiting an existing construction [Ducas and Micciancio, CRYPTO 2014], we demonstrate lattice-based signatures with improved reduction loss. As far as we know, there are no ways to use multiple tags in the signature simulation of security proof in the lattice tag-based signatures. We address the tag-collision possibility in the lattice setting, which improves reduction loss. Our scheme generates tags from messages by constructing a scheme under a mild security condition that is existentially unforgeable against random message attack with auxiliary information. Thus our scheme can reduce the signature size since it does not need to send tags with the signatures. Our scheme has short signature sizes of O(1) and achieves tighter reduction loss than that of Ducas et al.'s scheme. Our proposed scheme has two variants. Our scheme with one property has tighter reduction and the same verification key size of O(log n) as that of Ducas et al.'s scheme, where n is the security parameter. Our scheme with the other property achieves much tighter reduction loss of O(Q/n) and verification key size of O(n), where Q is the number of signing queries.

  • Multiparallel MMT: Faster ISD Algorithm Solving High-Dimensional Syndrome Decoding Problem

    Shintaro NARISADA  Kazuhide FUKUSHIMA  Shinsaku KIYOMOTO  

     
    PAPER

      Pubricized:
    2022/11/09
      Vol:
    E106-A No:3
      Page(s):
    241-252

    The hardness of the syndrome decoding problem (SDP) is the primary evidence for the security of code-based cryptosystems, which are one of the finalists in a project to standardize post-quantum cryptography conducted by the U.S. National Institute of Standards and Technology (NIST-PQC). Information set decoding (ISD) is a general term for algorithms that solve SDP efficiently. In this paper, we conducted a concrete analysis of the time complexity of the latest ISD algorithms under the limitation of memory using the syndrome decoding estimator proposed by Esser et al. As a result, we present that theoretically nonoptimal ISDs, such as May-Meurer-Thomae (MMT) and May-Ozerov, have lower time complexity than other ISDs in some actual SDP instances. Based on these facts, we further studied the possibility of multiple parallelization for these ISDs and proposed the first GPU algorithm for MMT, the multiparallel MMT algorithm. In the experiments, we show that the multiparallel MMT algorithm is faster than existing ISD algorithms. In addition, we report the first successful attempts to solve the 510-, 530-, 540- and 550-dimensional SDP instances in the Decoding Challenge contest using the multiparallel MMT.

  • Security Evaluation of Initialization Phases and Round Functions of Rocca and AEGIS

    Nobuyuki TAKEUCHI  Kosei SAKAMOTO  Takanori ISOBE  

     
    PAPER

      Pubricized:
    2022/11/09
      Vol:
    E106-A No:3
      Page(s):
    253-262

    Authenticated-Encryption with Associated-Data (AEAD) plays an important role in guaranteeing confidentiality, integrity, and authenticity in network communications. To meet the requirements of high-performance applications, several AEADs make use of AES New Instructions (AES-NI), which can conduct operations of AES encryption and decryption dramatically fast by hardware accelerations. At SAC 2013, Wu and Preneel proposed an AES-based AEAD scheme called AEGIS-128/128L/256, to achieve high-speed software implementation. At FSE 2016, Jean and Nikolić generalized the construction of AEGIS and proposed more efficient round functions. At ToSC 2021, Sakamoto et al. further improved the constructions of Jean and Nikolić, and proposed an AEAD scheme called Rocca for beyond 5G. In this study, we first evaluate the security of the initialization phases of Rocca and AEGIS family against differential and integral attacks using MILP (Mixed Integer Linear Programming) tools. Specifically, according to the evaluation based on the lower bounds for the number of active S-boxes, the initialization phases of AEGIS-128/128L/256 are secure against differential attacks after 4/3/6 rounds, respectively. Regarding integral attacks, we present the integral distinguisher on 6 rounds and 6/5/7 rounds in the initialization phases of Rocca and AEGIS-128/128L/256, respectively. Besides, we evaluate the round function of Rocca and those of Jean and Nikolić as cryptographic permutations against differential, impossible differential, and integral attacks. Our results indicate that, for differential attacks, the growth rate of increasing the number of active S-boxes in Rocca is faster than those of Jean and Nikolić. For impossible differential and integral attacks, we show that the round function of Rocca achieves the sufficient level of the security against these attacks in smaller number of rounds than those of Jean and Nikolić.

441-460hit(16314hit)