The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

481-500hit(16314hit)

  • Sub-Signal Channel Modulation for Hitless Redundancy Switching Systems

    Takahiro KUBO  Yuhei KAWAKAMI  Hironao ABE  Natsuki YASUHARA  Hideo KAWATA  Shinichi YOSHIHARA  Tomoaki YOSHIDA  

     
    PAPER-Network System

      Pubricized:
    2022/09/12
      Vol:
    E106-B No:3
      Page(s):
    221-229

    This paper proposes a sub-signal channel modulation scheme for hitless redundancy switching systems that offers highly confidential communications. A hitless redundancy switching system prevents frame loss by using multiple routes to forward the same frame. Although most studies on redundancy switching systems deal with frame duplication, elimination, and selection of redundant paths for the main signal, we focus on the transmission of the sub-signal channel. We introduce mathematical expressions to model the transmission rate and bit error rate of the sub-signal channel. To evaluate the validity of the models, we conduct numerical simulations to calculate the sub-signal transmission rate, main-signal transmission rate, and bit error rate of the sub-signal channel at physical transmission rates of 100Mb/s, 1Gb/s, and 10Gb/s. We discuss how to design sub-signal channel modulation on the basis of the evaluation results. We further discuss applications of sub-signal modulation in terms of network size and jitter.

  • iMon: Network Function Virtualisation Monitoring Based on a Unique Agent

    Cong ZHOU  Jing TAO  Baosheng WANG  Na ZHAO  

     
    PAPER-Network

      Pubricized:
    2022/09/21
      Vol:
    E106-B No:3
      Page(s):
    230-240

    As a key technology of 5G, NFV has attracted much attention. In addition, monitoring plays an important role, and can be widely used for virtual network function placement and resource optimisation. The existing monitoring methods focus on the monitoring load without considering they own resources needed. This raises a unique challenge: jointly optimising the NFV monitoring systems and minimising their monitoring load at runtime. The objective is to enhance the gain in real-time monitoring metrics at minimum monitoring costs. In this context, we propose a novel NFV monitoring solution, namely, iMon (Monitoring by inferring), that jointly optimises the monitoring process and reduces resource consumption. We formalise the monitoring process into a multitarget regression problem and propose three regression models. These models are implemented by a deep neural network, and an experimental platform is built to prove their availability and effectiveness. Finally, experiments also show that monitoring resource requirements are reduced, and the monitoring load is just 0.6% of that of the monitoring tool cAdvisor on our dataset.

  • A Resource-Efficient Green Paradigm For Crowdsensing Based Spectrum Detection In Internet of Things Networks

    Xiaohui LI  Qi ZHU  Wenchao XIA  Yunpei CHEN  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2022/09/12
      Vol:
    E106-B No:3
      Page(s):
    275-286

    Crowdsensing-based spectrum detection (CSD) is promising to enable full-coverage radio resource availability for the increasingly connected machines in the Internet of Things (IoT) networks. The current CSD scheme consumes a lot of energy and network resources for local sensing, processing, and distributed data reporting for each crowdsensing device. Furthermore, when the amount of reported data is large, the data fusion implemented at the requestor can easily cause high latency. For improving efficiencies in both energy and network resources, this paper proposes a green CSD (GCSD) paradigm. The ambient backscatter (AmB) is used to enable a battery-free mode of operation in which the received spectrum data is reported directly through backscattering without local processing. The energy for backscattering can be provided by ambient radio frequency (RF) sources. Then, relying on air computation (AirComp), the data fusion can be implemented during the backscattering process and over the air by utilizing the summation property of wireless channel. This paper illustrates the model and the implementation process of the GCSD paradigm. Closed-form expressions of detection metrics are derived for the proposed GCSD. Simulation results verify the correctness of the theoretical derivation and demonstrate the green properties of the GCSD paradigm.

  • A Novel Unambiguous Acquisition Algorithm Based on Segmentation Reconstruction for BOC(n,n) Signal Open Access

    Yuanfa JI  Sisi SONG  Xiyan SUN  Ning GUO  Youming LI  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2022/08/26
      Vol:
    E106-B No:3
      Page(s):
    287-295

    In order to improve the frequency band utilization and avoid mutual interference between signals, the BD3 satellite signals adopt Binary Offset Carrier (BOC) modulation. On one hand, BOC modulation has a narrow main peak width and strong anti-interference ability; on the other hand, the phenomenon of false acquisition locking caused by the multi-peak characteristic of BOC modulation itself needs to be resolved. In this context, this paper proposes a new BOC(n,n) unambiguous acquisition algorithm based on segmentation reconstruction. The algorithm is based on splitting the local BOC signal into four parts in each subcarrier period. The branch signal and the received signal are correlated with the received signal to generate four branch correlation signals. After a series of combined reconstructions, the final signal detection function completely eliminates secondary peaks. A simulation shows that the algorithm can completely eliminate the sub-peak interference for the BOC signals modulated by subcarriers with different phase. The characteristics of narrow correlation peak are retained. Experiments show that the proposed algorithm has superior performance in detection probability and peak-to-average ratio.

  • Establishment of Transmission Lines Model of Shielded Twisted-Pair Line

    Xiang ZHOU  Xiaoyu LU  Weike WANG  Jinjing REN  Yixing GU  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2022/10/13
      Vol:
    E106-C No:3
      Page(s):
    67-75

    Crosstalk between lines plays an important role in the transmission of signal. Hence it is of great significance to establish the transmission lines model accurately to evaluate factors affecting crosstalk coupling between lines and to improve the anti-interference capability of the system. As twisted-pair line is widely used for its unique twist structure which improves the anti-interference performance of cables, this paper presents a method of constructing transmission lines model of the shielded twisted-pair line (STP) with two twisted pairs based on S-parameters. Firstly, the transmission lines model of STP with one twisted pair is established. The establishment of distributed capacitance matrix of this model depends on the dielectric constant of insulation layer that surrounds a conductor, but the dielectric constant is often unknown. In this respect, a method to obtain the distributed capacitance matrix based on the S-parameters of this model is proposed. Due to twisting, there is a great deal of variability between the distribution parameters along the length of the STP. As the spatial distribution of conductors in the cross-section of twisted-pair line vary along with the cable length, the distribution parameters matrices also change as they move. The cable is divided into several segments, and the transmission lines model of STP is obtained with the cascade of each segment model. For the STP with two twisted pairs, the crosstalk between pairs is analyzed based on the mixed mode S-parameters. Combined with the transmission lines model of STP with one twisted pair, that of STP with two twisted pairs is obtained. The terminal response voltage can be calculated from the transmission lines model and cable terminal conditions. The validity of the transmission lines model is verified by the consistency between the terminal responses calculated by the model and by the simulated. As the theoretical and simulation results are compatible, the modeling method for the STP with two twisted pairs can be used for the STP with more twisted pairs. In practical engineering application, S-parameters and mixed mode S-parameters can be obtained by testing. That means the transmission lines model of STP can be established based on the test results.

  • Study on Wear Debris Distribution and Performance Degradation in Low Frequency Fretting Wear of Electrical Connector

    Yanyan LUO  Jingzhao AN  Jingyuan SU  Zhaopan ZHANG  Yaxin DUAN  

     
    PAPER-Electromechanical Devices and Components

      Pubricized:
    2022/10/13
      Vol:
    E106-C No:3
      Page(s):
    93-102

    Aiming at the problem of the deterioration of the contact performance caused by the wear debris generated during the fretting wear of the electrical connector, low-frequency fretting wear experiments were carried out on the contacts of electrical connectors, the accumulation and distribution of the wear debris were detected by the electrical capacitance tomography technology; the influence of fretting cycles, vibration direction, vibration frequency and vibration amplitude on the accumulation and distribution of wear debris were analyzed; the correlation between characteristic value of wear debris and contact resistance value was studied, and a performance degradation model based on the accumulation and distribution of wear debris was built. The results show that fretting wear and performance degradation are the most serious in axial vibration; the characteristic value of wear debris and contact resistance are positively correlated with the fretting cycles, vibration frequency and vibration amplitude; there is a strong correlation between the sum of characteristic value of wear debris and the contact resistance value; the prediction error of ABC-SVR model of fretting wear performance degradation of electrical connectors constructed by the characteristic value of wear debris is less than 6%. Therefore, the characteristic value of wear debris in contact subareas can quantitatively describe the degree of fretting wear and the process of performance degradation.

  • Weighted Multiple Context-Free Grammars

    Yusuke INOUE  Kenji HASHIMOTO  Hiroyuki SEKI  

     
    PAPER

      Pubricized:
    2022/10/14
      Vol:
    E106-D No:3
      Page(s):
    309-318

    Multiple context-free grammar (MCFG) is an extension of context-free grammar (CFG), which generates tuples of words. The expressive power of MCFG is between CFG and context-sensitive grammar while MCFG inherits good properties of CFG. In this paper, we introduce weighted multiple context-free grammar (WMCFG) as a quantitative extension of MCFG. Then we investigate properties of WMCFG such as polynomial-time computability of basic problems, its closure property and expressive power.

  • An Interactive and Reductive Graph Processing Library for Edge Computing in Smart Society

    Jun ZHOU  Masaaki KONDO  

     
    PAPER

      Pubricized:
    2022/11/07
      Vol:
    E106-D No:3
      Page(s):
    319-327

    Due to the limitations of cloud computing on latency, bandwidth and data confidentiality, edge computing has emerged as a novel location-aware paradigm to provide them with more processing capacity to improve the computing performance and quality of service (QoS) in several typical domains of human activity in smart society, such as social networks, medical diagnosis, telecommunications, recommendation systems, internal threat detection, transports, Internet of Things (IoT), etc. These application domains often handle a vast collection of entities with various relationships, which can be naturally represented by the graph data structure. Graph processing is a powerful tool to model and optimize complex problems in which the graph-based data is involved. In view of the relatively insufficient resource provisioning of the portable terminals, in this paper, for the first time to our knowledge, we propose an interactive and reductive graph processing library (GPL) for edge computing in smart society at low overhead. Experimental evaluation is conducted to indicate that the proposed GPL is more user-friendly and highly competitive compared with other established systems, such as igraph, NetworKit and NetworkX, based on different graph datasets over a variety of popular algorithms.

  • Choice Disjunctive Queries in Logic Programming

    Keehang KWON  Daeseong KANG  

     
    LETTER

      Pubricized:
    2022/12/19
      Vol:
    E106-D No:3
      Page(s):
    333-336

    One of the long-standing research problems on logic programming is to treat the cut predicate in a logical, high-level way. We argue that this problem can be solved by adopting linear logic and choice-disjunctive goal formulas of the form G0 ⊕ G1 where G0, G1 are goals. These goals have the following intended semantics: choose the true disjunct Gi and execute Gi where i (= 0 or 1), while discarding the unchosen disjunct. Note that only one goal can remain alive during execution. These goals thus allow us to specify mutually exclusive tasks in a high-level way. Note that there is another use of cut which is for breaking out of failure-driven loops and efficient heap management. Unfortunately, it is not possible to replace cut of this kind with use of choice-disjunctive goals.

  • Ordinal Regression Based on the Distributional Distance for Tabular Data

    Yoshiyuki TAJIMA  Tomoki HAMAGAMI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/12/16
      Vol:
    E106-D No:3
      Page(s):
    357-364

    Ordinal regression is used to classify instances by considering ordinal relation between labels. Existing methods tend to decrease the accuracy when they adhere to the preservation of the ordinal relation. Therefore, we propose a distributional knowledge-based network (DK-net) that considers ordinal relation while maintaining high accuracy. DK-net focuses on image datasets. However, in industrial applications, one can find not only image data but also tabular data. In this study, we propose DK-neural oblivious decision ensemble (NODE), an improved version of DK-net for tabular data. DK-NODE uses NODE for feature extraction. In addition, we propose a method for adjusting the parameter that controls the degree of compliance with the ordinal relation. We experimented with three datasets: WineQuality, Abalone, and Eucalyptus dataset. The experiments showed that the proposed method achieved high accuracy and small MAE on three datasets. Notably, the proposed method had the smallest average MAE on all datasets.

  • A Non-Revisiting Equilibrium Optimizer Algorithm

    Baohang ZHANG  Haichuan YANG  Tao ZHENG  Rong-Long WANG  Shangce GAO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/12/20
      Vol:
    E106-D No:3
      Page(s):
    365-373

    The equilibrium optimizer (EO) is a novel physics-based meta-heuristic optimization algorithm that is inspired by estimating dynamics and equilibrium states in controlled volume mass balance models. As a stochastic optimization algorithm, EO inevitably produces duplicated solutions, which is wasteful of valuable evaluation opportunities. In addition, an excessive number of duplicated solutions can increase the risk of the algorithm getting trapped in local optima. In this paper, an improved EO algorithm with a bis-population-based non-revisiting (BNR) mechanism is proposed, namely BEO. It aims to eliminate duplicate solutions generated by the population during iterations, thus avoiding wasted evaluation opportunities. Furthermore, when a revisited solution is detected, the BNR mechanism activates its unique archive population learning mechanism to assist the algorithm in generating a high-quality solution using the excellent genes in the historical information, which not only improves the algorithm's population diversity but also helps the algorithm get out of the local optimum dilemma. Experimental findings with the IEEE CEC2017 benchmark demonstrate that the proposed BEO algorithm outperforms other seven representative meta-heuristic optimization techniques, including the original EO algorithm.

  • Learning Multi-Level Features for Improved 3D Reconstruction

    Fairuz SAFWAN MAHAD  Masakazu IWAMURA  Koichi KISE  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/12/08
      Vol:
    E106-D No:3
      Page(s):
    381-390

    3D reconstruction methods using neural networks are popular and have been studied extensively. However, the resulting models typically lack detail, reducing the quality of the 3D reconstruction. This is because the network is not designed to capture the fine details of the object. Therefore, in this paper, we propose two networks designed to capture both the coarse and fine details of the object to improve the reconstruction of the detailed parts of the object. To accomplish this, we design two networks. The first network uses a multi-scale architecture with skip connections to associate and merge features from other levels. For the second network, we design a multi-branch deep generative network that separately learns the local features, generic features, and the intermediate features through three different tailored components. In both network architectures, the principle entails allowing the network to learn features at different levels that can reconstruct the fine parts and the overall shape of the reconstructed 3D model. We show that both of our methods outperformed state-of-the-art approaches.

  • MARSplines-Based Soil Moisture Sensor Calibration

    Sijia LI  Long WANG  Zhongju WANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/12/07
      Vol:
    E106-D No:3
      Page(s):
    419-422

    Soil moisture sensor calibration based on the Multivariate Adaptive Regression Splines (MARSplines) model is studied in this paper. Different from the generic polynomial fitting methods, the MARSplines model is a non-parametric model, and it is able to model the complex relationship between the actual and measured soil moisture. Rao-1 algorithm is employed to tune the hyper-parameters of the calibration model and thus the performance of the proposed method is further improved. Data collected from four commercial soil moisture sensors is utilized to verify the effectiveness of the proposed method. To assess the calibration performance, the proposed model is compared with the model without using the temperature information. The numeric studies prove that it is promising to apply the proposed model for real applications.

  • GUI System to Support Cardiology Examination Based on Explainable Regression CNN for Estimating Pulmonary Artery Wedge Pressure

    Yuto OMAE  Yuki SAITO  Yohei KAKIMOTO  Daisuke FUKAMACHI  Koichi NAGASHIMA  Yasuo OKUMURA  Jun TOYOTANI  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2022/12/08
      Vol:
    E106-D No:3
      Page(s):
    423-426

    In this article, a GUI system is proposed to support clinical cardiology examinations. The proposed system estimates “pulmonary artery wedge pressure” based on patients' chest radiographs using an explainable regression-based convolutional neural network. The GUI system was validated by performing an effectiveness survey with 23 cardiology physicians with medical licenses. The results indicated that many physicians considered the GUI system to be effective.

  • Simulation Research on Low Frequency Magnetic Radiation Emission of Shipboard Equipment

    Yang XIAO  Zhongyuan ZHOU  Changping TANG  Jinjing REN  Mingjie SHENG  Zhengrui XU  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2022/07/27
      Vol:
    E106-C No:2
      Page(s):
    41-49

    This paper first introduces the structure of a shipboard equipment control cabinet and the preliminary design of electromagnetic shielding, then introduces the principle of low-frequency magnetic field shielding, and uses silicon steel sheet to shield the low-frequency magnetic field of shipboard equipment control equipment. Based on ANSYS Maxwell simulation software, the low-frequency magnetic field radiation emission of the equipment's conducted harmonic peak frequency point is simulated. Finally, according to MIL-STD-461G test standard, the low-frequency magnetic field radiation emission test is carried out, which meets the limit requirements of the standard. The low-frequency magnetic field shielding technology has practical value. The low-frequency magnetic field radiation emission simulation based on ANSYS Maxwell proposed in this paper is a useful attempt for the quantitative simulation of radiation emission.

  • Design and Development of a Card Game for Learning on the Structure of Arithmetic Story by Concatenated Sentence Integration

    Kohei YAMAGUCHI  Yusuke HAYASHI  Tsukasa HIRASHIMA  

     
    LETTER

      Pubricized:
    2022/09/15
      Vol:
    E106-D No:2
      Page(s):
    131-136

    This study focuses on creating arithmetical stories as a sub-task of problem posing and proposes a game named “Tri-prop scrabble” as a learning environment based on a fusion method of learning and game. The problem-posing ability has a positive relationship with mathematics achievement and understanding the mathematical structure of problems. In the proposed game, learners are expected to experience creating and concatenating various arithmetical stories by integrating simple sentences. The result of a preliminary feasibility study shows that the participants were able to pose and concatenate a variety of types of arithmetic stories and accept this game is helpful for learning arithmetic word problems.

  • A Study of Phase-Adjusting Architectures for Low-Phase-Noise Quadrature Voltage-Controlled Oscillators Open Access

    Mamoru UGAJIN  Yuya KAKEI  Nobuyuki ITOH  

     
    PAPER-Electronic Circuits

      Pubricized:
    2022/08/03
      Vol:
    E106-C No:2
      Page(s):
    59-66

    Quadrature voltage-controlled oscillators (VCOs) with current-weight-average and voltage-weight-average phase-adjusting architectures are studied. The phase adjusting equalizes the oscillation frequency to the LC-resonant frequency. The merits of the equalization are explained by using Leeson's phase noise equation and the impulse sensitivity function (ISF). Quadrature VCOs with the phase-adjusting architectures are fabricated using 180-nm TSMC CMOS and show low-phase-noise performances compared to a conventional differential VCO. The ISF analysis and small-signal analysis also show that the drawbacks of the current-weight-average phase-adjusting and voltage-weight-average phase-adjusting architectures are current-source noise effect and large additional capacitance, respectively. A voltage-average-adjusting circuit with a source follower at its input alleviates the capacitance increase.

  • Recent Progress in Visible Light Positioning and Communication Systems Open Access

    Sheng ZHANG  Pengfei DU  Helin YANG  Ran ZHANG  Chen CHEN  Arokiaswami ALPHONES  

     
    INVITED PAPER

      Pubricized:
    2022/08/22
      Vol:
    E106-B No:2
      Page(s):
    84-100

    In this paper, we report the recent progress in visible light positioning and communication systems using light-emitting diodes (LEDs). Due to the wide deployment of LEDs for indoor illumination, visible light positioning (VLP) and visible light communication (VLC) using existing LEDs fixtures have attracted great attention in recent years. Here, we review our recent works on visible light positioning and communication, including image sensor-based VLP, photodetector-based VLP, integrated VLC and VLP (VLCP) systems, and heterogeneous radio frequency (RF) and VLC (RF/VLC) systems.

  • A SOM-CNN Algorithm for NLOS Signal Identification

    Ze Fu GAO  Hai Cheng TAO   Qin Yu ZHU  Yi Wen JIAO  Dong LI  Fei Long MAO  Chao LI  Yi Tong SI  Yu Xin WANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/08/01
      Vol:
    E106-B No:2
      Page(s):
    117-132

    Aiming at the problem of non-line of sight (NLOS) signal recognition for Ultra Wide Band (UWB) positioning, we utilize the concepts of Neural Network Clustering and Neural Network Pattern Recognition. We propose a classification algorithm based on self-organizing feature mapping (SOM) neural network batch processing, and a recognition algorithm based on convolutional neural network (CNN). By assigning different weights to learning, training and testing parts in the data set of UWB location signals with given known patterns, a strong NLOS signal recognizer is trained to minimize the recognition error rate. Finally, the proposed NLOS signal recognition algorithm is verified using data sets from real scenarios. The test results show that the proposed algorithm can solve the problem of UWB NLOS signal recognition under strong signal interference. The simulation results illustrate that the proposed algorithm is significantly more effective compared with other algorithms.

  • Multi-Input Physical Layer Network Coding in Two-Dimensional Wireless Multihop Networks

    Hideaki TSUGITA  Satoshi DENNO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/08/10
      Vol:
    E106-B No:2
      Page(s):
    193-202

    This paper proposes multi-input physical layer network coding (multi-input PLNC) for high speed wireless communication in two-dimensional wireless multihop networks. In the proposed PLNC, all the terminals send their packets simultaneously for the neighboring relays to maximize the network throughput in the first slot, and all the relays also do the same to the neighboring terminals in the second slot. Those simultaneous signal transmissions cause multiple signals to be received at the relays and the terminals. Signal reception in the multi-input PLNC uses multichannel filtering to mitigate the difficulties caused by the multiple signal reception, which enables the two-input PLNC to be applied. In addition, a non-linear precoding is proposed to reduce the computational complexity of the signal detection at the relays and the terminals. The proposed multi-input PLNC makes all the terminals exchange their packets with the neighboring terminals in only two time slots. The performance of the proposed multi-input PLNC is confirmed by computer simulation. The proposed multi-input physical layer network coding achieves much higher network throughput than conventional techniques in a two-dimensional multihop wireless network with 7 terminals. The proposed multi-input physical layer network coding attains superior transmission performance in wireless hexagonal multihop networks, as long as more than 6 antennas are placed on the terminals and the relays.

481-500hit(16314hit)