The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

521-540hit(16314hit)

  • A Novel Fixed-Point Conversion Methodology For Digital Signal Processing Systems

    Phuong T.K. DINH  Linh T.T. DINH  Tung T. TRAN  Lam S. PHAM  Han Le DUC  Chi P. HOANG  Minh D. NGUYEN  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/06/17
      Vol:
    E105-A No:12
      Page(s):
    1537-1550

    Recently, most signal processing algorithms have been developed with floating-point arithmetic, while the fixed-point arithmetic is more popular with most commercial devices and low-power real-time applications which are implemented on embedded/ASIC/FPGA systems. Therefore, the optimal Floating-point to Fixed-point Conversion (FFC) methodology is a promising solution. In this paper, we propose the FFC consisting of signal grouping technique and simulation-based word length optimization. In order to evaluate the performance of the proposed technique, simulations are carried out and hardware co-simulation on Field Programmable Gate Arrays (FPGAs) platform have been applied to complex Digital Signal Processing (DSP) algorithms: Linear Time Invariant (LTI) systems, multi-mode Fast Fourier Transform (FFT) circuit for IEEE 802.11 ax WLAN Devices and the calibration algorithm of gain and clock skew in Time-Interleaved ADC (TI-ADC) using Adaptive Noise Canceller (ANC). The results show that the proposed technique can reduce the hardware cost about 30% while being able to maintain its speed and reliability.

  • Vehicle Re-Identification Based on Quadratic Split Architecture and Auxiliary Information Embedding

    Tongwei LU  Hao ZHANG  Feng MIN  Shihai JIA  

     
    LETTER-Image

      Pubricized:
    2022/05/24
      Vol:
    E105-A No:12
      Page(s):
    1621-1625

    Convolutional neural network (CNN) based vehicle re-identificatioin (ReID) inevitably has many disadvantages, such as information loss caused by downsampling operation. Therefore we propose a vision transformer (Vit) based vehicle ReID method to solve this problem. To improve the feature representation of vision transformer and make full use of additional vehicle information, the following methods are presented. (I) We propose a Quadratic Split Architecture (QSA) to learn both global and local features. More precisely, we split an image into many patches as “global part” and further split them into smaller sub-patches as “local part”. Features of both global and local part will be aggregated to enhance the representation ability. (II) The Auxiliary Information Embedding (AIE) is proposed to improve the robustness of the model by plugging a learnable camera/viewpoint embedding into Vit. Experimental results on several benchmarks indicate that our method is superior to many advanced vehicle ReID methods.

  • Accurate Doppler Velocity Estimation by Iterative WKD Algorithm for Pulse-Doppler Radar

    Takumi HAYASHI  Takeru ANDO  Shouhei KIDERA  

     
    PAPER-Sensing

      Pubricized:
    2022/06/29
      Vol:
    E105-B No:12
      Page(s):
    1600-1613

    In this study, we propose an accurate range-Doppler analysis algorithm for moving multiple objects in a short range using microwave (including millimeter wave) radars. As a promising Doppler analysis for the above model, we previously proposed a weighted kernel density (WKD) estimator algorithm, which overcomes several disadvantages in coherent integration based methods, such as a trade-off between temporal and frequency resolutions. However, in handling multiple objects like human body, it is difficult to maintain the accuracy of the Doppler velocity estimation, because there are multiple responses from multiple parts of object, like human body, incurring inaccuracies in range or Doppler velocity estimation. To address this issue, we propose an iterative algorithm by exploiting an output of the WKD algorithm. Three-dimensional numerical analysis, assuming a human body model in motion, and experimental tests demonstrate that the proposed algorithm provides more accurate, high-resolution range-Doppler velocity profiles than the original WKD algorithm, without increasing computational complexity. Particularly, the simulation results show that the cumulative probabilities of range errors within 10mm, and Doppler velocity error within 0.1m/s are enhanced from 34% (by the former method) to 63% (by the proposed method).

  • Noise Suppression in SiC-MOSFET Body Diode Turn-Off Operation with Simple and Robust Gate Driver

    Hiroshi SUZUKI  Tsuyoshi FUNAKI  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2022/06/14
      Vol:
    E105-C No:12
      Page(s):
    750-760

    SiC-MOSFETs are being increasingly implemented in power electronics systems as low-loss, fast switching devices. Despite the advantages of an SiC-MOSFET, its large dv/dt or di/dt has fear of electromagnetic interference (EMI) noise. This paper proposes and demonstrates a simple and robust gate driver that can suppress ringing oscillation and surge voltage induced by the turn-off of the SiC-MOSFET body diode. The proposed gate driver utilizes the channel leakage current methodology (CLC) to enhance the damping effect by elevating the gate-source voltage (VGS) and inducing the channel leakage current in the device. The gate driver can self-adjust the timing of initiating CLC operation, which avoids an increase in switching loss. Additionally, the output voltage of the VGS elevation circuit does not need to be actively controlled in accordance with the operating conditions. Thus, the circuit topology is simple, and ringing oscillation can be easily attenuated with fixed circuit parameters regardless of operating conditions, minimizing the increase in switching loss. The effectiveness and versatility of proposed gate driver were experimentally validated for a wide range of operating conditions by double and single pulse switching tests.

  • A Hybrid Integer Encoding Method for Obtaining High-Quality Solutions of Quadratic Knapsack Problems on Solid-State Annealers

    Satoru JIMBO  Daiki OKONOGI  Kota ANDO  Thiem Van CHU  Jaehoon YU  Masato MOTOMURA  Kazushi KAWAMURA  

     
    PAPER

      Pubricized:
    2022/05/26
      Vol:
    E105-D No:12
      Page(s):
    2019-2031

    For formulating Quadratic Knapsack Problems (QKPs) into the form of Quadratic Unconstrained Binary Optimization (QUBO), it is necessary to introduce an integer variable, which converts and incorporates the knapsack capacity constraint into the overall energy function. In QUBO, this integer variable is encoded with auxiliary binary variables, and the encoding method used for it affects the behavior of Simulated Annealing (SA) significantly. For improving the efficiency of SA for QKP instances, this paper first visualized and analyzed their annealing processes encoded by conventional binary and unary encoding methods. Based on this analysis, we proposed a novel hybrid encoding (HE), getting the best of both worlds. The proposed HE obtained feasible solutions in the evaluation, outperforming the others in small- and medium-scale models.

  • Multilayer Perceptron Training Accelerator Using Systolic Array

    Takeshi SENOO  Akira JINGUJI  Ryosuke KURAMOCHI  Hiroki NAKAHARA  

     
    PAPER

      Pubricized:
    2022/07/21
      Vol:
    E105-D No:12
      Page(s):
    2048-2056

    Multilayer perceptron (MLP) is a basic neural network model that is used in practical industrial applications, such as network intrusion detection (NID) systems. It is also used as a building block in newer models, such as gMLP. Currently, there is a demand for fast training in NID and other areas. However, in training with numerous GPUs, the problems of power consumption and long training times arise. Many of the latest deep neural network (DNN) models and MLPs are trained using a backpropagation algorithm which transmits an error gradient from the output layer to the input layer such that in the sequential computation, the next input cannot be processed until the weights of all layers are updated from the last layer. This is known as backward locking. In this study, a weight parameter update mechanism is proposed with time delays that can accommodate the weight update delay to allow simultaneous forward and backward computation. To this end, a one-dimensional systolic array structure was designed on a Xilinx U50 Alveo FPGA card in which each layer of the MLP is assigned to a processing element (PE). The time-delay backpropagation algorithm executes all layers in parallel, and transfers data between layers in a pipeline. Compared to the Intel Core i9 CPU and NVIDIA RTX 3090 GPU, it is 3 times faster than the CPU and 2.5 times faster than the GPU. The processing speed per power consumption is 11.5 times better than that of the CPU and 21.4 times better than that of the GPU. From these results, it is concluded that a training accelerator on an FPGA can achieve high speed and energy efficiency.

  • Boosting the Performance of Interconnection Networks by Selective Data Compression

    Naoya NIWA  Hideharu AMANO  Michihiro KOIBUCHI  

     
    PAPER

      Pubricized:
    2022/07/12
      Vol:
    E105-D No:12
      Page(s):
    2057-2065

    This study presents a selective data-compression interconnection network to boost its performance. Data compression virtually increases the effective network bandwidth. One drawback of data compression is a long latency to perform (de-)compression operation at a compute node. In terms of the communication latency, we explore the trade-off between the compression latency overhead and the reduced injection latency by shortening the packet length by compression algorithms. As a result, we present to selectively apply a compression technique to a packet. We perform a compression operation to long packets and it is also taken when network congestion is detected at a source compute node. Through a cycle-accurate network simulation, the selective compression method using the above compression algorithms improves by up to 39% the network throughput with a moderate increase in the communication latency of short packets.

  • Deep Learning-Based Massive MIMO CSI Acquisition for 5G Evolution and 6G

    Xin WANG  Xiaolin HOU  Lan CHEN  Yoshihisa KISHIYAMA  Takahiro ASAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/06/15
      Vol:
    E105-B No:12
      Page(s):
    1559-1568

    Channel state information (CSI) acquisition at the transmitter side is a major challenge in massive MIMO systems for enabling high-efficiency transmissions. To address this issue, various CSI feedback schemes have been proposed, including limited feedback schemes with codebook-based vector quantization and explicit channel matrix feedback. Owing to the limitations of feedback channel capacity, a common issue in these schemes is the efficient representation of the CSI with a limited number of bits at the receiver side, and its accurate reconstruction based on the feedback bits from the receiver at the transmitter side. Recently, inspired by successful applications in many fields, deep learning (DL) technologies for CSI acquisition have received considerable research interest from both academia and industry. Considering the practical feedback mechanism of 5th generation (5G) New radio (NR) networks, we propose two implementation schemes for artificial intelligence for CSI (AI4CSI), the DL-based receiver and end-to-end design, respectively. The proposed AI4CSI schemes were evaluated in 5G NR networks in terms of spectrum efficiency (SE), feedback overhead, and computational complexity, and compared with legacy schemes. To demonstrate whether these schemes can be used in real-life scenarios, both the modeled-based channel data and practically measured channels were used in our investigations. When DL-based CSI acquisition is applied to the receiver only, which has little air interface impact, it provides approximately 25% SE gain at a moderate feedback overhead level. It is feasible to deploy it in current 5G networks during 5G evolutions. For the end-to-end DL-based CSI enhancements, the evaluations also demonstrated their additional performance gain on SE, which is 6%-26% compared with DL-based receivers and 33%-58% compared with legacy CSI schemes. Considering its large impact on air-interface design, it will be a candidate technology for 6th generation (6G) networks, in which an air interface designed by artificial intelligence can be used.

  • SDNRCFII: An SDN-Based Reliable Communication Framework for Industrial Internet

    Hequn LI  Die LIU  Jiaxi LU  Hai ZHAO  Jiuqiang XU  

     
    PAPER-Network

      Pubricized:
    2022/05/26
      Vol:
    E105-B No:12
      Page(s):
    1508-1518

    Industrial networks need to provide reliable communication services, usually in a redundant transmission (RT) manner. In the past few years, several device-redundancy-based, layer 2 solutions have been proposed. However, with the evolution of industrial networks to the Industrial Internet, these methods can no longer work properly in the non-redundancy, layer 3 environments. In this paper, an SDN-based reliable communication framework is proposed for the Industrial Internet. It can provide reliable communication guarantees for mission-critical applications while servicing non-critical applications in a best-effort transmission manner. Specifically, it first implements an RT-based reliable communication method using the Industrial Internet's link-redundancy feature. Next, it presents a redundant synchronization mechanism to prevent end systems from receiving duplicate data. Finally, to maximize the number of critical flows in it (an NP-hard problem), two ILP-based routing & scheduling algorithms are also put forward. These two algorithms are optimal (Scheduling with Unconstrained Routing, SUR) and suboptimal (Scheduling with Minimum length Routing, SMR). Numerous simulations are conducted to evaluate its effectiveness. The results show that it can provide reliable, duplicate-free services to end systems. Its reliable communication method performs better than the conventional best-effort transmission method in terms of packet delivery success ratio in layer 3 networks. In addition, its scheduling algorithm, SMR, performs well on the experimental topologies (with average quality of 93% when compared to SUR), and the time overhead is acceptable.

  • Novel Configuration for Phased-Array Antenna System Employing Frequency-Controlled Beam Steering Method

    Atsushi FUKUDA  Hiroshi OKAZAKI  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/06/10
      Vol:
    E105-C No:12
      Page(s):
    740-749

    This paper presents a novel frequency-controlled beam steering scheme for a phased-array antenna system (PAS). The proposed scheme employs phase-controlled carrier signals to form the PAS beam. Two local oscillators (LOs) and delay lines are used to generate the carrier signals. The carrier of one LO is divided into branches, and then the divided carriers passing through the corresponding delay lines have the desired phase relationship, which depends on the oscillation frequency of the LO. To confirm the feasibility of the scheme, four-branch PAS transmitters are configured and tested in a 10-GHz frequency band. The results verify that the formed beam is successfully steered in a wide range, i.e., the 3-dB beamwidth of approximately 100 degrees, using LO frequency control.

  • Bounded Approximate Payoff Division for MC-nets Games

    Katsutoshi HIRAYAMA  Tenda OKIMOTO  

     
    PAPER-Information Network

      Pubricized:
    2022/09/13
      Vol:
    E105-D No:12
      Page(s):
    2085-2091

    To the best of our knowledge, there have been very few work on computational algorithms for the core or its variants in MC-nets games. One exception is the work by [Hirayama, et.al., 2014], where a constraint generation algorithm has been proposed to compute a payoff vector belonging to the least core. In this paper, we generalize this algorithm into the one for finding a payoff vector belonging to ϵ-core with pre-specified bound guarantee. The underlying idea behind this algorithm is basically the same as the previous one, but one key contribution is to give a clearer view on the pricing problem leading to the development of our new general algorithm. We showed that this new algorithm was correct and never be trapped in an infinite loop. Furthermore, we empirically demonstrated that this algorithm really presented a trade-off between solution quality and computational costs on some benchmark instances.

  • The Automatic Generation of Smart Contract Based on Configuration in the Field of Government Services

    Yaoyu ZHANG  Jiarui ZHANG  Han ZHANG  

     
    PAPER-Software System

      Pubricized:
    2022/08/24
      Vol:
    E105-D No:12
      Page(s):
    2066-2074

    With the development of blockchain technology, the automatic generation of smart contract has become a hot research topic. The existing smart contract automatic generation technology still has improvement spaces in complex process, third-party specialized tools required, specific the compatibility of code and running environment. In this paper, we propose an automatic smart contract generation method, which is domain-oriented and configuration-based. It is designed and implemented with the application scenarios of government service. The process of configuration, public state database definition, code generation and formal verification are included. In the Hyperledger Fabric environment, the applicability of the generated smart contract code is verified. Furthermore, its quality and security are formally verified with the help of third-party testing tools. The experimental results show that the quality and security of the generated smart contract code meet the expect standards. The automatic smart contract generation will “elegantly” be applied on the work of anti-disclosure, privacy protection, and prophecy processing in government service. To effectively enable develop “programmable government”.

  • Analysis of Sampling Aperture Impact on Nyquist Folding Receiver Output

    Hangjin SUN  Lei WANG  Zhaoyang QIU  Qi ZHANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/05/24
      Vol:
    E105-A No:12
      Page(s):
    1616-1620

    The Nyquist folding receiver (NYFR) is a novel analog-to-information architecture, which can achieve wideband receiving with a small amount of system resource. The NYFR uses a radio frequency (RF) non-uniform sampling to realize wideband receiving, and the practical RF non-uniform sample pulse train usually contains an aperture. Therefore, it is necessary to investigate the aperture impact on the NYFR output. In this letter, based on the NYFR output signal to noise ratio (SNR), the aperture impact on the NYFR is analyzed. Focusing on the aperture impact, the corresponding NYFR output signal power and noise power are given firstly. Then, the relation between the aperture and the output SNR is analyzed. In addition, the output SNR distribution containing the aperture is investigated. Finally, combing with a parameter estimation method, several simulations are conducted to prove the theoretical aperture impact.

  • Efficient Schedule of Path and Charge for a Mobile Charger to Improve Survivability and Throughput of Sensors with Adaptive Sensing Rates

    You-Chiun WANG  Yu-Cheng BAI  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1380-1389

    Wireless sensor networks provide long-term monitoring of the environment, but sensors are powered by small batteries. Using a mobile charger (MC) to replenish energy of sensors is one promising solution to prolong their usage time. Many approaches have been developed to find the MC's moving path, and they assume that sensors have a fixed sensing rate (SR) and prefer to fully charge sensors. In practice, sensors can adaptively adjust their SRs to meet application demands or save energy. Besides, due to the fully charging policy, some sensors with low energy may take long to wait for the MC's service. Thus, the paper formulates a path and charge (P&C) problem, which asks how to dispatch the MC to visit sensors with adaptive SRs and decide their charging time, such that both survivability and throughput of sensors can be maximized. Then, we propose an efficient P&C scheduling (EPCS) algorithm, which builds the shortest path to visit each sensor. To make the MC fast move to charge the sensors near death, some sensors with enough energy are excluded from the path. Moreover, EPCS adopts a floating charging mechanism based on the ratio of workable sensors and their energy depletion. Simulation results verify that EPCS can significantly improve the survivability and throughput of sensors.

  • Reinforcement Learning for QoS-Constrained Autonomous Resource Allocation with H2H/M2M Co-Existence in Cellular Networks

    Xing WEI  Xuehua LI  Shuo CHEN  Na LI  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1332-1341

    Machine-to-Machine (M2M) communication plays a pivotal role in the evolution of Internet of Things (IoT). Cellular networks are considered to be a key enabler for M2M communications, which are originally designed mainly for Human-to-Human (H2H) communications. The introduction of M2M users will cause a series of problems to traditional H2H users, i.e., interference between various traffic. Resource allocation is an effective solution to these problems. In this paper, we consider a shared resource block (RB) and power allocation in an H2H/M2M coexistence scenario, where M2M users are subdivided into delay-tolerant and delay-sensitive types. We first model the RB-power allocation problem as maximization of capacity under Quality-of-Service (QoS) constraints of different types of traffic. Then, a learning framework is introduced, wherein a complex agent is built from simpler subagents, which provides the basis for distributed deployment scheme. Further, we proposed distributed Q-learning based autonomous RB-power allocation algorithm (DQ-ARPA), which enables the machine type network gateways (MTCG) as agents to learn the wireless environment and choose the RB-power autonomously to maximize M2M pairs' capacity while ensuring the QoS requirements of critical services. Simulation results indicates that with an appropriate reward design, our proposed scheme succeeds in reducing the impact of delay-tolerant machine type users on critical services in terms of SINR thresholds and outage ratios.

  • Optimal Design of Optical Waveguide Devices Utilizing Beam Propagation Method with ADI Scheme Open Access

    Akito IGUCHI  Yasuhide TSUJI  

     
    INVITED PAPER

      Pubricized:
    2022/05/20
      Vol:
    E105-C No:11
      Page(s):
    644-651

    This paper shows structural optimal design of optical waveguide components utilizing an efficient 3D frequency-domain and 2D time-domain beam propagation method (BPM) with an alternating direction implicit (ADI) scheme. Usual optimal design procedure is based on iteration of numerical simulation, and total computational cost of the optimal design mainly depends on the efficiency of numerical analysis method. Since the system matrices are tridiagonal in the ADI-based BPM, efficient analysis and optimal design are available. Shape and topology optimal design shown in this paper is based on optimization of density distribution and sensitivity analysis to the density parameters. Computational methods of the sensitivity are shown in the case of using the 3D semi-vectorial and 2D time-domain BPM based on ADI scheme. The validity of this design approach is shown by design of optical waveguide components: mode converters, and a polarization beam splitter.

  • Adversarial Example Detection Based on Improved GhostBusters

    Hyunghoon KIM  Jiwoo SHIN  Hyo Jin JO  

     
    LETTER

      Pubricized:
    2022/04/19
      Vol:
    E105-D No:11
      Page(s):
    1921-1922

    In various studies of attacks on autonomous vehicles (AVs), a phantom attack in which advanced driver assistance system (ADAS) misclassifies a fake object created by an adversary as a real object has been proposed. In this paper, we propose F-GhostBusters, which is an improved version of GhostBusters that detects phantom attacks. The proposed model uses a new feature, i.e, frequency of images. Experimental results show that F-GhostBusters not only improves the detection performance of GhostBusters but also can complement the accuracy against adversarial examples.

  • Topology Optimal Design of NRD Guide Devices Using Function Expansion Method and Evolutionary Approaches

    Naoya HIEDA  Keita MORIMOTO  Akito IGUCHI  Yasuhide TSUJI  Tatsuya KASHIWA  

     
    PAPER

      Pubricized:
    2022/03/24
      Vol:
    E105-C No:11
      Page(s):
    652-659

    In order to increase communication capacity, the use of millimeter-wave and terahertz-wave bands are being actively explored. Non-radiative dielectric waveguide known as NRD guide is one of promising platform of millimeter-wave integrated circuits thanks to its non-radiative and low loss nature. In order to develop millimeter wave circuits with various functions, various circuit components have to be efficiently designed to meet requirements from application side. In this paper, for efficient design of NRD guide devices, we develop a topology optimal design technique based on function-expansion-method which can express arbitrary structure with arbitrary geometric topology. In the present approach, recently developed two-dimensional full-vectorial finite element method (2D-FVFEM) for NRD guide devices is employed to improve computational efficiency and several evolutionary approaches, which do not require appropriate initial structure depending on a given design problem, are used to optimize design variables, thus, NRD guide devices having desired functions are efficiently obtained without requiring designer's special knowledge.

  • Distortion Analysis of RF Power Amplifier Using Probability Density of Input Signal and AM-AM Characteristics

    Satoshi TANAKA  

     
    PAPER

      Pubricized:
    2022/05/11
      Vol:
    E105-A No:11
      Page(s):
    1436-1442

    When confirming the ACLR (adjacent channel leakage power ratio), which are representative indicators of distortion in the design of PA (power amplifier), it is well known how to calculate the AM-AM/PM characteristics of PA, input time series data of modulated signals, and analyze the output by Fourier analysis. In 5G (5th generation) mobile phones, not only QPSK (quadrature phase shift keying) modulation but also 16QAM (quadrature modulation), 64QAM, and 256QAM are becoming more multivalued as modulation signals. In addition, the modulation band may exceed 100MHz, and the amount of time series data increases, and the increase in calculation time becomes a problem. In order to shorten the calculation time, calculating the total amount of distortion generated by PA from the probability density of the modulation signal and the AM (amplitude modulation)-AM/PM (phase modulation) characteristics of PA is considered. For the AM-AM characteristics of PA, in this paper, IMD3 (inter modulation distortion 3) obtained from probability density and IMD3 by Fourier analysis, which are often used so long, are compared. As a result, it was confirmed that the result of probability density analysis is similar to that of Fourier analysis, when the nonlinearity is somewhat small. In addition, the agreement between the proposed method and the conventional method was confirmed with an error of about 2.0dB of ACLR using the modulation waves with a bandwidth of 5MHz, RB (resource block) being 25, and QPSK modulation.

  • Orthogonal Deep Feature Decomposition Network for Cross-Resolution Person Re-Identification

    Rui SUN  Zi YANG  Lei ZHANG  Yiheng YU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2022/08/23
      Vol:
    E105-D No:11
      Page(s):
    1994-1997

    Person images captured by surveillance cameras in real scenes often have low resolution (LR), which suffers from severe degradation in recognition performance when matched with pre-stocked high-resolution (HR) images. There are existing methods which typically employ super-resolution (SR) techniques to address the resolution discrepancy problem in person re-identification (re-ID). However, SR techniques are intended to enhance the human eye visual fidelity of images without caring about the recovery of pedestrian identity information. To cope with this challenge, we propose an orthogonal depth feature decomposition network. And we decompose pedestrian features into resolution-related features and identity-related features who are orthogonal to each other, from which we design the identity-preserving loss and resolution-invariant loss to ensure the recovery of pedestrian identity information. When compared with the SOTA method, experiments on the MLR-CUHK03 and MLR-VIPeR datasets demonstrate the superiority of our method.

521-540hit(16314hit)