The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SiON(4624hit)

3621-3640hit(4624hit)

  • Simulation of Series-Parallel Resonant DC-DC Converter System with DSP-Based Digital Control Scheme

    Ulhaqsyed MOBIN  Eiji HIRAKI  Hiroshi TAKANO  Mutsuo NAKAOKA  

     
    PAPER-General Fundamentals and Boundaries

      Vol:
    E83-A No:7
      Page(s):
    1458-1466

    This paper describes an efficient simulation approach of a DSP controlled series-parallel resonant high frequency DC-DC power converter system. Proposed power conversion circuit simulation approach is based on a circuit equation, modeled by substituting time-varying switched resistor circuit in place of all the controllable and uncontrollable power semiconductor switching blocks of power converter circuits. An algebraic algorithm transforms the matrices of the circuit equation into the matrices of the state vector equation. Solution of state equation is by 3rd order Runge Kutta numerical integration method. Simulation results are illustrated and discussed together with experimental results.

  • Discrimination of Saltiness with Coexisting Components Using Multichannel Taste Sensor with Lipid Membranes

    Masaaki HABARA  Kiyoshi TOKO  

     
    PAPER-Sensor

      Vol:
    E83-C No:7
      Page(s):
    1040-1045

    Saltiness elicited by salt is one of the basic tastes. However, components of salt on the market differ depending on manufacturing processes and its taste as well. Salt manufactured by ion-exchange membrane process is composed of more than 99% pure sodium chloride, while bay salt contains trace coexisting components. Despite reports on sensory evaluation, the differences in taste are still uncertain because of a small amount of coexisting components. We studied the taste of salt with trace coexisting components; the bittern ("nigari" in Japanese) was evaluated objectively and quantitatively using a multichannel taste sensor with lipid/polymer membranes. A taste sensor is comprised of several types of lipid/polymer membranes for transforming information of taste substances into electric signals. The model samples were composed of sodium chloride and trace coexisting components such as magnesium sulfate, magnesium chloride, calcium chloride and sodium chloride. The taste sensor clearly discriminated each sample according to the response patterns. Based on the sensor outputs, we evaluated the taste by means of the combination of principal component analysis and ionic strength. The results show the taste of salt with nigari has a correlation with ionic strength.

  • High Speed 3D Reconstruction by Spatio-Temporal Division of Video Image Processing

    Yoshinari KAMEDA  Takeo TAODA  Michihiko MINOH  

     
    PAPER

      Vol:
    E83-D No:7
      Page(s):
    1422-1428

    A high speed 3D shape reconstruction method with multiple video cameras and multiple computers on LAN is presented. The video cameras are set to surround the real 3D space where people exist. Reconstructed 3D space is displayed in voxel format and users can see the space from any viewpoint with a VR viewer. We implemented a prototype system that can work out the 3D reconstruction with the speed of 10.55 fps in 313 ms delay.

  • The Propagation Characteristic of Laser Light on the Polystyrene Micro-Sphere Array at 10 µm Diameter

    Fujun HUANG  Shinzo MORITA  

     
    PAPER-Optics and Bio Electronics

      Vol:
    E83-C No:7
      Page(s):
    1149-1152

    The propagation characteristic of 670 nm laser light on the array of 10 µm diameter polystyrene micro-sphere was studied. For the linearly arranged array of micro-spheres from one to 12, the propagated light intensity was decreased from 700 mV to 45 mV. However, the propagated light intensity in the air was significantly decreased and it became 2 mV at 60 µm from the optical fiber light source. For the micro-sphere array on the curvilinear line, the light intensity at 12th micro-sphere became 35 mV. This fact means the light was propagated almost same as that on the linear line. Whereas it is expected that three dimensionally crossing optical wave-guide is possible to be fabricated by arranging the micro-spheres.

  • Fast Stereo Matching Using Constraints in Discrete Space

    Hong JEONG  Yuns OH  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E83-D No:7
      Page(s):
    1592-1600

    We present a new basis for discrete representation of stereo correspondence. This center referenced basis permits a more natural, complete and concise representation of constraints in stereo matching. In this context a MAP formulation for disparity estimation is derived and reduced to unconstrained minimization of an energy function. Incorporating natural constraints, the problem is simplified to the shortest path problem in a sparsely connected trellis structure which is performed by an efficient dynamic programing algorithm. The computational complexity is the same as the best of other dynamic programming methods, but a very high degree of concurrency is possible in the algorithm making it suitable for implementation with parallel procesors. Experimental results confirm the performance of this method and matching errors are found to degrade gracefully in exponential form with respect to noise.

  • Automatic Evaluation of the Appearance of Seam Puckers on Suits

    Tsunehiro AIBARA  Takehiro MABUCHI  Masanori IZUMIDA  

     
    PAPER

      Vol:
    E83-D No:7
      Page(s):
    1346-1352

    This paper deals with the fundamental problem of automatic assessment of appearance of seam puckers on suits, and suggests possibilities for practical usage. Presently, evaluations are done by inspectors who compare standard photographs of suits to test samples. In order to avoid human errors, however, a method of automatic evaluation is desired. We process the problem as pattern recognition. As a feature we use fractal dimensions. The fractal dimensions obtained from standard photographs are used as template patterns. To make it easier to calculate fractal dimensions, we plot a curve representing the appearance of seam puckers, from which fractal dimensions of the curve can be calculated. The seam puckers in gray-scale images are confused with the material's texture, so the seam puckers must be enhanced for a precise evaluation. By using the concept of variance, we select images with seam puckers and enhance only the images with seam puckers. This is the novel aspect of this work. Twenty suits are used for the evaluation experiment and we obtain a result almost the same to the evaluation gained by inspection. That is, the evaluation of 11 samples is the same as that gained by inspection, the results of 8 samples differ by 1 grade, and the evaluation of 1 sample has a 2-grade difference. The results are also compared to the evaluation of the system using the Daubechies wavelet feature. The result of comparison shows that the present method gives a better evaluation than the system using the Daubechies wavelet.

  • Enhanced Electroluminescence in Organic Light-Emitting Diodes Utilizing Co-doped Emissive Layer for Red Light Emission

    Takumi SAWATANI  Yutaka OHMORI  Katsumi YOSHINO  

     
    PAPER-Electro Luminescence

      Vol:
    E83-C No:7
      Page(s):
    1022-1025

    We demonstrate unique dye-doping method to realize organic light emitting diodes (OLED) with high efficiency, high brightness and pure red emission. In this study, we used 5,10,15,20 tetraphenyl -21H,23H-porphine (TPP) as emitting dopant into 8-hydroxyquinoline aluminum (Alq3) emissive layer. To improve turn-on voltage and emission characteristics, a sufficient amount of 4-(dicyano methylene) -2-methyl -6-(p-dimethyl aminostyryl) -4H-pyran (DCM) was added to the TPP doped Alq3 emissive layer. The mechanisms and the emission characteristics of the co-doped EL device are discussed using energy band diagram of the materials used in the device.

  • A New Type of Electrooptic Deflector Using Lens Effect for Ultrafast Light Control

    Tattee KHAYIM  Kyoji SHIBUYA  Tetsuro KOBAYASHI  

     
    LETTER-Optoelectronics

      Vol:
    E83-C No:6
      Page(s):
    993-996

    We report a new type of electrooptic deflector using lens effect which is able to scan a space in two dimensions. The proposed device was developed from a quasi-velocity-matched electrooptic phase modulator with periodic domain inversion, therefore, it can operate efficiently at a microwave frequency. In the experiments, the demonstration of its operation and applications to ultrafast light control was done at 16.25 GHz.

  • A Second-Order Sigma-Delta Modulator with a Gain Scaling of ADC and a Simple Multibit DAC

    Byung-Woog CHO  Pyung CHOI  Jun-Rim CHOI  Dae-Hyuk KWON  Byung-Ki SOHN  

     
    PAPER-Analog Signal Processing

      Vol:
    E83-A No:6
      Page(s):
    1192-1198

    A second-order sigma-delta modulator with a 3-bit internal quantizer featuring a gain scaling of an internal ADC and a very simple internal DAC has been designed and implemented in a 0.8 µm double-poly double-metal CMOS process. We improved the performance of the modulator with the gain scaling of a 3-bit internal ADC and design of the internal error-free DAC with using simple logic gates. The specification of each component is determined for the modulator to have 14-bit resolution by time based modeling and the designed components satisfy the required specifications. The peak SNR of 87 dB and dynamic range of 87 dB were achieved at a clock rate of 2.816 MHz for 22 kHz baseband. The measured results show that the fabricated modulator lower SNR by 14 dB than that of the simulation due to the non-ideal input source and the disregarded error factors in the modeling such as the voltage variable capacitors etc.

  • Single Shot Demultiplexing of 1 THz Light Pulses by Time-to-Space Conversion Using a Film of Organic Dye J-Aggregates

    Makoto FURUKI  Satoshi TATSUURA  Osamu WADA  Minquan TIAN  Yasuhiro SATO  Lyong Sun PU  

     
    PAPER-High-Speed Optical Devices

      Vol:
    E83-C No:6
      Page(s):
    974-980

    Principle of a single shot demultiplextion by means of time-to-space conversion was investigated using femtosecond nonlinear optical response of absorption bleaching of squarylium dye (SQ) J-aggregates. Spincoated films of squarylium dye J-aggregates on glass substrates exhibit efficient and ultrafast transmittance change, which recovers 73% of its initial level (0 fs) within 1 ps. A simple method for time-to-space conversion was applied for this film. We took our attention to one of the characteristics of femtosecond pulse, which is the spatial thinness in its propagation direction. Femtosecond pulses of a single pump pulse and train of four probe pulses were illuminated to the same area (diameter of 10 mm) of the surface of the SQ J-aggregates film. Direction of the probe beam was normal to the surface of the film and that of the pump beam was oblique angle in horizontal plane. Caused by spatial delay of a pump pulse due to the illumination in oblique angle to the film, four probe pulses with interval time of 1 ps (1 THz) meet separate places on the film. Because of the fast response of the SQ J-aggregates, the film picked out part of each probe pulse, which has narrower shapes in horizontal direction compared to the initial circular one by transmittance change of the film. The spatially separated four lines were observed by a CCD camera for an image of the transmitted probe pulse train. These results suggest that the response time of SQ J-aggregate film, which determines the horizontal width of each line, to be enough for demultiplexing of 1 THz optical signals.

  • Frequency Reuse Efficiency under Reverse-Link Closed-Loop Power Control with Unequal Cell Loading in a CDMA Cellular System

    Chung Gu KANG  Myo Taeg LIM  Kyung Soo JEONG  

     
    LETTER-Wireless Communication Technology

      Vol:
    E83-B No:6
      Page(s):
    1366-1369

    A new computational method for evaluating the reverse-link interference distribution in a cellular CDMA system is proposed. In particular, a positive feedback effect of the reverse-link closed-loop power control has been taken into account to precisely capture a realistic effect of unequal cell loading on system capacity. It subsequently facilitates computing the frequency reuse efficiency of the cellular CDMA system under unequal cell loading.

  • Active Vision System Based on Human Eye Saccadic Movement

    Sang-Woo BAN  Jun-Ki CHO  Soon-Ki JUNG  Minho LEE  

     
    PAPER

      Vol:
    E83-A No:6
      Page(s):
    1066-1074

    We propose a new active vision system that mimics a saccadic movement of human eye. It is implemented based on a new computational model using neural networks. In this model, the visual pathway was divided in order to categorize a saccadic eye movement into three parts, each of which was then individually modeled using different neural networks to reflect a principal functionality of brain structures related with the saccadic eye movement in our brain. Initially, the visual cortex for saccadic eye movements was modeled using a self-organizing feature map, then a modified learning vector quantization network was applied to imitate the activity of the superior colliculus relative to a visual stimulus. In addition, a multilayer recurrent neural network, which is learned by an evolutionary computation algorithm, was used to model the visual pathway from the superior colliculus to the oculomotor neurons. Results from a computer simulation show that the proposed computational model is effective in mimicking the human eye movements during a saccade. Based on the proposed model, an active vision system using a CCD type camera and motor system was developed and demonstrated with experimental results.

  • Bragg Grating Filter Synthesis Using Fourier Transform with Iteration

    Teruhiko KUDOU  Kenji SHIMIZU  Yuuji TAKIMOTO  Takeshi OZEKI  

     
    PAPER-WDM Network Devices

      Vol:
    E83-C No:6
      Page(s):
    898-902

    We propose a novel Bragg grating filter synthesis method using a Fourier transform of the target scattering matrix. Multiple scattering processes are taken into account by iteration to improve the synthesis accuracy.

  • Development of MBC System Using Software Modem

    Khaled MAHMUD  Kaiji MUKUMOTO  Akira FUKUDA  

     
    PAPER

      Vol:
    E83-B No:6
      Page(s):
    1269-1281

    A new type of Meteor Burst Communication (MBC) network is developed. Each unit of the network is based on a DSP board running a modem software. All the fundamental blocks and functions of a modem are implemented in software. Unlike hardware modems, this software modem has flexibility of system configuration and operation. The system implements adaptability in terms of modulation type (number of phases in MPSK) using a unique dynamic channel estimation scheme appropriate for MBC channel. An MBC network protocol is implemented within the modem software. Some preliminary experiments were carried out for differential BPSK and differential QPSK modulations over a practical meteor burst link, and the results are presented.

  • Efficient FWM Based Broadband Wavelength Conversion Using a Short High-Nonlinearity Fiber

    Osamu ASO  Shin-ichi ARAI  Takeshi YAGI  Masateru TADAKUMA  Yoshihisa SUZUKI  Shu NAMIKI  

     
    PAPER-Fibers

      Vol:
    E83-C No:6
      Page(s):
    816-823

    Fiber four-wave mixing (FWM) based parametric wavelength conversion experiment is demonstrated. Over 91nm multi-channel simultaneous conversion is achieved. The bandwidth is to our knowledge, the broadest value of the published results. We shall argue that the method to realize the broadband wavelength conversion. Efficiency and/or bandwidth of the wavelength conversion is degraded mainly by the following obstacles, (a) inhomogeneity of the chromatic dispersion distribution along the fiber, (b) mismatch of the states of polarization (SOP) between pump and signals and (c) bandwidth limitation from coherence length. We discuss that an extremely short high-nonlinear fiber should overcome the above three obstacles. Furthermore we comment on the higher-order dispersion and also the influence of the stimulated Brillouin scattering (SBS). High-nonlinearity dispersion-shifted fiber (HNL-DSF) is a promising solution to generate the FWM efficiently in spite of the short length usage. We develop and fabricate HNL-DSF by the vapor-phase axial deposition method. Nonlinear coefficient of the fiber is 13.8 W-1km-1. We measure the conversion efficiency spectra of the four HNL-DSFs with different lengths. Length of each fiber is 24.5 km, 1.2 km, 200 m and 100 m respectively. It is shown that conversion bandwidth increases monotonically as the fiber length decreases. The result apparently proves the advantage of the extremely short fiber.

  • Dispersion Managed Optical Transmission Lines and Fibers

    Yoshihisa SUZUKI  Kazunori MUKASA  Ryuichi SUGIZAKI  Kunio KOKURA  

     
    INVITED PAPER-Fibers

      Vol:
    E83-C No:6
      Page(s):
    789-798

    There has been a rapid advance in wavelength-division multiplexing (WDM) and high bit-rate time-division multiplexing (TDM) as techniques for coping with burgeoning demand for transmission capacity. In the past this expansion of capacity has been achieved by 2.5-Gbit/s and 10-Gbit/s WDM using the C-band (around 1550 nm), but research on the 1600-nm L-band (around 1600 nm) is being stepped up to obtain further expansion. With the achievement of 40-Gbit/s speeds, which mark the limit of electrical signal processing, optical TDM, with speeds of 100 Gbit/s, is coming into use. In this kind of high-density, high bit-rate WDM transmission, the occurrence of non-linear phenomena within optical fibers reduces transmission quality, and this raises the importance of technology for suppressing non-linearity and specifically, in the case of WDM transmission systems, of four-wave mixing (FWM). Obviously there is also the problem of signal distortion due to dispersion, so that technology for suppressing cumulative dispersion is also essential. There is also a need for transmission lines with sophisticated dispersion management over a wide band of wavelengths, and it may be consisted of novel fibers.

  • A Digital-to-RF Converter Architecture Suitable for a Digital-to-RF Direct-Conversion Software Defined Radio Transmitter

    Takafumi YAMAJI  Akira YASUDA  Hiroshi TANIMOTO  Yasuo SUZUKI  

     
    PAPER

      Vol:
    E83-B No:6
      Page(s):
    1254-1260

    An architecture for a digital-to-RF converter for a software defined radio (SDR) transmitter is proposed. The ideal hardware architecture for an SDR is a digital-signal to RF-signal direct conversion transmitter. However no conventional digital-to-analog converter (DAC) has converted over 1-GHz RF signal with enough resolution, in the present condition. In this paper, a digital-to-RF direct converter architecture using a ΔΣ modulation technique is proposed for the amplitude-phase modulated signal. The experimental results show that the proposed direct converter outputs a sufficiently accurate signal.

  • Simultaneous Wavelength Conversion Using SOA-PLC Hybrid Wavelength Selector

    Toshio ITO  Ikuo OGAWA  Yasumasa SUZAKI  Katsuaki MAGARI  Yoshihiro KAWAGUCHI  Osamu MITOMI  

     
    PAPER-WDM Network Devices

      Vol:
    E83-C No:6
      Page(s):
    892-897

    Simultaneous wavelength conversion of multi-WDM channels is expected to be a key technique in near-future networks. In this paper, 4-channel wavelength conversion using four-wave mixing (FWM) in a hybrid wavelength selector is successfully demonstrated. The wavelength selector consists of two four-channel spot-size-converter-integrated semiconductor optical amplifier (SS-SOA) gate arrays on a planar-lightwave-circuit (PLC) platform and two PLC-arrayed-waveguide-gratings (AWGs). As the wavelength selector has an individual SS-SOA for the wavelength conversion of each channel, there is negligible interference between channels. Four WDM channels with an 2.5 Gb/s modulation were converted from 1555 to 1575 nm. Clear eye openings and only a small power penalty of less than 0.5 dB were observed. The receiver sensitivity was -31 dBm at a bit error rate (BER) of 10-9.

  • Broadband and Flexible Receiver Architecture for Software Defined Radio Terminal Using Direct Conversion and Low-IF Principle

    Hiroshi TSURUMI  Hiroshi YOSHIDA  Shoji OTAKA  Hiroshi TANIMOTO  Yasuo SUZUKI  

     
    PAPER

      Vol:
    E83-B No:6
      Page(s):
    1246-1253

    A broadband and flexible receiver architecture is investigated for the handheld software defined radio (SDR). The proposed SDR architecture is based on the direct conversion and low intermediate frequency (low-IF) principle with digital channel filtering, which provides the receiver with flexibility for the multi-standard application. This architecture also enables analog-to-digital converter activating essentially in baseband or low frequency so that the clock jitter, which serves as an important subject in the well-known IF sampling method, can be reduced. Basic performance of the proposed architecture has been confirmed by the experimental model.

  • Long-Wavelength-Band Optical Amplifiers Employing Silica-Based Erbium Doped Fibers Designed for Wavelength Division Multiplexing Systems and Networks

    Motoki KAKUI  Shinji ISHIKAWA  

     
    INVITED PAPER-Fibers

      Vol:
    E83-C No:6
      Page(s):
    799-815

    Wavelength-division multiplexing (WDM) technique employing broadband erbium-doped fiber amplifiers (EDFAs) is considered to be the most effective solution to respond to the increasing demand for transmission capacity. As a means to extend the optical bandwidth outside the conventional band (C-band) ranging from 1530 to 1565 nm, silica-based EDFAs (EDSFAs) operating within the long-wavelength band (L-band) ranging form 1570 to 1600 nm seem to be the most attractive candidate because they can be composed of the same material as C-band EDSFAs, i. e. silica-based Al codoped EDF. However, there exist several discrepancies between C-band and L-band EDSFAs which originate inevitably from the difference in the inversion level and the band location. This paper reviews the basic characteristics of L-band EDSFAs, which have been a controversial issue for practical application of the L-band EDSFAs, such as required EDSF lengths, power conversion efficiency, noise performances, and optical bandwidth. We will also describe L-band EDSFAs' behavior under circumstantial changes, such as the variation of the span-loss, the temperature of the EDSF, and the number of wavelengths, which are expected in the field WDM systems. The dynamic-gain-tilt and temperature-induced change in the gain spectra of L-band EDSFAs are more significant than those of C-band EDSFAs are. Moreover, L-band EDSFAs exhibit a greater apparent inhomogeneous broadening effect, which may hinder the precise gain control when the number of wavelengths is dynamically changed. All of these characteristics must be considered for future designs of broadband WDM networks.

3621-3640hit(4624hit)