The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

301-320hit(21534hit)

  • Multibeam Digital Predistorter with Intercarrier Interference Suppression for Millimeter-Wave Array Antenna Transmitters

    Tomoya OTA  Alexander N. LOZHKIN  Ken TAMANOI  Hiroyoshi ISHIKAWA  Takurou NISHIKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/08/03
      Vol:
    E106-B No:12
      Page(s):
    1470-1478

    This paper proposes a multibeam digital predistorter (DPD) that suppresses intercarrier interference caused by nonlinear distortions of power amplifiers (PAs) while reducing the power consumption of a multibeam array antenna transmitter. The proposed DPD reduces power consumption by allowing the final PAs of the array antenna transmitter to operate in a highly efficient nonlinear mode and compensating for the nonlinear distortions of the PAs with a unified dedicated DPD per subarray. Additionally, it provides the required high-quality signal transmission for high throughputs, such as realizing a 256-quadrature amplitude modulation (QAM) transmission instead of a 64-QAM transmission. Specifically, it adds an inverse-component signal to cancel the interference from an adjacent carrier of another beam. Consequently, it can suppress the intercarrier interference in the beam direction and improve the error vector magnitude (EVM) during the multibeam transmission, in which the frequency bands of the beams are adjacent. The experimental results obtained for two beams at 28.0 and 28.4GHz demonstrate that, compared with the previous single-beam DPD, the proposed multibeam DPD can improve the EVM. Also, they demonstrate that the proposed DPD can achieve an EVM value of <3%, which completely satisfies the 3GPP requirements for a 256-QAM transmission.

  • Multi-Segment Verification FrFT Frame Synchronization Detection in Underwater Acoustic Communications

    Guojin LIAO  Yongpeng ZUO  Qiao LIAO  Xiaofeng TIAN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/01
      Vol:
    E106-B No:12
      Page(s):
    1501-1509

    Frame synchronization detection before data transmission is an important module which directly affects the lifetime and coexistence of underwater acoustic communication (UAC) networks, where linear frequency modulation (LFM) is a frame preamble signal commonly used for synchronization. Unlike terrestrial wireless communications, strong bursty noise frequently appears in UAC. Due to the long transmission distance and the low signal-to-noise ratio, strong short-distance bursty noise will greatly reduce the accuracy of conventional fractional fourier transform (FrFT) detection. We propose a multi-segment verification fractional fourier transform (MFrFT) preamble detection algorithm to address this challenge. In the proposed algorithm, 4 times of adjacent FrFT operations are carried out. And the LFM signal identifies by observing the linear correlation between two lines connected in pair among three adjacent peak points, called ‘dual-line-correlation mechanism’. The accurate starting time of the LFM signal can be found according to the peak frequency of the adjacent FrFT. More importantly, MFrFT do not result in an increase in computational complexity. Compared with the conventional FrFT detection method, experimental results show that the proposed algorithm can effectively distinguish between signal starting points and bursty noise with much lower error detection rate, which in turn minimizes the cost of retransmission.

  • Ferrule Endface Dimension Optimization for Standard Outer Diameter 4-Core Fiber Connector

    Kiyoshi KAMIMURA  Yuki FUJIMAKI  Kentaro MATSUDA  Ryo NAGASE  

     
    PAPER

      Pubricized:
    2023/10/02
      Vol:
    E106-C No:12
      Page(s):
    781-788

    Physical contact (PC) optical connectors realize long-term stability by maintaining contact with the optical fiber even during temperature fluctuations caused by the microscopic displacement of the ferrule endface. With multicore fiber (MCF) connectors, stable PC connection conditions need to be newly investigated because MCFs have cores other than at the center. In this work, we investigated the microscopic displacement of connected ferrule endfaces using the finite element method (FEM). As a result, by using MCF connectors with an apex offset, we found that the allowable fiber undercut where all the cores make contact is slightly smaller than that of single-mode fiber (SMF) connectors. Therefore, we propose a new equation for determining the allowable fiber undercut of MCF connectors. We also fabricated MCF connectors with an allowable fiber undercut and confirmed their reliability using the composite temperature/humidity cyclic test.

  • Fine Feature Analysis of Metal Plate Based on Two-Dimensional Imaging under Non-Ideal Scattering

    Xiaofan LI  Bin DENG  Qiang FU  Hongqiang WANG  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/05/29
      Vol:
    E106-C No:12
      Page(s):
    789-798

    The ideal point scattering model requires that each scattering center is isotropic, the position of the scattering center corresponding to the target remains unchanged, and the backscattering amplitude and phase of the target do not change with the incident frequency and incident azimuth. In fact, these conditions of the ideal point scattering model are difficult to meet, and the scattering models are not ideal in most cases. In order to understand the difference between non-ideal scattering center and ideal scattering center, this paper takes a metal plate as the research object, carries out two-dimensional imaging of the metal plate, compares the difference between the imaging position and the theoretical target position, and compares the shape of the scattering center obtained from two-dimensional imaging of the plate from different angles. From the experimental results, the offset between the scattering center position and the theoretical target position corresponding to the two-dimensional imaging of the plate under the non-ideal point scattering model is less than the range resolution and azimuth resolution. The deviation between the small angle two-dimensional imaging position and the theoretical target position using the ideal point scattering model is small, and the ideal point scattering model is still suitable for the two-dimensional imaging of the plate. In the imaging process, the ratio of range resolution and azimuth resolution affects the shape of the scattering center. The range resolution is equal to the azimuth resolution, the shape of the scattering center is circular; the range resolution is not equal to the azimuth resolution, and the shape of the scattering center is elliptic. In order to obtain more accurate two-dimensional image, the appropriate range resolution and azimuth resolution can be considered when using the ideal point scattering model for two-dimensional imaging. The two-dimensional imaging results of the plate at different azimuth and angle can be used as a reference for the study of non-ideal point scattering model.

  • Design of a Dual-Band Load-Modulated Sequential Amplifier with Extended Back-off

    Minghui YOU  Guohua LIU  Zhiqun CHENG  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/06/07
      Vol:
    E106-C No:12
      Page(s):
    808-811

    This letter presents a dual-band load-modulated sequential amplifier (LMSA). The proposed amplifier changed the attenuator terminated at the isolation port of the four-port combiner of the traditional sequential power amplifier (SPA) architecture into a reactance modulation network (RMN) for load modulation. The impedance can be maintained pure resistance by designing RMN, thus realizing high efficiency and a good portion of the output power in the multiple bands. Compared to the dual-band Doherty power amplifier with a complex dual-band load modulation network (LMN), the proposed LMSA has advantages as maintaining high output power back-off (OBO) efficiency, wide bandwidth and simple construction. A 10-watt dual-band LMSA is simulated and measured in 1.7-1.9GHz and 2.4-2.6GHz with saturated efficiencies 61.2-69.9% and 54.4-70.8%, respectively. The corresponding 9dB OBO efficiency is 46.5-57.1% and 46.4-54.4%, respectively.

  • Design and Implementation of an On-Line Quality Control System for Latch-Based True Random Number Generator

    Naoki FUJIEDA  Shuichi ICHIKAWA  Ryusei OYA  Hitomi KISHIBE  

     
    PAPER

      Pubricized:
    2023/03/24
      Vol:
    E106-D No:12
      Page(s):
    1940-1950

    This paper presents a design and an implementation of an on-line quality control method for a TRNG (True Random Number Generator) on an FPGA. It is based on a TRNG with RS latches and a temporal XOR corrector, which can make a trade-off between throughput and randomness quality by changing the number of accumulations by XOR. The goal of our method is to increase the throughput within the range of keeping the quality of output random numbers. In order to detect a sign of the loss of quality from the TRNG in parallel with random number generation, our method distinguishes random bitstrings to be tested from those to be output. The test bitstring is generated with the fewer number of accumulations than that of the output bitstring. The number of accumulations will be increased if the test bitstring fails in the randomness test. We designed and evaluated a prototype of on-line quality control system, using a Zynq-7000 FPGA SoC. The results indicate that the TRNG with the proposed method achieved 1.91-2.63 Mbits/s of throughput with 16 latches, following the change of the quality of output random numbers. The total number of logic elements in the prototype system with 16 latches was comparable to an existing system with 256 latches, without quality control capabilities.

  • A Principal Factor of Performance in Decoupled Front-End

    Yuya DEGAWA  Toru KOIZUMI  Tomoki NAKAMURA  Ryota SHIOYA  Junichiro KADOMOTO  Hidetsugu IRIE  Shuichi SAKAI  

     
    PAPER

      Pubricized:
    2023/06/30
      Vol:
    E106-D No:12
      Page(s):
    1960-1968

    One of the performance bottlenecks of a processor is the front-end that supplies instructions. Various techniques, such as cache replacement algorithms and hardware prefetching, have been investigated to facilitate smooth instruction supply at the front-end and to improve processor performance. In these approaches, one of the most important factors has been the reduction in the number of instruction cache misses. By using the number of instruction cache misses or derived factors, previous studies have explained the performance improvements achieved by their proposed methods. However, we found that the number of instruction cache misses does not always explain performance changes well in modern processors. This is because the front-end in modern processors handles subsequent instruction cache misses in overlap with earlier ones. Based on this observation, we propose a novel factor: the number of miss regions. We define a region as a sequence of instructions from one branch misprediction to the next, while we define a miss region as a region that contains one or more instruction cache misses. At the boundary of each region, the pipeline is flushed owing to a branch misprediction. Thus, cache misses after this boundary are not handled in overlap with cache misses before the boundary. As a result, the number of miss regions is equal to the number of cache misses that are processed without overlap. In this paper, we demonstrate that the number of miss regions can well explain the variation in performance through mathematical models and simulation results. The results show that the model explains cycles per instruction with an average error of 1.0% and maximum error of 4.1% when applying an existing prefetcher to the instruction cache. The idea of miss regions highlights that instruction cache misses and branch mispredictions interact with each other in processors with a decoupled front-end. We hope that considering this interaction will motivate the development of fast performance estimation methods and new microarchitectural methods.

  • Optimization Algorithm with Automatic Adjustment of the Number of Switches in the Order/Radix Problem

    Masaki TSUKAMOTO  Yoshiko HANADA  Masahiro NAKAO  Keiji YAMAMOTO  

     
    PAPER

      Pubricized:
    2023/06/12
      Vol:
    E106-D No:12
      Page(s):
    1979-1987

    The Order/Radix Problem (ORP) is an optimization problem that can be solved to find an optimal network topology in distributed memory systems. It is important to find the optimum number of switches in the ORP. In the case of a regular graph, a good estimation of the preferred number of switches has been proposed, and it has been shown that simulated annealing (SA) finds a good solution given a fixed number of switches. However, generally the optimal graph does not necessarily satisfy the regular condition, which greatly increases the computational costs required to find a good solution with a suitable number of switches for each case. This study improved the new method based on SA to find a suitable number of switches. By introducing neighborhood searches in which the number of switches is increased or decreased, our method can optimize a graph by changing the number of switches adaptively during the search. In numerical experiments, we verified that our method shows a good approximation for the best setting for the number of switches, and can simultaneously generate a graph with a small host-to-host average shortest path length, using instances presented by Graph Golf, an international ORP competition.

  • Power Analysis and Power Modeling of Directly-Connected FPGA Clusters

    Kensuke IIZUKA  Haruna TAKAGI  Aika KAMEI  Kazuei HIRONAKA  Hideharu AMANO  

     
    PAPER

      Pubricized:
    2023/07/20
      Vol:
    E106-D No:12
      Page(s):
    1997-2005

    FPGA cluster is a promising platform for future computing not only in the cloud but in the 5G wireless base stations with limited power supply by taking significant advantage of power efficiency. However, almost no power analyses with real systems have been reported. This work reports the detailed power consumption analyses of two FPGA clusters, namely FiC and M-KUBOS clusters with introducing power measurement tools and running the real applications. From the detailed analyses, we find that the number of activated links mainly determines the total power consumption of the systems regardless they are used or not. To improve the performance of applications while reducing power consumption, we should increase the clock frequency of the applications, use the minimum number of links and apply link aggregation. We also propose the power model for both clusters from the results of the analyses and this model can estimate the total power consumption of both FPGA clusters at the design step with 15% errors at maximum.

  • Hierarchical Detailed Intermediate Supervision for Image-to-Image Translation

    Jianbo WANG  Haozhi HUANG  Li SHEN  Xuan WANG  Toshihiko YAMASAKI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2023/09/14
      Vol:
    E106-D No:12
      Page(s):
    2085-2096

    The image-to-image translation aims to learn a mapping between the source and target domains. For improving visual quality, the majority of previous works adopt multi-stage techniques to refine coarse results in a progressive manner. In this work, we present a novel approach for generating plausible details by only introducing a group of intermediate supervisions without cascading multiple stages. Specifically, we propose a Laplacian Pyramid Transformation Generative Adversarial Network (LapTransGAN) to simultaneously transform components in different frequencies from the source domain to the target domain within only one stage. Hierarchical perceptual and gradient penalization are utilized for learning consistent semantic structures and details at each pyramid level. The proposed model is evaluated based on various metrics, including the similarity in feature maps, reconstruction quality, segmentation accuracy, similarity in details, and qualitative appearances. Our experiments show that LapTransGAN can achieve a much better quantitative performance than both the supervised pix2pix model and the unsupervised CycleGAN model. Comprehensive ablation experiments are conducted to study the contribution of each component.

  • Single-Line Text Detection in Multi-Line Text with Narrow Spacing for Line-Based Character Recognition

    Chee Siang LEOW  Hideaki YAJIMA  Tomoki KITAGAWA  Hiromitsu NISHIZAKI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/08/31
      Vol:
    E106-D No:12
      Page(s):
    2097-2106

    Text detection is a crucial pre-processing step in optical character recognition (OCR) for the accurate recognition of text, including both fonts and handwritten characters, in documents. While current deep learning-based text detection tools can detect text regions with high accuracy, they often treat multiple lines of text as a single region. To perform line-based character recognition, it is necessary to divide the text into individual lines, which requires a line detection technique. This paper focuses on the development of a new approach to single-line detection in OCR that is based on the existing Character Region Awareness For Text detection (CRAFT) model and incorporates a deep neural network specialized in line segmentation. However, this new method may still detect multiple lines as a single text region when multi-line text with narrow spacing is present. To address this, we also introduce a post-processing algorithm to detect single text regions using the output of the single-line segmentation. Our proposed method successfully detects single lines, even in multi-line text with narrow line spacing, and hence improves the accuracy of OCR.

  • User Verification Using Evoked EEG by Invisible Visual Stimulation

    Atikur RAHMAN  Nozomu KINJO  Isao NAKANISHI  

     
    PAPER-Biometrics

      Pubricized:
    2023/06/19
      Vol:
    E106-A No:12
      Page(s):
    1569-1576

    Person authentication using biometric information has recently become popular among researchers. User management based on biometrics is more reliable than that using conventional methods. To secure private information, it is necessary to build continuous authentication-based user management systems. Brain waves are suitable biometric modalities for continuous authentication. This study is based on biometric authentication using brain waves evoked by invisible visual stimuli. Invisible visual stimulation is considered over visual stimulation to overcome the obstacles faced by a user when using a system. Invisible stimuli are confirmed by changing the intensity of the image and presenting high-speed stimulation. To ensure invisibility, stimuli of different intensities were tested, and the stimuli with an intensity of 5% was confirmed to be invisible. To improve the verification performance, a continuous wavelet transform was introduced over the Fourier transform because it extracts both time and frequency information from the brain wave. The scalogram obtained by the wavelet transform was used as an individual feature and for synchronizing the template and test data. Furthermore, to improve the synchronization performance, the waveband was split based on the power distribution of the scalogram. A performance evaluation using 20 subjects showed an equal error rate of 3.8%.

  • Gradient Descent Direction Random Walk MIMO Detection Using Intermediate Search Point

    Naoki ITO  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1192-1199

    In this paper, multi-input multi-output (MIMO) signal detection with random walk along a gradient descent direction using an intermediate search point is presented. As a low complexity MIMO signal detection schemes, a gradient descent algorithm with Metropolis-Hastings (MH) methods has been proposed. Random walk along a gradient descent direction speeds up the MH based search using the gradient of a least-squares cost function. However, the gradient vector may be discarded through QAM constellation quantization in some cases. For further performance improvement, this paper proposes an improved search scheme in which the gradient vector is stored for the next search iteration to generate an intermediate search point. The performance of the proposed scheme improves with higher order modulation symbols as compared with that of a conventional scheme. Numerical results obtained through computer simulation show that a bit error rate (BER) performance improves by 5dB at a BER of 10-3 for 64QAM symbols in a 16×16 MIMO system.

  • i-MSE: A Fine Structure Imaging for Surface and Its Inside of Solid Material with Micro Slurry-Jet Erosion Test

    Shinji FUKUMA  Yoshiro IWAI  Shin-ichiro MORI  

     
    PAPER-Image

      Pubricized:
    2023/05/22
      Vol:
    E106-A No:11
      Page(s):
    1376-1384

    We propose a fine structure imaging for the surface and its inside of solid material such as coated drill bits with TiN (Titanium Nitride). We call this method i-MSE (innovative MSE) since the fine structure is visualized with a local mechanical strength (the local erosion rate) which is obtained from a set of erosion depth profiles measured with Micro Slurry-jet Erosion test (MSE). The local erosion rate at any sampling point is estimated from the depth profile using a sliding window regression and for the rest of the 2-dimensional points it is interpolated with the mean value coordinate technique. The interpolated rate is converted to a 2D image (i-MSE image) with a color map. The i-MSE image can distinguish layers if the testing material surface is composed of coats which have different resistance to erosion (erosive wear), while microscopic image such as SEM (Scanning Electron Microscope) and a calotest just provides appearance information, not physical characteristics. Experiments for some layered specimens show that i-MSE can be an effective tool to visualize the structure and to evaluate the mechanical characteristics for the surface and the inside of solid material.

  • Deep Unrolling of Non-Linear Diffusion with Extended Morphological Laplacian

    Gouki OKADA  Makoto NAKASHIZUKA  

     
    PAPER-Image

      Pubricized:
    2023/07/21
      Vol:
    E106-A No:11
      Page(s):
    1395-1405

    This paper presents a deep network based on unrolling the diffusion process with the morphological Laplacian. The diffusion process is an iterative algorithm that can solve the diffusion equation and represents time evolution with Laplacian. The diffusion process is applied to smoothing of images and has been extended with non-linear operators for various image processing tasks. In this study, we introduce the morphological Laplacian to the basic diffusion process and unwrap to deep networks. The morphological filters are non-linear operators with parameters that are referred to as structuring elements. The discrete Laplacian can be approximated with the morphological filters without multiplications. Owing to the non-linearity of the morphological filter with trainable structuring elements, the training uses error back propagation and the network of the morphology can be adapted to specific image processing applications. We introduce two extensions of the morphological Laplacian for deep networks. Since the morphological filters are realized with addition, max, and min, the error caused by the limited bit-length is not amplified. Consequently, the morphological parts of the network are implemented in unsigned 8-bit integer with single instruction multiple data set (SIMD) to achieve fast computation on small devices. We applied the proposed network to image completion and Gaussian denoising. The results and computational time are compared with other denoising algorithm and deep networks.

  • U-Net Architecture for Ancient Handwritten Chinese Character Detection in Han Dynasty Wooden Slips

    Hojun SHIMOYAMA  Soh YOSHIDA  Takao FUJITA  Mitsuji MUNEYASU  

     
    PAPER-Image

      Pubricized:
    2023/05/15
      Vol:
    E106-A No:11
      Page(s):
    1406-1415

    Recent character detectors have been modeled using deep neural networks and have achieved high performance in various tasks, such as text detection in natural scenes and character detection in historical documents. However, existing methods cannot achieve high detection accuracy for wooden slips because of their multi-scale character sizes and aspect ratios, high character density, and close character-to-character distance. In this study, we propose a new U-Net-based character detection and localization framework that learns character regions and boundaries between characters. The proposed method enhances the learning performance of character regions by simultaneously learning the vertical and horizontal boundaries between characters. Furthermore, by adding simple and low-cost post-processing using the learned regions of character boundaries, it is possible to more accurately detect the location of a group of characters in a close neighborhood. In this study, we construct a wooden slip dataset. Experiments demonstrated that the proposed method outperformed existing character detection methods, including state-of-the-art character detection methods for historical documents.

  • A Method to Improve the Quality of Point-Light-Style Images Using Peripheral Difference Filters with Different Window Sizes

    Toru HIRAOKA  Kanya GOTO  

     
    LETTER-Computer Graphics

      Pubricized:
    2023/05/08
      Vol:
    E106-A No:11
      Page(s):
    1440-1443

    We propose a non-photorealistic rendering method for automatically generating point-light-style (PLS) images from photographic images using peripheral difference filters with different window sizes. The proposed method can express PLS patterns near the edges of photographic images as dots. To verify the effectiveness of the proposed method, experiments were conducted to visually confirm PLS images generated from various photographic images.

  • An Efficient Mapping Scheme on Neural Networks for Linear Massive MIMO Detection

    Lin LI  Jianhao HU  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2023/05/19
      Vol:
    E106-A No:11
      Page(s):
    1416-1423

    For massive multiple-input multiple-output (MIMO) communication systems, simple linear detectors such as zero forcing (ZF) and minimum mean square error (MMSE) can achieve near-optimal detection performance with reduced computational complexity. However, such linear detectors always involve complicated matrix inversion, which will suffer from high computational overhead in the practical implementation. Due to the massive parallel-processing and efficient hardware-implementation nature, the neural network has become a promising approach to signal processing for the future wireless communications. In this paper, we first propose an efficient neural network to calculate the pseudo-inverses for any type of matrices based on the improved Newton's method, termed as the PINN. Through detailed analysis and derivation, the linear massive MIMO detectors are mapped on PINNs, which can take full advantage of the research achievements of neural networks in both algorithms and hardwares. Furthermore, an improved limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) quasi-Newton method is studied as the learning algorithm of PINNs to achieve a better performance/complexity trade-off. Simulation results finally validate the efficiency of the proposed scheme.

  • A SAT Approach to the Initial Mapping Problem in SWAP Gate Insertion for Commuting Gates

    Atsushi MATSUO  Shigeru YAMASHITA  Daniel J. EGGER  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2023/05/17
      Vol:
    E106-A No:11
      Page(s):
    1424-1431

    Most quantum circuits require SWAP gate insertion to run on quantum hardware with limited qubit connectivity. A promising SWAP gate insertion method for blocks of commuting two-qubit gates is a predetermined swap strategy which applies layers of SWAP gates simultaneously executable on the coupling map. A good initial mapping for the swap strategy reduces the number of required swap gates. However, even when a circuit consists of commuting gates, e.g., as in the Quantum Approximate Optimization Algorithm (QAOA) or trotterized simulations of Ising Hamiltonians, finding a good initial mapping is a hard problem. We present a SAT-based approach to find good initial mappings for circuits with commuting gates transpiled to the hardware with swap strategies. Our method achieves a 65% reduction in gate count for random three-regular graphs with 500 nodes. In addition, we present a heuristic approach that combines the SAT formulation with a clustering algorithm to reduce large problems to a manageable size. This approach reduces the number of swap layers by 25% compared to both a trivial and random initial mapping for a random three-regular graph with 1000 nodes. Good initial mappings will therefore enable the study of quantum algorithms, such as QAOA and Ising Hamiltonian simulation applied to sparse problems, on noisy quantum hardware with several hundreds of qubits.

  • Decomposition of P6-Free Chordal Bipartite Graphs

    Asahi TAKAOKA  

     
    LETTER-Graphs and Networks

      Pubricized:
    2023/05/17
      Vol:
    E106-A No:11
      Page(s):
    1436-1439

    Canonical decomposition for bipartite graphs, which was introduced by Fouquet, Giakoumakis, and Vanherpe (1999), is a decomposition scheme for bipartite graphs associated with modular decomposition. Weak-bisplit graphs are bipartite graphs totally decomposable (i.e., reducible to single vertices) by canonical decomposition. Canonical decomposition comprises series, parallel, and K+S decomposition. This paper studies a decomposition scheme comprising only parallel and K+S decomposition. We show that bipartite graphs totally decomposable by this decomposition are precisely P6-free chordal bipartite graphs. This characterization indicates that P6-free chordal bipartite graphs can be recognized in linear time using the recognition algorithm for weak-bisplit graphs presented by Giakoumakis and Vanherpe (2003).

301-320hit(21534hit)