The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

541-560hit(21534hit)

  • Multitarget 2-D DOA Estimation Using Wideband LFMCW Signal and Triangle Array Composed of Three Receiver Antennas

    Wentao ZHANG  Chen MIAO  Wen WU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/10/17
      Vol:
    E106-B No:4
      Page(s):
    307-316

    Direction of arrival (DOA) estimation has been a primary focus of research for many years. Research on DOA estimation continues to be immensely popular in the fields of the internet of things, radar, and smart driving. In this paper, a simple new two-dimensional DOA framework is proposed in which a triangular array is used to receive wideband linear frequency modulated continuous wave signals. The mixed echo signals from various targets are separated into a series of single-tone signals. The unwrapping algorithm is applied to the phase difference function of the single-tone signals. By using the least-squares method to fit the unwrapped phase difference function, the DOA information of each target is obtained. Theoretical analysis and simulation demonstrate that the framework has the following advantages. Unlike traditional phase goniometry, the framework can resolve the trade-off between antenna spacing and goniometric accuracy. The number of detected targets is not limited by the number of antennas. Moreover, the framework can obtain highly accurate DOA estimation results.

  • A Beam Search Method with Adaptive Beam Width Control Based on Area Size for Initial Access

    Takuto ARAI  Daisei UCHIDA  Tatsuhiko IWAKUNI  Shuki WAI  Naoki KITA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/10/03
      Vol:
    E106-B No:4
      Page(s):
    359-366

    High gain antennas with narrow-beamforming are required to compensate for the high propagation loss expected in high frequency bands such as the millimeter wave and sub-terahertz wave bands, which are promising for achieving extremely high speeds and capacity. However using narrow-beamforming for initial access (IA) beam search in all directions incurs an excessive overhead. Using wide-beamforming can reduce the overhead for IA but it also shrinks the coverage area due to the lower beamforming gain. Here, it is assumed that there are some situations in which the required coverage distance differs depending on the direction from the antenna. For example, the distance to an floor for a ceiling-mounted antenna varies depending on the direction, and the distance to the obstruction becomes the required coverage distance for an antenna installation design that assumes line-of-sight. In this paper, we propose a novel IA beam search scheme with adaptive beam width control based on the distance to shield obstacles in each direction. Simulations and experiments show that the proposed method reduces the overhead by 20%-50% without shrinking the coverage area in shield environments compared to exhaustive beam search with narrow-beamforming.

  • A Lightweight Automatic Modulation Recognition Algorithm Based on Deep Learning

    Dong YI  Di WU  Tao HU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/09/30
      Vol:
    E106-B No:4
      Page(s):
    367-373

    Automatic modulation recognition (AMR) plays a critical role in modern communication systems. Owing to the recent advancements of deep learning (DL) techniques, the application of DL has been widely studied in AMR, and a large number of DL-AMR algorithms with high recognition rates have been developed. Most DL-AMR algorithm models have high recognition accuracy but have numerous parameters and are huge, complex models, which make them hard to deploy on resource-constrained platforms, such as satellite platforms. Some lightweight and low-complexity DL-AMR algorithm models also struggle to meet the accuracy requirements. Based on this, this paper proposes a lightweight and high-recognition-rate DL-AMR algorithm model called Lightweight Densely Connected Convolutional Network (DenseNet) Long Short-Term Memory network (LDLSTM). The model cascade of DenseNet and LSTM can achieve the same recognition accuracy as other advanced DL-AMR algorithms, but the parameter volume is only 1/12 that of these algorithms. Thus, it is advantageous to deploy LDLSTM in resource-constrained systems.

  • Handover Experiment of 60-GHz-Band Wireless LAN in over 200-km/h High-Speed Mobility Environment

    Tatsuhiko IWAKUNI  Daisei UCHIDA  Takuto ARAI  Shuki WAI  Naoki KITA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2022/10/17
      Vol:
    E106-B No:4
      Page(s):
    384-391

    High-frequency wireless communication is drawing attention because of its potential to actualize huge transmission capacity in the next generation wireless system. The use of high-frequency bands requires dense deployment of access points to compensate for significant distance attenuation and diffraction loss. Dense deployment of access points in a mobility environment triggers an increase in the frequency of handover because the number of candidate access points increases. Therefore, simple handover schemes are needed. High-frequency wireless systems enable station position to be determined using their wideband and highly directional communication signals. Thus, simple handover based on position information estimated using the communication signal is possible. Interruptions caused by handover are also a huge barrier to actualizing stable high-frequency wireless communications. This paper proposes a seamless handover scheme using multiple radio units. This paper evaluates the combination of simple handover and the proposed scheme based on experiments using a formula racing car representing the fastest high-speed mobility environment. Experimental results show that seamless handover and high-speed wireless transmission over 200Mbps are achieved over a 400-m area even at station velocities of greater than 200km/h.

  • An Interpretation Method on Amplitude Intensities for Response Waveforms of Backward Transient Scattered Field Components by a 2-D Coated Metal Cylinder

    Keiji GOTO  Toru KAWANO  

     
    PAPER

      Pubricized:
    2022/09/29
      Vol:
    E106-C No:4
      Page(s):
    118-126

    In this paper, we propose an interpretation method on amplitude intensities for response waveforms of backward transient scattered field components for both E- and H-polarizations by a 2-D coated metal cylinder. A time-domain (TD) asymptotic solution, which is referred to as a TD Fourier transform method (TD-FTM), is derived by applying the FTM to a backward transient scattered field expressed by an integral form. The TD-FTM is represented by a combination of a direct geometric optical ray (DGO) and a reflected GO (RGO) series. We use the TD-FTM to derive amplitude intensity ratios (AIRs) between adjacent backward transient scattered field components. By comparing the numerical values of the AIRs with those of the influence factors that compose the AIRs, major factor(s) can be identified, thereby allowing detailed interpretation method on the amplitude intensities for the response waveforms of backward transient scattered field components. The accuracy and practicality of the TD-FTM are evaluated by comparing it with three reference solutions. The effectiveness of an interpretation method on the amplitude intensities for response waveforms of backward transient scattered field components is revealed by identifying major factor(s) affecting the amplitude intensities.

  • Band Characteristics of a Polarization Splitter with Circular Cores and Hollow Pits

    Midori NAGASAKA  Taiki ARAKAWA  Yutaro MOCHIDA  Kazunori KAMEDA  Shinichi FURUKAWA  

     
    PAPER

      Pubricized:
    2022/10/17
      Vol:
    E106-C No:4
      Page(s):
    127-135

    In this study, we discuss a structure that realizes a wideband polarization splitter comprising fiber 1 with a single core and fiber 2 with circular pits, which touch the top and bottom of a single core. The refractive index profile of the W type was adopted in the core of fiber 1 to realize the wideband. We compared the maximum bandwidth of BW-15 (bandwidth at an extinction ratio of -15dB) for the W type obtained in this study with those (our previous results) of BW-15 for the step and graded types with cores and pits at the same location; this comparison clarified that the maximum bandwidth of BW-15 for the W type is 5.22 and 4.96 times wider than those of step and graded types, respectively. Furthermore, the device length at the maximum bandwidth improved, becoming slightly shorter. The main results of the FPS in this study are all obtained by numerical analysis based on our proposed MM-DM (a method that combines the multipole method and the difference method for the inhomogeneous region). Our MM-DM is a quite reliable method for high accuracy analysis of the FPS composed of inhomogeneous circular regions.

  • Study of FIT Dedicated Computer with Dataflow Architecture for High Performance 2-D Magneto-Static Field Simulation

    Chenxu WANG  Hideki KAWAGUCHI  Kota WATANABE  

     
    PAPER

      Pubricized:
    2022/08/23
      Vol:
    E106-C No:4
      Page(s):
    136-143

    An approach to dedicated computers is discussed in this study as a possibility for portable, low-cost, and low-power consumption high-performance computing technologies. Particularly, dataflow architecture dedicated computer of the finite integration technique (FIT) for 2D magnetostatic field simulation is considered for use in industrial applications. The dataflow architecture circuit of the BiCG-Stab matrix solver of the FIT matrix calculation is designed by the very high-speed integrated circuit hardware description language (VHDL). The operation of the dedicated computer's designed circuit is considered by VHDL logic circuit simulation.

  • A 28GHz High-Accuracy Phase and Amplitude Detection Circuit for Dual-Polarized Phased-Array Calibration Open Access

    Yudai YAMAZAKI  Joshua ALVIN  Jian PANG  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER-Electronic Circuits

      Pubricized:
    2022/10/13
      Vol:
    E106-C No:4
      Page(s):
    149-156

    This article presents a 28GHz high-accuracy phase and amplitude detection circuit for dual-polarized phased-array calibration. With dual-polarized calibration scheme, external LO signal is not required for calibration. The proposed detection circuit detects phase and amplitude independently, using PDC and ADC. By utilizing a 28GHz-to-140kHz downconversion scheme, the phase and amplitude are detected more accurately. In addition, reference signal for PDC and ADC is generated from 28GHz LO signal with divide-by-6 dual-step-mixing injection locked frequency divider (ILFD). This ILFD achieves 24.5-32.5GHz (28%) locking range with only 3.0mW power consumption and 0.01mm2 area. In the measurement, the detection circuit achieves phase and amplitude detections with RMS errors of 0.17degree and 0.12dB, respectively. The total power consumption of the proposed circuit is 59mW with 1-V supply voltage.

  • Influence Propagation Based Influencer Detection in Online Forum

    Wen GU  Shohei KATO  Fenghui REN  Guoxin SU  Takayuki ITO  Shinobu HASEGAWA  

     
    PAPER

      Pubricized:
    2022/11/07
      Vol:
    E106-D No:4
      Page(s):
    433-442

    Influential user detection is critical in supporting the human facilitator-based facilitation in the online forum. Traditional approaches to detect influential users in the online forum focus on the statistical activity information such as the number of posts. However, statistical activity information cannot fully reflect the influence that users bring to the online forum. In this paper, we propose to detect the influencers from the influence propagation perspective and focus on the influential maximization (IM) problem which aims at choosing a set of users that maximize the influence propagation from the entire social network. An online forum influence propagation network (OFIPN) is proposed to model the influence from an individual user perspective and influence propagation between users, and a heuristic algorithm that is proposed to find influential users in OFIPN. Experiments are conducted by simulations with a real-world social network. Our empirical results show the effectiveness of the proposed algorithm.

  • How Many Tweets Describe the Topics on TV Programs: An Investigation on the Relation between Twitter and Mass Media

    Jun IIO  

     
    PAPER

      Pubricized:
    2022/11/11
      Vol:
    E106-D No:4
      Page(s):
    443-449

    As the Internet has become prevalent, the popularity of net media has been growing, to a point that it has taken over conventional mass media. However, TWtrends, the Twitter trends visualization system operated by our research team since 2019, indicates that many topics on TV programs frequently appear on Twitter trendlines. This study investigates the relationship between Twitter and TV programs by collecting information on Twitter trends and TV programs simultaneously. Although this study provides a rough estimation of the volume of tweets that mention TV programs, the results show that several tweets mention TV programs at a constant rate, which tends to increase on the weekend. This tendency of TV-related tweets stems from the audience rating survey results. Considering the study outcome, and the fact that many TV programs introduce topics popular in social media, implies codependency between Internet media (social media) and mass media.

  • DualMotion: Global-to-Local Casual Motion Design for Character Animations

    Yichen PENG  Chunqi ZHAO  Haoran XIE  Tsukasa FUKUSATO  Kazunori MIYATA  Takeo IGARASHI  

     
    PAPER

      Pubricized:
    2022/12/07
      Vol:
    E106-D No:4
      Page(s):
    459-468

    Animating 3D characters using motion capture data requires basic expertise and manual labor. To support the creativity of animation design and make it easier for common users, we present a sketch-based interface DualMotion, with rough sketches as input for designing daily-life animations of characters, such as walking and jumping. Our approach enables to combine global motions of lower limbs and the local motion of the upper limbs in a database by utilizing a two-stage design strategy. Users are allowed to design a motion by starting with drawing a rough trajectory of a body/lower limb movement in the global design stage. The upper limb motions are then designed by drawing several more relative motion trajectories in the local design stage. We conduct a user study and verify the effectiveness and convenience of the proposed system in creative activities.

  • PR-Trie: A Hybrid Trie with Ant Colony Optimization Based Prefix Partitioning for Memory-Efficient IPv4/IPv6 Route Lookup

    Yi ZHANG  Lufeng QIAO  Huali WANG  

     
    PAPER-Computer System

      Pubricized:
    2023/01/13
      Vol:
    E106-D No:4
      Page(s):
    509-522

    Memory-efficient Internet Protocol (IP) lookup with high speed is essential to achieve link-speed packet forwarding in IP routers. The rapid growth of Internet traffic and the development of optical link technologies have made IP lookup a major performance bottleneck in core routers. In this paper, we propose a new IP route lookup architecture based on hardware called Prefix-Route Trie (PR-Trie), which supports both IPv4 and IPv6 addresses. In PR-Trie, we develop a novel structure called Overlapping Hybrid Trie (OHT) to perform fast longest-prefix-matching (LPM) based on Multibit-Trie (MT), and a hash-based level matching query used to achieve only one off-chip memory access per lookup. In addition, the proposed PR-Trie also supports fast incremental updates. Since the memory complexity in MT-based IP lookup schemes depends on the level-partitioning solution and the data structure used, we develop an optimization algorithm called Bitmap-based Prefix Partitioning Optimization (BP2O). The proposed BP2O is based on a heuristic search using Ant Colony Optimization (ACO) algorithms to optimize memory efficiency. Experimental results using real-life routing tables prove that our proposal has superior memory efficiency. Theoretical performance analyses show that PR-Trie outperforms the classical Trie-based IP lookup algorithms.

  • Multimodal Named Entity Recognition with Bottleneck Fusion and Contrastive Learning

    Peng WANG  Xiaohang CHEN  Ziyu SHANG  Wenjun KE  

     
    PAPER-Natural Language Processing

      Pubricized:
    2023/01/18
      Vol:
    E106-D No:4
      Page(s):
    545-555

    Multimodal named entity recognition (MNER) is the task of recognizing named entities in multimodal context. Existing methods focus on utilizing co-attention mechanism to discover the relationships between multiple modalities. However, they still have two deficiencies: First, current methods fail to fuse the multimodal representations in a fine-grained way, which may bring noise of visual modalities. Second, current methods ignore bridging the semantic gap between heterogeneous modalities. To solve the above issues, we propose a novel MNER method with bottleneck fusion and contrastive learning (BFCL). Specifically, we first incorporate the transformer-based bottleneck fusion mechanism, subsequently, information between different modalities can only be exchanged through several bottleneck tokens, thus reducing the noise propagation. Then we propose two decoupled image-text contrastive losses to align the unimodal representations, making the representations of semantically similar modalities closer, while the representations of semantically different modalities farther away. Experimental results demonstrate that our method is competitive to the state-of-the-art models, and achieves 74.54% and 85.70% F1-scores on Twitter-2015 and Twitter-2017 datasets, respectively.

  • Group Sparse Reduced Rank Tensor Regression for Micro-Expression Recognition

    Sunan LI  Yuan ZONG  Cheng LU  Chuangan TANG  Yan ZHAO  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2023/01/05
      Vol:
    E106-D No:4
      Page(s):
    575-578

    To overcome the challenge in micro-expression recognition that it only emerge in several small facial regions with low intensity, some researchers proposed facial region partition mechanisms and introduced group sparse learning methods for feature selection. However, such methods have some shortcomings, including the complexity of region division and insufficient utilization of critical facial regions. To address these problems, we propose a novel Group Sparse Reduced Rank Tensor Regression (GSRRTR) to transform the fearure matrix into a tensor by laying blocks and features in different dimensions. So we can process grids and texture features separately and avoid interference between grids and features. Furthermore, with the use of Tucker decomposition, the feature tensor can be decomposed into a product of core tensor and a set of matrix so that the number of parameters and the computational complexity of the scheme will decreased. To evaluate the performance of the proposed micro-expression recognition method, extensive experiments are conducted on two micro expression databases: CASME2 and SMIC. The experimental results show that the proposed method achieves comparable recognition rate with less parameters than state-of-the-art methods.

  • APVAS: Reducing the Memory Requirement of AS_PATH Validation by Introducing Aggregate Signatures into BGPsec

    Ouyang JUNJIE  Naoto YANAI  Tatsuya TAKEMURA  Masayuki OKADA  Shingo OKAMURA  Jason Paul CRUZ  

     
    PAPER

      Pubricized:
    2023/01/11
      Vol:
    E106-A No:3
      Page(s):
    170-184

    The BGPsec protocol, which is an extension of the border gateway protocol (BGP) for Internet routing known as BGPsec, uses digital signatures to guarantee the validity of routing information. However, the use of digital signatures in routing information on BGPsec causes a lack of memory in BGP routers, creating a gaping security hole in today's Internet. This problem hinders the practical realization and implementation of BGPsec. In this paper, we present APVAS (AS path validation based on aggregate signatures), a new protocol that reduces the memory consumption of routers running BGPsec when validating paths in routing information. APVAS relies on a novel aggregate signature scheme that compresses individually generated signatures into a single signature. Furthermore, we implement a prototype of APVAS on BIRD Internet Routing Daemon and demonstrate its efficiency on actual BGP connections. Our results show that the routing tables of the routers running BGPsec with APVAS have 20% lower memory consumption than those running the conventional BGPsec. We also confirm the effectiveness of APVAS in the real world by using 800,000 routes, which are equivalent to the full route information on a global scale.

  • A Generic Construction of CCA-Secure Identity-Based Encryption with Equality Test against Insider Attacks

    Keita EMURA  Atsushi TAKAYASU  

     
    PAPER

      Pubricized:
    2022/05/30
      Vol:
    E106-A No:3
      Page(s):
    193-202

    Identity-based encryption with equality test (IBEET) is a generalization of the traditional identity-based encryption (IBE) and public key searchable encryption, where trapdoors enable users to check whether two ciphertexts of distinct identities are encryptions of the same plaintext. By definition, IBEET cannot achieve indistinguishability security against insiders, i.e., users who have trapdoors. To address this issue, IBEET against insider attacks (IBEETIA) was later introduced as a dual primitive. While all users of IBEETIA are able to check whether two ciphertexts are encryptions of the same plaintext, only users who have tokens are able to encrypt plaintexts. Hence, IBEETIA is able to achieve indistinguishability security. On the other hand, the definition of IBEETIA weakens the notion of IBE due to its encryption inability. Nevertheless, known schemes of IBEETIA made use of rich algebraic structures such as bilinear groups and lattices. In this paper, we propose a generic construction of IBEETIA without resorting to rich algebraic structures. In particular, the only building blocks of the proposed construction are symmetric key encryption and pseudo-random permutations in the standard model. If a symmetric key encryption scheme satisfies CCA security, our proposed IBEETIA scheme also satisfies CCA security.

  • Security Evaluation of Initialization Phases and Round Functions of Rocca and AEGIS

    Nobuyuki TAKEUCHI  Kosei SAKAMOTO  Takanori ISOBE  

     
    PAPER

      Pubricized:
    2022/11/09
      Vol:
    E106-A No:3
      Page(s):
    253-262

    Authenticated-Encryption with Associated-Data (AEAD) plays an important role in guaranteeing confidentiality, integrity, and authenticity in network communications. To meet the requirements of high-performance applications, several AEADs make use of AES New Instructions (AES-NI), which can conduct operations of AES encryption and decryption dramatically fast by hardware accelerations. At SAC 2013, Wu and Preneel proposed an AES-based AEAD scheme called AEGIS-128/128L/256, to achieve high-speed software implementation. At FSE 2016, Jean and Nikolić generalized the construction of AEGIS and proposed more efficient round functions. At ToSC 2021, Sakamoto et al. further improved the constructions of Jean and Nikolić, and proposed an AEAD scheme called Rocca for beyond 5G. In this study, we first evaluate the security of the initialization phases of Rocca and AEGIS family against differential and integral attacks using MILP (Mixed Integer Linear Programming) tools. Specifically, according to the evaluation based on the lower bounds for the number of active S-boxes, the initialization phases of AEGIS-128/128L/256 are secure against differential attacks after 4/3/6 rounds, respectively. Regarding integral attacks, we present the integral distinguisher on 6 rounds and 6/5/7 rounds in the initialization phases of Rocca and AEGIS-128/128L/256, respectively. Besides, we evaluate the round function of Rocca and those of Jean and Nikolić as cryptographic permutations against differential, impossible differential, and integral attacks. Our results indicate that, for differential attacks, the growth rate of increasing the number of active S-boxes in Rocca is faster than those of Jean and Nikolić. For impossible differential and integral attacks, we show that the round function of Rocca achieves the sufficient level of the security against these attacks in smaller number of rounds than those of Jean and Nikolić.

  • Linear Algebraic Approach to Strongly Secure Ramp Secret Sharing for General Access Structures with Application to Symmetric PIR

    Reo ERIGUCHI  Noboru KUNIHIRO  Koji NUIDA  

     
    PAPER

      Pubricized:
    2022/09/13
      Vol:
    E106-A No:3
      Page(s):
    263-271

    Ramp secret sharing is a variant of secret sharing which can achieve better information ratio than perfect schemes by allowing some partial information on a secret to leak out. Strongly secure ramp schemes can control the amount of leaked information on the components of a secret. In this paper, we reduce the construction of strongly secure ramp secret sharing for general access structures to a linear algebraic problem. As a result, we show that previous results on strongly secure network coding imply two linear transformation methods to make a given linear ramp scheme strongly secure. They are explicit or provide a deterministic algorithm while the previous methods which work for any linear ramp scheme are non-constructive. In addition, we present a novel application of strongly secure ramp schemes to symmetric PIR in a multi-user setting. Our solution is advantageous over those based on a non-strongly secure scheme in that it reduces the amount of communication between users and servers and also the amount of correlated randomness that servers generate in the setup.

  • Multi Deletion/Substitution/Erasure Error-Correcting Codes for Information in Array Design

    Manabu HAGIWARA  

     
    PAPER-Coding Theory and Techniques

      Pubricized:
    2022/09/21
      Vol:
    E106-A No:3
      Page(s):
    368-374

    This paper considers error-correction for information in array design, i.e., two-dimensional design such as QR-codes. The error model is multi deletion/substitution/erasure errors. Code construction for the errors and an application of the code are provided. The decoding technique uses an error-locator for deletion codes.

  • Biometric Identification Systems with Both Chosen and Generated Secret Keys by Allowing Correlation

    Vamoua YACHONGKA  Hideki YAGI  

     
    PAPER-Shannon Theory

      Pubricized:
    2022/09/06
      Vol:
    E106-A No:3
      Page(s):
    382-393

    We propose a biometric identification system where the chosen- and generated-secret keys are used simultaneously, and investigate its fundamental limits from information theoretic perspectives. The system consists of two phases: enrollment and identification phases. In the enrollment phase, for each user, the encoder uses a secret key, which is chosen independently, and the biometric identifier to generate another secret key and a helper data. In the identification phase, observing the biometric sequence of the identified user, the decoder estimates index, chosen- and generated-secret keys of the identified user based on the helper data stored in the system database. In this study, the capacity region of such system is characterized. In the problem settings, we allow chosen- and generated-secret keys to be correlated. As a result, by permitting the correlation of the two secret keys, the sum rate of the identification, chosen- and generated-secret key rates can achieve a larger value compared to the case where the keys do not correlate. Moreover, the minimum amount of the storage rate changes in accordance with both the identification and chosen-secret key rates, but that of the privacy-leakage rate depends only on the identification rate.

541-560hit(21534hit)