The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

441-460hit(21534hit)

  • Deep Multiplicative Update Algorithm for Nonnegative Matrix Factorization and Its Application to Audio Signals

    Hiroki TANJI  Takahiro MURAKAMI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2023/01/19
      Vol:
    E106-A No:7
      Page(s):
    962-975

    The design and adjustment of the divergence in audio applications using nonnegative matrix factorization (NMF) is still open problem. In this study, to deal with this problem, we explore a representation of the divergence using neural networks (NNs). Instead of the divergence, our approach extends the multiplicative update algorithm (MUA), which estimates the NMF parameters, using NNs. The design of the extended MUA incorporates NNs, and the new algorithm is referred to as the deep MUA (DeMUA) for NMF. While the DeMUA represents the algorithm for the NMF, interestingly, the divergence is obtained from the incorporated NN. In addition, we propose theoretical guides to design the incorporated NN such that it can be interpreted as a divergence. By appropriately designing the NN, MUAs based on existing divergences with a single hyper-parameter can be represented by the DeMUA. To train the DeMUA, we applied it to audio denoising and supervised signal separation. Our experimental results show that the proposed architecture can learn the MUA and the divergences in sparse denoising and speech separation tasks and that the MUA based on generalized divergences with multiple parameters shows favorable performances on these tasks.

  • Variable Ordering in Binary Decision Diagram Using Spider Monkey Optimization for Node and Path Length Optimization

    Mohammed BALAL SIDDIQUI  Mirza TARIQ BEG  Syed NASEEM AHMAD  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/01/16
      Vol:
    E106-A No:7
      Page(s):
    976-989

    Binary Decision Diagrams (BDDs) are an important data structure for the design of digital circuits using VLSI CAD tools. The ordering of variables affects the total number of nodes and path length in the BDDs. Finding a good variable ordering is an optimization problem and previously many optimization approaches have been implemented for BDDs in a number of research works. In this paper, an optimization approach based on Spider Monkey Optimization (SMO) algorithm is proposed for the BDD variable ordering problem targeting number of nodes and longest path length. SMO is a well-known swarm intelligence-based optimization approach based on spider monkeys foraging behavior. The proposed work has been compared with other latest BDD reordering approaches using Particle Swarm Optimization (PSO) algorithm. The results obtained show significant improvement over the Particle Swarm Optimization method. The proposed SMO-based method is applied to different benchmark digital circuits having different levels of complexities. The node count and longest path length for the maximum number of tested circuits are found to be better in SMO than PSO.

  • Simultaneous Visible Light Communication and Ranging Using High-Speed Stereo Cameras Based on Bicubic Interpolation Considering Multi-Level Pulse-Width Modulation

    Ruiyi HUANG  Masayuki KINOSHITA  Takaya YAMAZATO  Hiraku OKADA  Koji KAMAKURA  Shintaro ARAI  Tomohiro YENDO  Toshiaki FUJII  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2022/12/26
      Vol:
    E106-A No:7
      Page(s):
    990-997

    Visible light communication (VLC) and visible light ranging are applicable techniques for intelligent transportation systems (ITS). They use every unique light-emitting diode (LED) on roads for data transmission and range estimation. The simultaneous VLC and ranging can be applied to improve the performance of both. It is necessary to achieve rapid data rate and high-accuracy ranging when transmitting VLC data and estimating the range simultaneously. We use the signal modulation method of pulse-width modulation (PWM) to increase the data rate. However, when using PWM for VLC data transmission, images of the LED transmitters are captured at different luminance levels and are easily saturated, and LED saturation leads to inaccurate range estimation. In this paper, we establish a novel simultaneous visible light communication and ranging system for ITS using PWM. Here, we analyze the LED saturation problems and apply bicubic interpolation to solve the LED saturation problem and thus, improve the communication and ranging performance. Simultaneous communication and ranging are enabled using a stereo camera. Communication is realized using maximal-ratio combining (MRC) while ranging is achieved using phase-only correlation (POC) and sinc function approximation. Furthermore, we measured the performance of our proposed system using a field trial experiment. The results show that error-free performance can be achieved up to a communication distance of 55 m and the range estimation errors are below 0.5m within 60m.

  • Persymmetric Structured Covariance Matrix Estimation Based on Whitening for Airborne STAP

    Quanxin MA  Xiaolin DU  Jianbo LI  Yang JING  Yuqing CHANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/12/27
      Vol:
    E106-A No:7
      Page(s):
    1002-1006

    The estimation problem of structured clutter covariance matrix (CCM) in space-time adaptive processing (STAP) for airborne radar systems is studied in this letter. By employing the prior knowledge and the persymmetric covariance structure, a new estimation algorithm is proposed based on the whitening ability of the covariance matrix. The proposed algorithm is robust to prior knowledge of different accuracy, and can whiten the observed interference data to obtain the optimal solution. In addition, the extended factored approach (EFA) is used in the optimization for dimensionality reduction, which reduces the computational burden. Simulation results show that the proposed algorithm can effectively improve STAP performance even under the condition of some errors in prior knowledge.

  • Exploiting RIS-Aided Cooperative Non-Orthogonal Multiple Access with Full-Duplex Relaying

    Guoqing DONG  Zhen YANG  Youhong FENG  Bin LYU  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2023/01/06
      Vol:
    E106-A No:7
      Page(s):
    1011-1015

    In this paper, a novel reconfigurable intelligent surface (RIS)-aided full-duplex (FD) cooperative non-orthogonal multiple access (CNOMA) network is investigated over Nakagami-m fading channels, where two RISs are employed to help the communication of paired users. To evaluate the potential benefits of our proposed scheme, we first derive the closed-form expressions of the outage probability. Then, we derive users' diversity orders according to the asymptotic approximation at high signal-to-noise-ratio (SNR). Simulation results validate our analysis and reveal that users' diversity orders are affected by their channel fading parameters, the self-interference of FD, and the number of RIS elements.

  • Anomaly Detection of Network Traffic Based on Intuitionistic Fuzzy Set Ensemble

    He TIAN  Kaihong GUO  Xueting GUAN  Zheng WU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2023/01/13
      Vol:
    E106-B No:7
      Page(s):
    538-546

    In order to improve the anomaly detection efficiency of network traffic, firstly, the model is established for network flows based on complex networks. Aiming at the uncertainty and fuzziness between network traffic characteristics and network states, the deviation extent is measured from the normal network state using deviation interval uniformly, and the intuitionistic fuzzy sets (IFSs) are established for the various characteristics on the network model that the membership degree, non-membership degree and hesitation margin of the IFSs are used to quantify the ownership of values to be tested and the corresponding network state. Then, the knowledge measure (KM) is introduced into the intuitionistic fuzzy weighted geometry (IFWGω) to weight the results of IFSs corresponding to the same network state with different characteristics together to detect network anomaly comprehensively. Finally, experiments are carried out on different network traffic datasets to analyze the evaluation indicators of network characteristics by our method, and compare with other existing anomaly detection methods. The experimental results demonstrate that the changes of various network characteristics are inconsistent under abnormal attack, and the accuracy of anomaly detection results obtained by our method is higher, verifying our method has a better detection performance.

  • Toward Predictive Modeling of Solar Power Generation for Multiple Power Plants Open Access

    Kundjanasith THONGLEK  Kohei ICHIKAWA  Keichi TAKAHASHI  Chawanat NAKASAN  Kazufumi YUASA  Tadatoshi BABASAKI  Hajimu IIDA  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2022/12/22
      Vol:
    E106-B No:7
      Page(s):
    547-556

    Solar power is the most widely used renewable energy source, which reduces pollution consequences from using conventional fossil fuels. However, supplying stable power from solar power generation remains challenging because it is difficult to forecast power generation. Accurate prediction of solar power generation would allow effective control of the amount of electricity stored in batteries, leading in a stable supply of electricity. Although the number of power plants is increasing, building a solar power prediction model for a newly constructed power plant usually requires collecting a new training dataset for the new power plant, which takes time to collect a sufficient amount of data. This paper aims to develop a highly accurate solar power prediction model for multiple power plants available for both new and existing power plants. The proposed method trains the model on existing multiple power plants to generate a general prediction model, and then uses it for a new power plant while waiting for the data to be collected. In addition, the proposed method tunes the general prediction model on the newly collected dataset and improves the accuracy for the new power plant. We evaluated the proposed method on 55 power plants in Japan with the dataset collected for two and a half years. As a result, the pre-trained models of our proposed method significantly reduces the average RMSE of the baseline method by 73.19%. This indicates that the model can generalize over multiple power plants, and training using datasets from other power plants is effective in reducing the RMSE. Fine-tuning the pre-trained model further reduces the RMSE by 8.12%.

  • Sum Rate Maximization for Cooperative NOMA System with IQ Imbalance

    Xiaoyu WAN  Yu WANG  Zhengqiang WANG  Zifu FAN  Bin DUO  

     
    PAPER-Network

      Pubricized:
    2023/01/17
      Vol:
    E106-B No:7
      Page(s):
    571-577

    In this paper, we investigate the sum rate (SR) maximization problem for downlink cooperative non-orthogonal multiple access (C-NOMA) system under in-phase and quadrature-phase (IQ) imbalance at the base station (BS) and destination. The BS communicates with users by a half-duplex amplified-and-forward (HD-AF) relay under imperfect IQ imbalance. The sum rate maximization problem is formulated as a non-convex optimization with the quality of service (QoS) constraint for each user. We first use the variable substitution method to transform the non-convex SR maximization problem into an equivalent problem. Then, a joint power and rate allocation algorithm is proposed based on successive convex approximation (SCA) to maximize the SR of the systems. Simulation results verify that the algorithm can improve the SR of the C-NOMA compared with the cooperative orthogonal multiple access (C-OMA) scheme.

  • UE Set Selection for RR Scheduling in Distributed Antenna Transmission with Reinforcement Learning Open Access

    Go OTSURU  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/01/13
      Vol:
    E106-B No:7
      Page(s):
    586-594

    In this paper, user set selection in the allocation sequences of round-robin (RR) scheduling for distributed antenna transmission with block diagonalization (BD) pre-coding is proposed. In prior research, the initial phase selection of user equipment allocation sequences in RR scheduling has been investigated. The performance of the proposed RR scheduling is inferior to that of proportional fair (PF) scheduling under severe intra-cell interference. In this paper, the multi-input multi-output technology with BD pre-coding is applied. Furthermore, the user equipment (UE) sets in the allocation sequences are eliminated with reinforcement learning. After the modification of a RR allocation sequence, no estimated throughput calculation for UE set selection is required. Numerical results obtained through computer simulation show that the maximum selection, one of the criteria for initial phase selection, outperforms the weighted PF scheduling in a restricted realm in terms of the computational complexity, fairness, and throughput.

  • Adaptive Buffering Time Optimization for Path Tracking Control of Unmanned Vehicle by Cloud Server with Digital Twin

    Yudai YOSHIMOTO  Masaki MINAGAWA  Ryohei NAKAMURA  Hisaya HADAMA  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2022/12/26
      Vol:
    E106-B No:7
      Page(s):
    603-613

    Autonomous driving technology is expected to be applied to various applications with unmanned vehicles (UVs), such as small delivery vehicles for office supplies and smart wheelchairs. UV remote control by a cloud server (CS) would achieve cost-effective applications with a large number of UVs. In general, dead time in real-time feedback control reduces the control accuracy. On remote path tracking control by the CS, UV control accuracy deteriorates due to transmission delay and jitter through the Internet. Digital twin computing (DTC) and jitter buffer are effective to solve this problem. In our previous study, we clarified effectiveness of them in UV remote control by CS. The jitter buffer absorbs the transmission delay jitter of control signals. This is effective to achieve accurate UV remote control. Adaptive buffering time optimization according to real-time transmission characteristics is necessary to achieve more accurate UV control in CS-based remote control system with DTC and jitter buffer. In this study, we proposed a method for the adaptive optimization according to real-time transmission delay characteristics. To quantitatively evaluate the effectiveness of the method, we created a UV remote control simulator of the control system. The results of simulations quantitatively clarify that the adaptive optimization by the proposed method improves the UV control accuracy.

  • Design of Circuits and Packaging Systems for Security Chips Open Access

    Makoto NAGATA  

     
    INVITED PAPER

      Pubricized:
    2023/04/19
      Vol:
    E106-C No:7
      Page(s):
    345-351

    Hardware oriented security and trust of semiconductor integrated circuit (IC) chips have been highly demanded. This paper outlines the requirements and recent developments in circuits and packaging systems of IC chips for security applications, with the particular emphasis on protections against physical implementation attacks. Power side channels are of undesired presence to crypto circuits once a crypto algorithm is implemented in Silicon, over power delivery networks (PDNs) on the frontside of a chip or even through the backside of a Si substrate, in the form of power voltage variation and electromagnetic wave emanation. Preventive measures have been exploited with circuit design and packaging technologies, and partly demonstrated with Si test vehicles.

  • Non-Stop Microprocessor for Fault-Tolerant Real-Time Systems Open Access

    Shota NAKABEPPU  Nobuyuki YAMASAKI  

     
    PAPER

      Pubricized:
    2023/01/25
      Vol:
    E106-C No:7
      Page(s):
    365-381

    It is very important to design an embedded real-time system as a fault-tolerant system to ensure dependability. In particular, when a power failure occurs, restart processing after power restoration is required in a real-time system using a conventional processor. Even if power is restored quickly, the restart process takes a long time and causes deadline misses. In order to design a fault-tolerant real-time system, it is necessary to have a processor that can resume operation in a short time immediately after power is restored, even if a power failure occurs at any time. Since current embedded real-time systems are required to execute many tasks, high schedulability for high throughput is also important. This paper proposes a non-stop microprocessor architecture to achieve a fault-tolerant real-time system. The non-stop microprocessor is designed so as to resume normal operation even if a power failure occurs at any time, to achieve little performance degradation for high schedulability even if checkpoint creations and restorations are performed many times, to control flexibly non-volatile devices through software configuration, and to ensure data consistency no matter when a checkpoint restoration is performed. The evaluation shows that the non-stop microprocessor can restore a checkpoint within 5µsec and almost hide the overhead of checkpoint creations. The non-stop microprocessor with such capabilities will be an essential component of a fault-tolerant real-time system with high schedulability.

  • Ka-Band Stacked-FET Power Amplifier IC with Adaptively Controlled Gate Capacitor and Two-Step Adaptive Bias Circuit in 45-nm SOI CMOS

    Tsuyoshi SUGIURA  Toshihiko YOSHIMASU  

     
    PAPER

      Pubricized:
    2023/01/12
      Vol:
    E106-C No:7
      Page(s):
    382-390

    This paper presents a Ka-band high-efficiency power amplifier (PA) with a novel adaptively controlled gate capacitor circuit and a two-step adaptive bias circuit for 5th generation (5G) mobile terminal applications fabricated using a 45-nm silicon on insulator (SOI) CMOS process. The PA adopts a stacked FET structure to increase the output power because of the low breakdown voltage issue of scaled MOSFETs. The novel adaptive gate capacitor circuit properly controls the RF swing for each stacked FET to achieve high efficiency in the several-dB back-off region. Further, the novel two-step adaptive bias circuit effectively controls the gate voltage for each stacked FET for high linearity and high back-off efficiency. At a supply voltage of 4 V, the fabricated PA has exhibited a saturated output power of 20.0 dBm, a peak power added efficiency (PAE) of 42.7%, a 3dB back-off efficiency of 32.7%, a 6dB back-off efficiency of 22.7%, and a gain of 15.6 dB. The effective PA area was 0.82 mm by 0.74 mm.

  • Crosstalk Analysis and Countermeasures of High-Bandwidth 3D-Stacked Memory Using Multi-Hop Inductive Coupling Interface Open Access

    Kota SHIBA  Atsutake KOSUGE  Mototsugu HAMADA  Tadahiro KURODA  

     
    BRIEF PAPER

      Pubricized:
    2022/09/30
      Vol:
    E106-C No:7
      Page(s):
    391-394

    This paper describes an in-depth analysis of crosstalk in a high-bandwidth 3D-stacked memory using a multi-hop inductive coupling interface and proposes two countermeasures. This work analyzes the crosstalk among seven stacked chips using a 3D electromagnetic (EM) simulator. The detailed analysis reveals two main crosstalk sources: concentric coils and adjacent coils. To suppress these crosstalks, this paper proposes two corresponding countermeasures: shorted coils and 8-shaped coils. The combination of these coils improves area efficiency by a factor of 4 in simulation. The proposed methods enable an area-efficient inductive coupling interface for high-bandwidth stacked memory.

  • Design of a Hippocampal Cognitive Prosthesis Chip

    Ming NI  Yan HAN  Ray C. C. CHEUNG  Xuemeng ZHOU  

     
    PAPER-Electronic Circuits

      Pubricized:
    2022/12/09
      Vol:
    E106-C No:7
      Page(s):
    417-426

    This paper presents a hippocampal cognitive prosthesis chip designed for restoring the ability to form new long-term memories due to hippocampal system damage. The system-on-chip (SOC) consists of a 16-channel micro-power low-noise amplifier (LNA), high-pass filters, analog-digital converters (ADCs), a 16-channel spike-sorter, a generalized Laguerre-Volterra model multi-input, multi-output (GLVM-MIMO) hippocampal processor, an 8-channel neural stimulator and peripheral circuits. The proposed LNA achieved a voltage gain of 50dB, input-referred noise of 3.95µVrms, and noise efficiency factor (NEF) of 3.45 with the power consumption of 3.3µW. High-pass filters with a 300-Hz bandwidth are used to filter out the unwanted local field potential (LFP). 4 12-bit successive approximation register (SAR) ADCs with a signal-to-noise-and-distortion ratio (SNDR) of 63.37dB are designed for the digitization of the neural signals. A 16-channel spike-sorter has been integrated in the chip enabling a detection accuracy of 98.3% and a classification accuracy of 93.4% with power consumption of 19µW/ch. The MIMO hippocampal model processor predict output spatio-temporal patterns in CA1 according to the recorded input spatio-temporal patterns in CA3. The neural stimulator performs bipolar, symmetrical charge-balanced stimulation with a maximum current of 310µA, triggered by the processor output. The chip has been fabricated in 40nm standard CMOS technology, occupying a silicon area of 3mm2.

  • Contrast Source Inversion for Objects Buried into Multi-Layered Media for Subsurface Imaging Applications

    Yoshihiro YAMAUCHI  Shouhei KIDERA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2023/01/20
      Vol:
    E106-C No:7
      Page(s):
    427-431

    This study proposes a low-complexity permittivity estimation for ground penetrating radar applications based on a contrast source inversion (CSI) approach, assuming multilayered ground media. The homogeneity assumption for each background layer is used to address the ill-posed condition while maintaining accuracy for permittivity reconstruction, significantly reducing the number of unknowns. Using an appropriate initial guess for each layer, the post-CSI approach also provides the dielectric profile of a buried object. The finite difference time domain numerical tests show that the proposed approach significantly enhances reconstruction accuracy for buried objects compared with the traditional CSI approach.

  • GAN-SR Anomaly Detection Model Based on Imbalanced Data

    Shuang WANG  Hui CHEN  Lei DING  He SUI  Jianli DING  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2023/04/13
      Vol:
    E106-D No:7
      Page(s):
    1209-1218

    The issue of a low minority class identification rate caused by data imbalance in anomaly detection tasks is addressed by the proposal of a GAN-SR-based intrusion detection model for industrial control systems. First, to correct the imbalance of minority classes in the dataset, a generative adversarial network (GAN) processes the dataset to reconstruct new minority class training samples accordingly. Second, high-dimensional feature extraction is completed using stacked asymmetric depth self-encoder to address the issues of low reconstruction error and lengthy training times. After that, a random forest (RF) decision tree is built, and intrusion detection is carried out using the features that SNDAE retrieved. According to experimental validation on the UNSW-NB15, SWaT and Gas Pipeline datasets, the GAN-SR model outperforms SNDAE-SVM and SNDAE-KNN in terms of detection performance and stability.

  • Unsupervised Outlier Detection based on Random Projection Outlyingness with Local Score Weighting

    Akira TAMAMORI  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/03/29
      Vol:
    E106-D No:7
      Page(s):
    1244-1248

    This paper proposes an enhanced model of Random Projection Outlyingness (RPO) for unsupervised outlier detection. When datasets have multiple modalities, the RPOs have frequent detection errors. The proposed model deals with this problem via unsupervised clustering and a local score weighting. The experimental results demonstrate that the proposed model outperforms RPO and is comparable with other existing unsupervised models on benchmark datasets, in terms of in terms of Area Under the Curves (AUCs) of Receiver Operating Characteristic (ROC).

  • A Fusion Deraining Network Based on Swin Transformer and Convolutional Neural Network

    Junhao TANG  Guorui FENG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/04/24
      Vol:
    E106-D No:7
      Page(s):
    1254-1257

    Single image deraining is an ill-posed problem which also has been a long-standing issue. In past few years, convolutional neural network (CNN) methods almost dominated the computer vision and achieved considerable success in image deraining. Recently the Swin Transformer-based model also showed impressive performance, even surpassed the CNN-based methods and became the state-of-the-art on high-level vision tasks. Therefore, we attempt to introduce Swin Transformer to deraining tasks. In this paper, we propose a deraining model with two sub-networks. The first sub-network includes two branches. Rain Recognition Network is a Unet with the Swin Transformer layer, which works as preliminarily restoring the background especially for the location where rain streaks appear. Detail Complement Network can extract the background detail beneath the rain streak. The second sub-network which called Refine-Unet utilizes the output of the previous one to further restore the image. Through experiments, our network achieves improvements on single image deraining compared with the previous Transformer research.

  • Ensemble Learning in CNN Augmented with Fully Connected Subnetworks

    Daiki HIRATA  Norikazu TAKAHASHI  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2023/04/05
      Vol:
    E106-D No:7
      Page(s):
    1258-1261

    Convolutional Neural Networks (CNNs) have shown remarkable performance in image recognition tasks. In this letter, we propose a new CNN model called the EnsNet which is composed of one base CNN and multiple Fully Connected SubNetworks (FCSNs). In this model, the set of feature maps generated by the last convolutional layer in the base CNN is divided along channels into disjoint subsets, and these subsets are assigned to the FCSNs. Each of the FCSNs is trained independent of others so that it can predict the class label of each feature map in the subset assigned to it. The output of the overall model is determined by majority vote of the base CNN and the FCSNs. Experimental results using the MNIST, Fashion-MNIST and CIFAR-10 datasets show that the proposed approach further improves the performance of CNNs. In particular, an EnsNet achieves a state-of-the-art error rate of 0.16% on MNIST.

441-460hit(21534hit)