The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

381-400hit(21534hit)

  • Uniform/Selective Heating Microwave Oven Using High Efficiency GaN-on-GaN HEMT Power Amplifier

    Masaru SATO  Yusuke KUMAZAKI  Naoya OKAMOTO  Toshihiro OHKI  Naoko KURAHASHI  Masato NISHIMORI  Atsushi YAMADA  Junji KOTANI  Naoki HARA  Keiji WATANABE  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/04/13
      Vol:
    E106-C No:10
      Page(s):
    605-613

    A high-efficiency uniform/selective heating microwave oven was developed. Because the power amplifier requires high-efficiency characteristics to function as a microwave source, a free-standing Gallium Nitride (GaN) substrate was applied in this study. By applying a harmonic tuning circuit, an output power of 71 W and PAE of 73% were achieved in pulsed operation, and an output power of 63 W and PAE of 69% were achieved in CW operation. Moreover, we fabricated a prototype PA module that consists of an oscillator, a driver amplifier, PA, and other RF circuits. The output power was controlled by pulse width modulation to maintain high efficiency regardless of output power. We evaluated the arrangement of antenna polarizations to isolate each antenna. By suppressing the interference of output from adjacent antennas, it is possible to irradiate the object on the top surface of the antenna, thereby demonstrating heating characteristics with small temperature unevenness. The prototype microwave oven successfully demonstrated uniform/selective heating.

  • A New SIDGS-Based Tunable BPF Design Method with Controllable Bandwidth

    Weiyu ZHOU  Koji WADA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/03/28
      Vol:
    E106-C No:10
      Page(s):
    614-622

    This paper provides a new method to implement substrate integrated defected ground structure (SIDGS)-based bandpass filter (BPF) with adjustable frequency and controllable bandwidth. Compared with previous literature, this method implements a new SIDGS-like resonator capable of tunable frequency in the same plane as the slotted line using a varactor diode, increasing the design flexibility. In addition, the method solves the problem that the tunable BPF constituted by the SIDGS resonator cannot control the bandwidth by introducing a T-shaped non-resonant unit. The theoretical design method and the structural design are shown. Moreover, the configured structure is fabricated and measured to show the validity of the design method in this paper.

  • Social Relation Atmosphere Recognition with Relevant Visual Concepts

    Ying JI  Yu WANG  Kensaku MORI  Jien KATO  

     
    PAPER

      Pubricized:
    2023/06/02
      Vol:
    E106-D No:10
      Page(s):
    1638-1649

    Social relationships (e.g., couples, opponents) are the foundational part of society. Social relation atmosphere describes the overall interaction environment between social relationships. Discovering social relation atmosphere can help machines better comprehend human behaviors and improve the performance of social intelligent applications. Most existing research mainly focuses on investigating social relationships, while ignoring the social relation atmosphere. Due to the complexity of the expressions in video data and the uncertainty of the social relation atmosphere, it is even difficult to define and evaluate. In this paper, we innovatively analyze the social relation atmosphere in video data. We introduce a Relevant Visual Concept (RVC) from the social relationship recognition task to facilitate social relation atmosphere recognition, because social relationships contain useful information about human interactions and surrounding environments, which are crucial clues for social relation atmosphere recognition. Our approach consists of two main steps: (1) we first generate a group of visual concepts that preserve the inherent social relationship information by utilizing a 3D explanation module; (2) the extracted relevant visual concepts are used to supplement the social relation atmosphere recognition. In addition, we present a new dataset based on the existing Video Social Relation Dataset. Each video is annotated with four kinds of social relation atmosphere attributes and one social relationship. We evaluate the proposed method on our dataset. Experiments with various 3D ConvNets and fusion methods demonstrate that the proposed method can effectively improve recognition accuracy compared to end-to-end ConvNets. The visualization results also indicate that essential information in social relationships can be discovered and used to enhance social relation atmosphere recognition.

  • Filter Bank for Perfect Reconstruction of Light Field from Its Focal Stack

    Akira KUBOTA  Kazuya KODAMA  Daiki TAMURA  Asami ITO  

     
    PAPER

      Pubricized:
    2023/07/19
      Vol:
    E106-D No:10
      Page(s):
    1650-1660

    Focal stacks (FS) have attracted attention as an alternative representation of light field (LF). However, the problem of reconstructing LF from its FS is considered ill-posed. Although many regularization methods have been discussed, no method has been proposed to solve this problem perfectly. This paper showed that the LF can be perfectly reconstructed from the FS through a filter bank in theory for Lambertian scenes without occlusion if the camera aperture for acquiring the FS is a Cauchy function. The numerical simulation demonstrated that the filter bank allows perfect reconstruction of the LF.

  • Visual Inspection Method for Subway Tunnel Cracks Based on Multi-Kernel Convolution Cascade Enhancement Learning

    Baoxian WANG  Zhihao DONG  Yuzhao WANG  Shoupeng QIN  Zhao TAN  Weigang ZHAO  Wei-Xin REN  Junfang WANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/06/27
      Vol:
    E106-D No:10
      Page(s):
    1715-1722

    As a typical surface defect of tunnel lining structures, cracking disease affects the durability of tunnel structures and poses hidden dangers to tunnel driving safety. Factors such as interference from the complex service environment of the tunnel and the low signal-to-noise ratio of the crack targets themselves, have led to existing crack recognition methods based on semantic segmentation being unable to meet actual engineering needs. Based on this, this paper uses the Unet network as the basic framework for crack identification and proposes to construct a multi-kernel convolution cascade enhancement (MKCE) model to achieve accurate detection and identification of crack diseases. First of all, to ensure the performance of crack feature extraction, the model modified the main feature extraction network in the basic framework to ResNet-50 residual network. Compared with the VGG-16 network, this modification can extract richer crack detail features while reducing model parameters. Secondly, considering that the Unet network cannot effectively perceive multi-scale crack features in the skip connection stage, a multi-kernel convolution cascade enhancement module is proposed by combining a cascaded connection of multi-kernel convolution groups and multi-expansion rate dilated convolution groups. This module achieves a comprehensive perception of local details and the global content of tunnel lining cracks. In addition, to better weaken the effect of tunnel background clutter interference, a convolutional block attention calculation module is further introduced after the multi-kernel convolution cascade enhancement module, which effectively reduces the false alarm rate of crack recognition. The algorithm is tested on a large number of subway tunnel crack image datasets. The experimental results show that, compared with other crack recognition algorithms based on deep learning, the method in this paper has achieved the best results in terms of accuracy and intersection over union (IoU) indicators, which verifies the method in this paper has better applicability.

  • Multi-Scale Estimation for Omni-Directional Saliency Maps Using Learnable Equator Bias

    Takao YAMANAKA  Tatsuya SUZUKI  Taiki NOBUTSUNE  Chenjunlin WU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/07/19
      Vol:
    E106-D No:10
      Page(s):
    1723-1731

    Omni-directional images have been used in wide range of applications including virtual/augmented realities, self-driving cars, robotics simulators, and surveillance systems. For these applications, it would be useful to estimate saliency maps representing probability distributions of gazing points with a head-mounted display, to detect important regions in the omni-directional images. This paper proposes a novel saliency-map estimation model for the omni-directional images by extracting overlapping 2-dimensional (2D) plane images from omni-directional images at various directions and angles of view. While 2D saliency maps tend to have high probability at the center of images (center bias), the high-probability region appears at horizontal directions in omni-directional saliency maps when a head-mounted display is used (equator bias). Therefore, the 2D saliency model with a center-bias layer was fine-tuned with an omni-directional dataset by replacing the center-bias layer to an equator-bias layer conditioned on the elevation angle for the extraction of the 2D plane image. The limited availability of omni-directional images in saliency datasets can be compensated by using the well-established 2D saliency model pretrained by a large number of training images with the ground truth of 2D saliency maps. In addition, this paper proposes a multi-scale estimation method by extracting 2D images in multiple angles of view to detect objects of various sizes with variable receptive fields. The saliency maps estimated from the multiple angles of view were integrated by using pixel-wise attention weights calculated in an integration layer for weighting the optimal scale to each object. The proposed method was evaluated using a publicly available dataset with evaluation metrics for omni-directional saliency maps. It was confirmed that the accuracy of the saliency maps was improved by the proposed method.

  • Fault-Resilient Robot Operating System Supporting Rapid Fault Recovery with Node Replication

    Jonghyeok YOU  Heesoo KIM  Kilho LEE  

     
    LETTER-Software System

      Pubricized:
    2023/07/07
      Vol:
    E106-D No:10
      Page(s):
    1742-1746

    This paper proposes a fault-resilient ROS platform supporting rapid fault detection and recovery. The platform employs heartbeat-based fault detection and node replication-based recovery. Our prototype implementation on top of the ROS Melodic shows a great performance in evaluations with a Nvidia development board and an inverted pendulum device.

  • Practical Improvement and Performance Evaluation of Road Damage Detection Model using Machine Learning

    Tomoya FUJII  Rie JINKI  Yuukou HORITA  

     
    LETTER-Image

      Pubricized:
    2023/06/13
      Vol:
    E106-A No:9
      Page(s):
    1216-1219

    The social infrastructure, including roads and bridges built during period of rapid economic growth in Japan, is now aging, and there is a need to strategically maintain and renew the social infrastructure that is aging. On the other hand, road maintenance in rural areas is facing serious problems such as reduced budgets for maintenance and a shortage of engineers due to the declining birthrate and aging population. Therefore, it is difficult to visually inspect all roads in rural areas by maintenance engineers, and a system to automatically detect road damage is required. This paper reports practical improvements to the road damage model using YOLOv5, an object detection model capable of real-time operation, focusing on road image features.

  • Mitigate: Toward Comprehensive Research and Development for Analyzing and Combating IoT Malware

    Koji NAKAO  Katsunari YOSHIOKA  Takayuki SASAKI  Rui TANABE  Xuping HUANG  Takeshi TAKAHASHI  Akira FUJITA  Jun'ichi TAKEUCHI  Noboru MURATA  Junji SHIKATA  Kazuki IWAMOTO  Kazuki TAKADA  Yuki ISHIDA  Masaru TAKEUCHI  Naoto YANAI  

     
    INVITED PAPER

      Pubricized:
    2023/06/08
      Vol:
    E106-D No:9
      Page(s):
    1302-1315

    In this paper, we developed the latest IoT honeypots to capture IoT malware currently on the loose, analyzed IoT malware with new features such as persistent infection, developed malware removal methods to be provided to IoT device users. Furthermore, as attack behaviors using IoT devices become more diverse and sophisticated every year, we conducted research related to various factors involved in understanding the overall picture of attack behaviors from the perspective of incident responders. As the final stage of countermeasures, we also conducted research and development of IoT malware disabling technology to stop only IoT malware activities in IoT devices and IoT system disabling technology to remotely control (including stopping) IoT devices themselves.

  • Convex Grid Drawings of Internally Triconnected Plane Graphs with Pentagonal Contours

    Kazuyuki MIURA  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2023/03/06
      Vol:
    E106-A No:9
      Page(s):
    1092-1099

    In a convex grid drawing of a plane graph, all edges are drawn as straight-line segments without any edge-intersection, all vertices are put on grid points and all facial cycles are drawn as convex polygons. A plane graph G has a convex drawing if and only if G is internally triconnected, and an internally triconnected plane graph G has a convex grid drawing on an (n-1) × (n-1) grid if either G is triconnected or the triconnected component decomposition tree T(G) of G has two or three leaves, where n is the number of vertices in G. An internally triconnected plane graph G has a convex grid drawing on a 2n × 2n grid if T(G) has exactly four leaves. Furthermore, an internally triconnected plane graph G has a convex grid drawing on a 20n × 16n grid if T(G) has exactly five leaves. In this paper, we show that an internally triconnected plane graph G has a convex grid drawing on a 10n × 5n grid if T(G) has exactly five leaves. We also present a linear-time algorithm to find such a drawing.

  • Efficient Supersingularity Testing of Elliptic Curves Using Legendre Curves

    Yuji HASHIMOTO  Koji NUIDA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/03/07
      Vol:
    E106-A No:9
      Page(s):
    1119-1130

    There are two types of elliptic curves, ordinary elliptic curves and supersingular elliptic curves. In 2012, Sutherland proposed an efficient and almost deterministic algorithm for determining whether a given curve is ordinary or supersingular. Sutherland's algorithm is based on sequences of isogenies started from the input curve, and computation of each isogeny requires square root computations, which is the dominant cost of the algorithm. In this paper, we reduce this dominant cost of Sutherland's algorithm to approximately a half of the original. In contrast to Sutherland's algorithm using j-invariants and modular polynomials, our proposed algorithm is based on Legendre form of elliptic curves, which simplifies the expression of each isogeny. Moreover, by carefully selecting the type of isogenies to be computed, we succeeded in gathering square root computations at two consecutive steps of Sutherland's algorithm into just a single fourth root computation (with experimentally almost the same cost as a single square root computation). The results of our experiments using Magma are supporting our argument; for cases of characteristic p of 768-bit to 1024-bit lengths, our proposed algorithm for characteristic p≡1 (mod 4) runs in about 61.5% of the time and for characteristic p≡3 (mod 4) also runs in about 54.9% of the time compared to Sutherland's algorithm.

  • Post-Quantum Anonymous One-Sided Authenticated Key Exchange without Random Oracles

    Ren ISHIBASHI  Kazuki YONEYAMA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/03/13
      Vol:
    E106-A No:9
      Page(s):
    1141-1163

    Authenticated Key Exchange (AKE) is a cryptographic protocol to share a common session key among multiple parties. Usually, PKI-based AKE schemes are designed to guarantee secrecy of the session key and mutual authentication. However, in practice, there are many cases where mutual authentication is undesirable such as in anonymous networks like Tor and Riffle, or difficult to achieve due to the certificate management at the user level such as the Internet. Goldberg et al. formulated a model of anonymous one-sided AKE which guarantees the anonymity of the client by allowing only the client to authenticate the server, and proposed a concrete scheme. However, existing anonymous one-sided AKE schemes are only known to be secure in the random oracle model. In this paper, we propose generic constructions of anonymous one-sided AKE in the random oracle model and in the standard model, respectively. Our constructions allow us to construct the first post-quantum anonymous one-sided AKE scheme from isogenies in the standard model.

  • Forward Secure Message Franking with Updatable Reporting Tags

    Hiroki YAMAMURO  Keisuke HARA  Masayuki TEZUKA  Yusuke YOSHIDA  Keisuke TANAKA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/03/07
      Vol:
    E106-A No:9
      Page(s):
    1164-1176

    Message franking is introduced by Facebook in end-to-end encrypted messaging services. It allows to produce verifiable reports of malicious messages by including cryptographic proofs, called reporting tags, generated by Facebook. Recently, Grubbs et al. (CRYPTO'17) proceeded with the formal study of message franking and introduced committing authenticated encryption with associated data (CAEAD) as a core primitive for obtaining message franking. In this work, we aim to enhance the security of message franking and introduce forward security and updates of reporting tags for message franking. Forward security guarantees the security associated with the past keys even if the current keys are exposed and updates of reporting tags allow for reporting malicious messages after keys are updated. To this end, we firstly propose the notion of key-evolving message franking with updatable reporting tags including additional key and reporting tag update algorithms. Then, we formalize five security requirements: confidentiality, ciphertext integrity, unforgeability, receiver binding, and sender binding. Finally, we show a construction of forward secure message franking with updatable reporting tags based on CAEAD, forward secure pseudorandom generator, and updatable message authentication code.

  • Fault-Tolerant Aggregate Signature Schemes against Bandwidth Consumption Attack

    Kyosuke YAMASHITA  Ryu ISHII  Yusuke SAKAI  Tadanori TERUYA  Takahiro MATSUDA  Goichiro HANAOKA  Kanta MATSUURA  Tsutomu MATSUMOTO  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/04/03
      Vol:
    E106-A No:9
      Page(s):
    1177-1188

    A fault-tolerant aggregate signature (FT-AS) scheme is a variant of an aggregate signature scheme with the additional functionality to trace signers that create invalid signatures in case an aggregate signature is invalid. Several FT-AS schemes have been proposed so far, and some of them trace such rogue signers in multi-rounds, i.e., the setting where the signers repeatedly send their individual signatures. However, it has been overlooked that there exists a potential attack on the efficiency of bandwidth consumption in a multi-round FT-AS scheme. Since one of the merits of aggregate signature schemes is the efficiency of bandwidth consumption, such an attack might be critical for multi-round FT-AS schemes. In this paper, we propose a new multi-round FT-AS scheme that is tolerant of such an attack. We implement our scheme and experimentally show that it is more efficient than the existing multi-round FT-AS scheme if rogue signers randomly create invalid signatures with low probability, which for example captures spontaneous failures of devices in IoT systems.

  • GAN-based Image Translation Model with Self-Attention for Nighttime Dashcam Data Augmentation

    Rebeka SULTANA  Gosuke OHASHI  

     
    PAPER-Intelligent Transport System

      Pubricized:
    2023/06/27
      Vol:
    E106-A No:9
      Page(s):
    1202-1210

    High-performance deep learning-based object detection models can reduce traffic accidents using dashcam images during nighttime driving. Deep learning requires a large-scale dataset to obtain a high-performance model. However, existing object detection datasets are mostly daytime scenes and a few nighttime scenes. Increasing the nighttime dataset is laborious and time-consuming. In such a case, it is possible to convert daytime images to nighttime images by image-to-image translation model to augment the nighttime dataset with less effort so that the translated dataset can utilize the annotations of the daytime dataset. Therefore, in this study, a GAN-based image-to-image translation model is proposed by incorporating self-attention with cycle consistency and content/style separation for nighttime data augmentation that shows high fidelity to annotations of the daytime dataset. Experimental results highlight the effectiveness of the proposed model compared with other models in terms of translated images and FID scores. Moreover, the high fidelity of translated images to the annotations is verified by a small object detection model according to detection results and mAP. Ablation studies confirm the effectiveness of self-attention in the proposed model. As a contribution to GAN-based data augmentation, the source code of the proposed image translation model is publicly available at https://github.com/subecky/Image-Translation-With-Self-Attention

  • Low-Complexity and Accurate Noise Suppression Based on an a Priori SNR Model for Robust Speech Recognition on Embedded Systems and Its Evaluation in a Car Environment

    Masanori TSUJIKAWA  Yoshinobu KAJIKAWA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2023/02/28
      Vol:
    E106-A No:9
      Page(s):
    1224-1233

    In this paper, we propose a low-complexity and accurate noise suppression based on an a priori SNR (Speech to Noise Ratio) model for greater robustness w.r.t. short-term noise-fluctuation. The a priori SNR, the ratio of speech spectra and noise spectra in the spectral domain, represents the difference between speech features and noise features in the feature domain, including the mel-cepstral domain and the logarithmic power spectral domain. This is because logarithmic operations are used for domain conversions. Therefore, an a priori SNR model can easily be expressed in terms of the difference between the speech model and the noise model, which are modeled by the Gaussian mixture models, and it can be generated with low computational cost. By using a priori SNRs accurately estimated on the basis of an a priori SNR model, it is possible to calculate accurate coefficients of noise suppression filters taking into account the variance of noise, without serious increase in computational cost over that of a conventional model-based Wiener filter (MBW). We have conducted in-car speech recognition evaluation using the CENSREC-2 database, and a comparison of the proposed method with a conventional MBW showed that the recognition error rate for all noise environments was reduced by 9%, and that, notably, that for audio-noise environments was reduced by 11%. We show that the proposed method can be processed with low levels of computational and memory resources through implementation on a digital signal processor.

  • Design and Analysis of Piecewise Nonlinear Oscillators with Circular-Type Limit Cycles

    Tatsuya KAI  Koshi MAEHARA  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2023/03/20
      Vol:
    E106-A No:9
      Page(s):
    1234-1240

    This paper develops a design method and theoretical analysis for piecewise nonlinear oscillators that have desired circular limit cycles. Especially, the mathematical proof on existence, uniqueness, and stability of the limit cycle is shown for the piecewise nonlinear oscillator. In addition, the relationship between parameters in the oscillator and rotational directions and periods of the limit cycle trajectories is investigated. Then, some numerical simulations show that the piecewise nonlinear oscillator has a unique and stable limit cycle and the properties on rotational directions and periods hold.

  • Theory and Application of Topology-Based Exact Synthesis for Majority-Inverter Graphs

    Xianliang GE  Shinji KIMURA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/03/03
      Vol:
    E106-A No:9
      Page(s):
    1241-1250

    Majority operation has been paid attention as a basic element of beyond-Moore devices on which logic functions are constructed from Majority elements and inverters. Several optimization methods are developed to reduce the number of elements on Majority-Inverter Graphs (MIGs) but more area and power reduction are required. The paper proposes a new exact synthesis method for MIG based on a new topological constraint using node levels. Possible graph structures are clustered by the levels of input nodes, and all possible structures can be enumerated efficiently in the exact synthesis compared with previous methods. Experimental results show that our method decreases the runtime up to 25.33% compared with the fence-based method, and up to 6.95% with the partial-DAG-based method. Furthermore, our implementation can achieve better performance in size optimization for benchmark suites.

  • iLEDGER: A Lightweight Blockchain Framework with New Consensus Method for IoT Applications

    Veeramani KARTHIKA  Suresh JAGANATHAN  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/03/06
      Vol:
    E106-A No:9
      Page(s):
    1251-1262

    Considering the growth of the IoT network, there is a demand for a decentralized solution. Incorporating the blockchain technology will eliminate the challenges faced in centralized solutions, such as i) high infrastructure, ii) maintenance cost, iii) lack of transparency, iv) privacy, and v) data tampering. Blockchain-based IoT network allows businesses to access and share the IoT data within their organization without a central authority. Data in the blockchain are stored as blocks, which should be validated and added to the chain, for this consensus mechanism plays a significant role. However, existing methods are not designed for IoT applications and lack features like i) decentralization, ii) scalability, iii) throughput, iv) faster convergence, and v) network overhead. Moreover, current blockchain frameworks failed to support resource-constrained IoT applications. In this paper, we proposed a new consensus method (WoG) and a lightweight blockchain framework (iLEDGER), mainly for resource-constrained IoT applications in a permissioned environment. The proposed work is tested in an application that tracks the assets using IoT devices (Raspberry Pi 4 and RFID). Furthermore, the proposed consensus method is analyzed against benign failures, and performance parameters such as CPU usage, memory usage, throughput, transaction execution time, and block generation time are compared with state-of-the-art methods.

  • Acceleration of Tensor Interpolation-Based Radio Map Estimation

    Makoto OSAWA  Norisato SUGA  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2023/03/14
      Vol:
    E106-A No:9
      Page(s):
    1263-1267

    The radio map of wireless communications should be surveyed in advance when installing base stations to efficiently utilize radio waves. Generally, this is calculated using radio wave propagation simulation. Because the simulation is time-consuming, a tensor-rank minimization-based interpolation method has been proposed as fast method. However, this method interpolates the radio map using an iterative algorithm. The number of iterations required for further acceleration should be reduced; therefore, we propose a tensor interpolation using rank minimization that considers the characteristics of radio wave propagation. Furthermore, we proved that the proposed method could interpolate with fewer iterations than the existing method.

381-400hit(21534hit)