The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

3401-3420hit(21534hit)

  • Traffic Anomaly Detection Based on Robust Principal Component Analysis Using Periodic Traffic Behavior

    Takahiro MATSUDA  Tatsuya MORITA  Takanori KUDO  Tetsuya TAKINE  

     
    PAPER-Network

      Pubricized:
    2016/11/21
      Vol:
    E100-B No:5
      Page(s):
    749-761

    In this paper, we study robust Principal Component Analysis (PCA)-based anomaly detection techniques in network traffic, which can detect traffic anomalies by projecting measured traffic data onto a normal subspace and an anomalous subspace. In a PCA-based anomaly detection, outliers, anomalies with excessively large traffic volume, may contaminate the subspaces and degrade the performance of the detector. To solve this problem, robust PCA methods have been studied. In a robust PCA-based anomaly detection scheme, outliers can be removed from the measured traffic data before constructing the subspaces. Although the robust PCA methods are promising, they incure high computational cost to obtain the optimal location vector and scatter matrix for the subspace. We propose a novel anomaly detection scheme by extending the minimum covariance determinant (MCD) estimator, a robust PCA method. The proposed scheme utilizes the daily periodicity in traffic volume and attempts to detect anomalies for every period of measured traffic. In each period, before constructing the subspace, outliers are removed from the measured traffic data by using a location vector and a scatter matrix obtained in the preceding period. We validate the proposed scheme by applying it to measured traffic data in the Abiline network. Numerical results show that the proposed scheme provides robust anomaly detection with less computational cost.

  • Dual-DCT-Lifting-Based Lapped Transform with Improved Reversible Symmetric Extension

    Taizo SUZUKI  Masaaki IKEHARA  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:5
      Page(s):
    1109-1118

    We present a lifting-based lapped transform (L-LT) and a reversible symmetric extension (RSE) in the boundary processing for more effective lossy-to-lossless image coding of data with various qualities from only one piece of lossless compressed data. The proposed dual-DCT-lifting-based LT (D2L-LT) parallel processes two identical LTs and consists of 1-D and 2-D DCT-liftings which allow the direct use of a DCT matrix in each lifting coefficient. Since the DCT-lifting can utilize any existing DCT software or hardware, it has great potential for elegant implementations that are dependent on the architecture and DCT algorithm used. In addition, we present an improved RSE (IRSE) that works by recalculating the boundary processing and solves the boundary problem that the DCT-lifting-based L-LT (DL-LT) has. We show that D2L-LT with IRSE mostly outperforms conventional L-LTs in lossy-to-lossless image coding.

  • Fast Montgomery Modular Multiplication and Squaring on Embedded Processors

    Yang LI  Jinlin WANG  Xuewen ZENG  Xiaozhou YE  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2016/12/06
      Vol:
    E100-B No:5
      Page(s):
    680-690

    Montgomery modular multiplication is one of the most efficient algorithms for modular multiplication of large integers. On resource-constraint embedded processors, memory-access operations play an important role as arithmetic operations in the modular multiplication. To improve the efficiency of Montgomery modular multiplication on embedded processors, this paper concentrates on reducing the memory-access operations through adding a few working registers. We first revisit previous popular Montgomery modular multiplication algorithms, and then present improved algorithms for Montgomery modular multiplication and squaring for arbitrary prime fields. The algorithms adopt the general ideas of hybrid multiplication algorithm proposed by Gura and lazy doubling algorithm proposed by Lee. By careful optimization and redesign, we propose novel implementations for Montgomery multiplication and squaring called coarsely integrated product and operand hybrid scanning algorithm (CIPOHS) and coarsely integrated lazy doubling algorithm (CILD). Then, we implement the algorithms on general MIPS64 processor and OCTEON CN6645 processor equipped with specific multiply-add instructions. Experiments show that CIPOHS and CILD offer the best performance both on the general MIPS64 and OCTEON CN6645 processors. But the proposed algorithms have obvious advantages for the processors with specific multiply-add instructions such as OCTEON CN6645. When the modulus is 2048 bits, the CIPOHS and CILD outperform the CIOS algorithm by a factor of 47% and 58%, respectively.

  • Detecting Transportation Modes Using Deep Neural Network

    Hao WANG  GaoJun LIU  Jianyong DUAN  Lei ZHANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/02/15
      Vol:
    E100-D No:5
      Page(s):
    1132-1135

    Existing studies on transportation mode detection from global positioning system (GPS) trajectories mainly adopt handcrafted features. These features require researchers with a professional background and do not always work well because of the complexity of traffic behavior. To address these issues, we propose a model using a sparse autoencoder to extract point-level deep features from point-level handcrafted features. A convolution neural network then aggregates the point-level deep features and generates a trajectory-level deep feature. A deep neural network incorporates the trajectory-level handcrafted features and the trajectory-level deep feature for detecting the users' transportation modes. Experiments conducted on Microsoft's GeoLife data show that our model can automatically extract the effective features and improve the accuracy of transportation mode detection. Compared with the model using only handcrafted features and shallow classifiers, the proposed model increases the maximum accuracy by 6%.

  • SDN-Based Self-Organizing Energy Efficient Downlink/Uplink Scheduling in Heterogeneous Cellular Networks Open Access

    Seungil MOON  Thant Zin OO  S. M. Ahsan KAZMI  Bang Ju PARK  Choong Seon HONG  

     
    INVITED PAPER

      Pubricized:
    2017/02/18
      Vol:
    E100-D No:5
      Page(s):
    939-947

    The increase in network access devices and demand for high quality of service (QoS) by the users have led to insufficient capacity for the network operators. Moreover, the existing control equipment and mechanisms are not flexible and agile enough for the dynamically changing environment of heterogeneous cellular networks (HetNets). This non-agile control plane is hard to scale with ever increasing traffic demand and has become the performance bottleneck. Furthermore, the new HetNet architecture requires tight coordination and cooperation for the densely deployed small cell base stations, particularly for interference mitigation and dynamic frequency reuse and sharing. These issues further complicate the existing control plane and can cause serious inefficiencies in terms of users' quality of experience and network performance. This article presents an SDN control framework for energy efficient downlink/uplink scheduling in HetNets. The framework decouples the control plane from data plane by means of a logically centralized controller with distributed agents implemented in separate entities of the network (users and base stations). The scheduling problem consists of three sub-problems: (i) user association, (ii) power control, (iii) resource allocation and (iv) interference mitigation. Moreover, these sub-problems are coupled and must be solved simultaneously. We formulate the DL/UL scheduling in HetNet as an optimization problem and use the Markov approximation framework to propose a distributed economical algorithm. Then, we divide the algorithm into three sub-routines for (i) user association, (ii) power control, (iii) resource allocation and (iv) interference mitigation. These sub-routines are then implemented on different agents of the SDN framework. We run extensive simulation to validate our proposal and finally, present the performance analysis.

  • Simulation Study of Low Latency Network Architecture Using Mobile Edge Computing

    Krittin INTHARAWIJITR  Katsuyoshi IIDA  Hiroyuki KOGA  

     
    PAPER

      Pubricized:
    2017/02/08
      Vol:
    E100-D No:5
      Page(s):
    963-972

    Attaining extremely low latency service in 5G cellular networks is an important challenge in the communication research field. A higher QoS in the next-generation network could enable several unprecedented services, such as Tactile Internet, Augmented Reality, and Virtual Reality. However, these services will all need support from powerful computational resources provided through cloud computing. Unfortunately, the geolocation of cloud data centers could be insufficient to satisfy the latency aimed for in 5G networks. The physical distance between servers and users will sometimes be too great to enable quick reaction within the service time boundary. The problem of long latency resulting from long communication distances can be solved by Mobile Edge Computing (MEC), though, which places many servers along the edges of networks. MEC can provide shorter communication latency, but total latency consists of both the transmission and the processing times. Always selecting the closest edge server will lead to a longer computing latency in many cases, especially when there is a mass of users around particular edge servers. Therefore, the research studies the effects of both latencies. The communication latency is represented by hop count, and the computation latency is modeled by processor sharing (PS). An optimization model and selection policies are also proposed. Quantitative evaluations using simulations show that selecting a server according to the lowest total latency leads to the best performance, and permitting an over-latency barrier would further improve results.

  • Design Differences in Pedestrian Navigation Systems Depending on the Availability of Carriable Navigation Information

    Tetsuya MANABE  Takaaki HASEGAWA  

     
    PAPER-Intelligent Transport System

      Vol:
    E100-A No:5
      Page(s):
    1197-1205

    In this paper, the differences in navigation information design, which is important for kiosk-type pedestrian navigation systems, were experimentally examined depending on presence or absence of carriable navigation information in order to acquire the knowledge to contribute design guidelines of kiosk-type pedestrian navigation systems. In particular, we used route complexity information calculated using a regression equation that contained multiple factors. In the absence of carriable navigation information, both the destination arrival rate and route deviation rate improved. Easy routes were designed as M (17 to 39 characters in Japanese), while complicated routes were denoted as L (40 or more characters in Japanese). On the contrary, in the presence of carriable navigation information, the user's memory load was found to be reduced by carrying the same navigation information as kiosk-type terminals. Thus, the reconsideration of kiosk-type pedestrian navigation systems design, e.g., the means of presenting navigation information, is required. For example, if the system attaches importance to a high destination arrival rate, L_Carrying without regard to route complexity is better. If the system attaching importance to the low route deviation rate, M_Carrying in the case of easy routes and L_Carrying in the case of complicated routes have been better. Consequently, this paper presents the differences in the designs of pedestrian navigation systems depending on whether carriable navigation information is absent or present.

  • Data-Adapted Volume Rendering for Scattered Point Data

    Junda ZHANG  Libing JIANG  Longxing KONG  Li WANG  Xiao'an TANG  

     
    LETTER-Computer Graphics

      Pubricized:
    2017/02/15
      Vol:
    E100-D No:5
      Page(s):
    1148-1151

    In this letter, we present a novel method for reconstructing continuous data field from scattered point data, which leads to a more characteristic visualization result by volume rendering. The gradient distribution of scattered point data is analyzed for local feature investigation via singular-value decomposition. A data-adaptive ellipsoidal shaped function is constructed as the penalty function to evaluate point weight coefficient in MLS approximation. The experimental results show that the proposed method can reduce the reconstruction error and get a visualization with better feature discrimination.

  • Transition Mappings between De Bruijn Sequences

    Ming LI  Yupeng JIANG  Dongdai LIN  Qiuyan WANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E100-A No:5
      Page(s):
    1254-1256

    We regard a De Bruijn sequence of order n as a bijection on $mathbb{F}_2^n$ and consider the transition mappings between them. It is shown that there are only two conjugate transformations that always transfer De Bruijn sequences to De Bruijn sequences.

  • TOA Based Recalibration Systems for Improving LOS/NLOS Identification

    Yu Min HWANG  Yuchan SONG  Kwang Yul KIM  Yong Sin KIM  Jae Seang LEE  Yoan SHIN  Jin Young KIM  

     
    LETTER-Communication Theory and Signals

      Vol:
    E100-A No:5
      Page(s):
    1267-1270

    In this paper, we propose a non-cooperative line-of-sight (LOS)/non-LOS channel identification algorithm with single node channel measurements based on time-of-arrival statistics. In order to improve the accuracy of channel identification, we adopt a recalibration interval in terms of measured distance to the proposed algorithm. Experimental results are presented in terms of identification probability and recalibration interval. The proposed algorithm involves a trade-off between the channel identification quality and the recalibration rate. However, depending on the recalibration interval, it is possible to greatly improve the sensitivity of the channel identification system.

  • Effect of Nitrogen-Doped LaB6 Interfacial Layer on Device Characteristics of Pentacene-Based OFET

    Yasutaka MAEDA  Shun-ichiro OHMI  Tetsuya GOTO  Tadahiro OHMI  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    463-467

    In this paper, the effect of a nitrogen-doped (N-doped) LaB6 interfacial layer (IL) on p-type pentacene-based OFET was investigated. The pentacene-based OFET with top-contact/back-gate geometry was fabricated. A 2-nm-thick N-doped LaB6 interfacial layer deposited on an 8-nm-thick SiO2 gate insulator. A 10-nm-thick pentacene film was deposited by thermal evaporation at 100°C followed by Au contact and Al back gate electrodes formation. The fabricated OFET showed normally- off characteristics and a steep subthreshold swing (SS) of 84 mV/dec. from ID-VG and ID-VD characteristics. Furthermore, the aging characteristics of 6 months after the fabrication were investigated and it was found that VTH and SS were stable when the N-doped LaB6 IL was introduced at the interface between SiO2 gate insulator and pentacene.

  • Skewed Multistaged Multibanked Register File for Area and Energy Efficiency

    Junji YAMADA  Ushio JIMBO  Ryota SHIOYA  Masahiro GOSHIMA  Shuichi SAKAI  

     
    PAPER-Computer System

      Pubricized:
    2017/01/11
      Vol:
    E100-D No:4
      Page(s):
    822-837

    The region that includes the register file is a hot spot in high-performance cores that limits the clock frequency. Although multibanking drastically reduces the area and energy consumption of the register files of superscalar processor cores, it suffers from low IPC due to bank conflicts. Our skewed multistaging drastically reduces not the bank conflict probability but the pipeline disturbance probability by the second stage. The evaluation results show that, compared with NORCS, which is the latest research on a register file for area and energy efficiency, a proposed register file with 18 banks achieves a 39.9% and 66.4% reduction in circuit area and in energy consumption, while maintaining a relative IPC of 97.5%.

  • Plate-Laminated Waveguide Monopulse Slot Array Antenna with Full-Corporate-Feed in the E-Band Open Access

    Xin XU  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/10/28
      Vol:
    E100-B No:4
      Page(s):
    575-585

    This paper presents the design and characterization of an E-band 16×16-slot monopulse array antenna with full-corporate-feed fabricated by the commercially available batch process of diffusion bonding of laminated copper plates. The antenna is multi-layered, and consists of vertically-interconnected radiating elements, a corporate-feed circuit and a comparator. It has four input ports for different excitations. Sum and difference beams in different cut-planes for monopulse operation can be generated. The antenna has a quasi-planar profile, and a total size of 13.31 λ0×13.31λ0×1.52λ0 (λ0 is the wavelength at the design frequency of 78.5GHz). The antenna demonstrates a wide operation bandwidth of 17.2 (70-87.2) GHz for VSWR < 2. At 78.5GHz: 1) for the sum beam, there is a 32.6-dBi realized gain (83% antenna efficiency) and a 33.3-dBi directivity (95% aperture efficiency); 2) for the difference beams in the E-, H-, 45°-, and 135°-planes, the null depths are -53.0, -58.0, -57.8, and -65.6dB, respectively. Across the full operation band where the sum main-beam and difference null are able to consistently point at the boresight, the antenna also demonstrates excellent performance in terms of high gain, high efficiency, high isolation, low cross-polarization, and distinguished monopulse capability.

  • Workload-Based Co-Design of Non-Volatile Cache Algorithm and Storage Class Memory Specifications for Storage Class Memory/NAND Flash Hybrid SSDs

    Tomoaki YAMADA  Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E100-C No:4
      Page(s):
    373-381

    In order to realize solid-state drives (SSDs) with high performance, low energy consumption and high reliability, storage class memory (SCM)/multi-level cell (MLC) NAND flash hybrid SSD has been proposed. Algorithm of the hybrid SSD should be designed according to SCM specifications and workload characteristics. In this paper, SCMs are used as non-volatile cache. Cache operation guidelines and optimal SCM specifications for the hybrid SSD are provided for various workload characteristics. Three kinds of non-volatile cache operation for the hybrid SSD are discussed: i) write cache, ii) read-write cache without space control (RW cache) and iii) read-write cache with space control (RW cache w/ SC). SSD workloads are categorized into eight according to read/write ratio, access frequency and access data size. From evaluation result, the write cache algorithm is suitable for write-intensive workloads and read-cold-sequential workloads, while the RW cache algorithm is suitable for read-cold-random workloads to achieve the highest performance of the hybrid SSD. In contrast, as for read-hot-random workloads, write cache is appropriate when the SCM capacity is less than 3% of the NAND flash capacity. On the other hand, RW cache should be used in case that SCM capacity is more than 5% of NAND flash capacity. The effect of Memory-type SCM (M-SCM) and Storage-type SCM (S-SCM) on the hybrid SSD performance is also analyzed. The M-SCM latency is below 1 us (high speed) but the capacity is only 2% of the NAND flash capacity (small capacity). On the other hand, the S-SCM capacity is assumed to be 5% of the NAND flash capacity (large capacity) but S-SCM speed is larger than 1 us (low speed). If the additional SCM cost is limited to 20% of MLC NAND flash cost, up to 7-times and 8-times performance improvement are achieved in write-hot-random workload and read-hot-random workloads, respectively. Moreover, if the additional SCM cost is the same as MLC NAND flash cost, M-SCM/MLC NAND flash hybrid SSD achieves 24-times performance improvement.

  • An Iteration Based Beamforming Method for Planar Phased Array in Millimeter-Wave Communication

    Junlin TANG  Guangrong YUE  Lei CHEN  Shaoqian LI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E100-C No:4
      Page(s):
    399-406

    Nowadays, with the extensive use of smart devices, the amount of mobile data is experiencing an exponential growth. As a result, accommodating the large amount of traffic is important for the future 5G mobile communication. Millimeter-wave band, which has a lot of spectrum resources to meet the demand brought by the growth of mobile data, is becoming an important part of 5G technology. In order to mitigate the high path loss brought by the high frequency band, beamforming is often used to enhance the gain of a link. In this paper, we propose an iteration-based beamforming method for planar phased array. When compared to a linear array, a planar phased array points a smaller area which ensures a better link performance. We deduce that different paths of millimeter-wave channel are approximately orthogonal when the antenna array is large, which forms the basis of our iterative approach. We also discuss the development of the important millimeter-wave device-phase shifter, and its effect on the performance of the proposed beamforming method. From the simulation, we prove that our method has a performance close to the singular vector decomposition (SVD) method and is superior to the method in IEEE802.15.3c. Moreover, the channel capacity of the proposed method is at most 0.41bps/Hz less than the SVD method. We also show that the convergence of the proposed method could be achieved within 4 iterations and a 3-bit phase shifter is enough for practical implementation.

  • A Linear-Correction Method for TDOA and FDOA-Based Moving Source Localization

    Bing DENG  Zhengbo SUN  Le YANG  Dexiu HU  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:4
      Page(s):
    1066-1069

    A linear-correction method is developed for source position and velocity estimation using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements. The proposed technique first obtains an initial source location estimate using the first-step processing of an existing algebraic algorithm. It then refines the initial localization result by estimating via weighted least-squares (WLS) optimization and subtracting out its estimation error. The new solution is shown to be able to achieve the Cramer-Rao lower bound (CRLB) accuracy and it has better accuracy over several benchmark methods at relatively high noise levels.

  • Survey of Cloud-Based Content Sharing Research: Taxonomy of System Models and Case Examples Open Access

    Shinji SUGAWARA  

     
    INVITED SURVEY PAPER-Network System

      Pubricized:
    2016/10/21
      Vol:
    E100-B No:4
      Page(s):
    484-499

    This paper illustrates various content sharing systems that take advantage of cloud's storage and computational resources as well as their supporting conventional technologies. First, basic technology concepts supporting cloud-based systems from a client-server to cloud computing as well as their relationships and functional linkages are shown. Second, the taxonomy of cloud-based system models from the aspect of multiple clouds' interoperability is explained. Interoperability can be categorized into provider-centric and client-centric scenarios. Each can be further divided into federated clouds, hybrid clouds, multi-clouds and aggregated service by broker. Third, practical cloud-based systems related to contents sharing are reported and their characteristics are discussed. Finally, future direction of cloud-based content sharing is suggested.

  • Correlation-Based Optimal Chirp Rate Allocation for Chirp Spread Spectrum Using Multiple Linear Chirps

    Kwang-Yul KIM  Seung-Woo LEE  Yu-Min HWANG  Jae-Seang LEE  Yong-Sin KIM  Jin-Young KIM  Yoan SHIN  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E100-A No:4
      Page(s):
    1088-1091

    A chirp spread spectrum (CSS) system uses a chirp signal which changes the instantaneous frequency according to time for spreading a transmission bandwidth. In the CSS system, the transmission performance can be simply improved by increasing the time-bandwidth product which is known as the processing gain. However, increasing the transmission bandwidth is limited because of the spectrum regulation. In this letter, we propose a correlation-based chirp rate allocation method to improve the transmission performance by analyzing the cross-correlation coefficient in the same time-bandwidth product. In order to analyze the transmission performance of the proposed method, we analytically derive the cross-correlation coefficient according to the time-bandwidth separation product and simulate the transmission performance. The simulation results show that the proposed method can analytically allocate the optimal chirp rate and improve the transmission performance.

  • Internet Data Center IP Identification and Connection Relationship Analysis Based on Traffic Connection Behavior Analysis

    Xuemeng ZHAI  Mingda WANG  Hangyu HU  Guangmin HU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2016/10/21
      Vol:
    E100-B No:4
      Page(s):
    510-517

    Identifying IDC (Internet Data Center) IP addresses and analyzing the connection relationship of IDC could reflect the IDC network resource allocation and network layout which is helpful for IDC resource allocation optimization. Recent research mainly focuses on minimizing electricity consumption and optimizing network resource allocation based on IDC traffic behavior analysis. However, the lack of network-wide IP information from network operators has led to problems like management difficulties and unbalanced resource allocation of IDC, which are still unsolved today. In this paper, we propose a method for the IP identification and connection relationship analysis of IDC based on the flow connection behavior analysis. In our method, the frequent IP are extracted and aggregated in backbone communication network based on the traffic characteristics of IDC. After that, the connection graph of frequent IP (CGFIP) are built by analyzing the behavior of the users who visit the IDC servers, and IDC IP blocks are thus identified using CGFIP. Furthermore, the connection behavior characteristics of IDC are analyzed based on the connection graphs of IDC (CGIDC). Our findings show that the method can accurately identify the IDC IP addresses and is also capable of reflecting the relationships among IDCs effectively.

  • Modular Serial Pipelined Sorting Architecture for Continuous Variable-Length Sequences with a Very Simple Control Strategy

    Tingting CHEN  Weijun LI  Feng YU  Qianjian XING  

     
    LETTER-Circuit Theory

      Vol:
    E100-A No:4
      Page(s):
    1074-1078

    A modular serial pipelined sorting architecture for continuous input sequences is presented. It supports continuous sequences, whose lengths can be dynamically changed, and does so using a very simple control strategy. It consists of identical serial cascaded sorting cells, and lends itself to high frequency implementation with any number of sorting cells, because both data and control signals are pipelined. With L cascaded sorting cells, it produces a fully sorted result for sequences whose length N is equal to or less than L+1; for longer sequences, the largest L elements are sorted out. Being modularly designed, several independent smaller sorters can be dynamically configured to form a larger sorter.

3401-3420hit(21534hit)