The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

3361-3380hit(21534hit)

  • Narrow Fingerprint Template Synthesis by Clustering Minutiae Descriptors

    Zhiqiang HU  Dongju LI  Tsuyoshi ISSHIKI  Hiroaki KUNIEDA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2017/03/08
      Vol:
    E100-D No:6
      Page(s):
    1290-1302

    Narrow swipe sensor has been widely used in embedded systems such as smart-phone. However, the size of captured image is much smaller than that obtained by the traditional area sensor. Therefore, the limited template coverage is the performance bottleneck of such kind of systems. Aiming to increase the geometry coverage of templates, a novel fingerprint template feature synthesis scheme is proposed in the present study. This method could synthesis multiple input fingerprints into a wider template by clustering the minutiae descriptors. The proposed method consists of two modules. Firstly, a user behavior-based Registration Pattern Inspection (RPI) algorithm is proposed to select the qualified candidates. Secondly, an iterative clustering algorithm Modified Fuzzy C-Means (MFCM) is proposed to process the large amount of minutiae descriptors and then generate the final template. Experiments conducted over swipe fingerprint database validate that this innovative method gives rise to significant improvements in reducing FRR (False Reject Rate) and EER (Equal Error Rate).

  • An Attention-Based Hybrid Neural Network for Document Modeling

    Dengchao HE  Hongjun ZHANG  Wenning HAO  Rui ZHANG  Huan HAO  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/03/21
      Vol:
    E100-D No:6
      Page(s):
    1372-1375

    The purpose of document modeling is to learn low-dimensional semantic representations of text accurately for Natural Language Processing tasks. In this paper, proposed is a novel attention-based hybrid neural network model, which would extract semantic features of text hierarchically. Concretely, our model adopts a bidirectional LSTM module with word-level attention to extract semantic information for each sentence in text and subsequently learns high level features via a dynamic convolution neural network module. Experimental results demonstrate that our proposed approach is effective and achieve better performance than conventional methods.

  • Second-Order Sampling of 2-D Frequency Distributions by Using the Concepts of Tiling Clusters and Pair Regions

    Toshihiro HORI  

     
    PAPER-Analog Signal Processing

      Vol:
    E100-A No:6
      Page(s):
    1286-1295

    Second-order sampling of 2-D frequency distributions is examined in this paper. When a figure in the frequency space can fill up the entire frequency space by tiling, we call this figure a tiling cluster. We also introduce the concept of pair regions. The results obtained for the second-order sampling of 1-D and 2-D frequency distributions are arranged using these two concepts. The sampling functions and sampling positions of second-order sampling of a 2-D rectangular-complement highpass frequency distribution, which have not been solved until now, are explicitly presented by using these two concepts.

  • Integration of Spatial Cue-Based Noise Reduction and Speech Model-Based Source Restoration for Real Time Speech Enhancement

    Tomoko KAWASE  Kenta NIWA  Masakiyo FUJIMOTO  Kazunori KOBAYASHI  Shoko ARAKI  Tomohiro NAKATANI  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:5
      Page(s):
    1127-1136

    We propose a microphone array speech enhancement method that integrates spatial-cue-based source power spectral density (PSD) estimation and statistical speech model-based PSD estimation. The goal of this research was to clearly pick up target speech even in noisy environments such as crowded places, factories, and cars running at high speed. Beamforming with post-Wiener filtering is commonly used in many conventional studies on microphone-array noise reduction. For calculating a Wiener filter, speech/noise PSDs are essential, and they are estimated using spatial cues obtained from microphone observations. Assuming that the sound sources are sparse in the temporal-spatial domain, speech/noise PSDs may be estimated accurately. However, PSD estimation errors increase under circumstances beyond this assumption. In this study, we integrated speech models and PSD-estimation-in-beamspace method to correct speech/noise PSD estimation errors. The roughly estimated noise PSD was obtained frame-by-frame by analyzing spatial cues from array observations. By combining noise PSD with the statistical model of clean-speech, the relationships between the PSD of the observed signal and that of the target speech, hereafter called the observation model, could be described without pre-training. By exploiting Bayes' theorem, a Wiener filter is statistically generated from observation models. Experiments conducted to evaluate the proposed method showed that the signal-to-noise ratio and naturalness of the output speech signal were significantly better than that with conventional methods.

  • An Analytical Model of Charge Pump DC-DC Voltage Multiplier Using Diodes

    Toru TANZAWA  

     
    PAPER-Circuit Theory

      Vol:
    E100-A No:5
      Page(s):
    1137-1144

    An output voltage-current equation of charge pump DC-DC voltage multiplier using diodes is provided to cover wide clock frequency and output current ranges for designing energy harvester operating at a near-threshold voltage or in sub-threshold region. Equivalent circuits in slow and fast switching limits are extracted. The effective threshold voltage of the diode in slow switching limit is also derived as a function of electrical characteristics of the diodes, such as the saturation current and voltage slope parameter, and design parameters such as the number of stages, capacitance per stage, parasitic capacitance at the top plate of the main boosting capacitor, and the clock frequency. The model is verified compared with SPICE simulation.

  • Design of High-ESD Reliability in HV Power pLDMOS Transistors by the Drain-Side Isolated SCRs

    Shen-Li CHEN  Yu-Ting HUANG  Yi-Cih WU  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    446-452

    Improving robustness in electrostatic discharge (ESD) protection by inserting drain-side isolated silicon-controlled rectifiers (SCRs) in a high-voltage (HV) p-channel lateral-diffused MOSFET (pLDMOS) device was investigated in this paper. Additionally, the effects of anti-ESD reliability in the HV pLDMOS transistors provided by this technique were evaluated. From the experimental data, it was determined that the holding voltage (Vh) values of the pLDMOS with an embedded npn-arranged SCR and discrete thin-oxide (OD) layout on the cathode side increased as the parasitic SCR OD row number decreased. Moreover, the trigger voltage (Vt1) and the Vh values of the pLDMOS with a parasitic pnp-arranged SCR and discrete OD layout on the drain side fluctuated slightly as the SCR OD-row number decreased. Furthermore, the secondary breakdown current (It2) values (i.e., the equivalent ESD-reliability robustness) of all pLDMOS-SCR npn-arranged types increased (>408.4%) to a higher degree than those of the pure pLDMOS, except for npn-DIS_3 and npn-DIS_2, which had low areas of SCRs. All pLDMOS-SCR pnp-arranged types exhibited an increase of up to 2.2A-2.4A, except for the pnp_DIS_3 and pnp_DIS_2 samples; the pnp_DIS_91 increased by approximately 2000.9% (249.1%), exhibiting a higher increase than that of the reference pLDMOS (i.e., the corresponding pnp-stripe type). The ESD robustness of the pLDMOS-SCR pnp-arranged type and npn-arranged type with a discrete OD layout on the SCR cathode side was greater than that of the corresponding pLDMOS-SCR stripe type and a pure pLDMOS, particularly in the pLDMOS-SCR pnp-arranged type.

  • Robust Q-Band InP- and GaN-HEMT Low Noise Amplifiers

    Masaru SATO  Yoshitaka NIIDA  Toshihide SUZUKI  Yasuhiro NAKASHA  Yoichi KAWANO  Taisuke IWAI  Naoki HARA  Kazukiyo JOSHIN  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    417-423

    We report on robust and low-power-consumption InP- and GaN-HEMT Low-Noise-Amplifiers (LNAs) operating in Q-band frequency range. A multi-stage common-gate (CG) amplifier with current reuse topology was used. To improve the survivability of the CG amplifier, we introduced a feedback resistor at the gate bias feed. The design technique was adapted to InP- and GaN-HEMT LNAs. The 75nm gate length InP HEMT LNA exhibited a gain of 18dB and a noise figure (NF) of 3dB from 33 to 50GHz. The DC power consumption was 16mW. The Robustness of the InP HEMT LNA was tested by injecting a millimeter-wave input power of 13dBm for 10 minutes. No degradation in a small signal gain was observed. The fabricated 0.12µm gate length GaN HEMT LNA exhibited a gain of 15dB and an NF of 3.2dB from 35 to 42GHz. The DC power consumption was 280mW. The LNA survived until an input power of 28dBm.

  • Perceptual Encryption Based on Features of Interpolating Curve for Vector Map

    Ngoc-Giao PHAM  Suk-Hwan LEE  Ki-Ryong KWON  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:5
      Page(s):
    1156-1164

    Nowadays, vector map content is widely used in the areas of life, science and the military. Due to the fact that vector maps bring great value and that their production process is expensive, a large volume of vector map data is attacked, stolen and illegally distributed by pirates. Thus, vector map data must be encrypted before being stored and transmitted in order to ensure the access and to prevent illegal copying. This paper presents a novel perceptual encryption algorithm for ensuring the secured storage and transmission of vector map data. Polyline data of vector maps are extracted to interpolate a spline curve, which is represented by an interpolating vector, the curvature degree coefficients, and control points. The proposed algorithm is based on encrypting the control points of the spline curve in the frequency domain of discrete cosine transform. Control points are transformed and selectively encrypted in the frequency domain of discrete cosine transform. They are then used in an inverse interpolation to generate the encrypted vector map. Experimental results show that the entire vector map is altered after the encryption process, and the proposed algorithm is very effective for a large dataset of vector maps.

  • Unsupervised Image Steganalysis Method Using Self-Learning Ensemble Discriminant Clustering

    Bing CAO  Guorui FENG  Zhaoxia YIN  Lingyan FAN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/02/18
      Vol:
    E100-D No:5
      Page(s):
    1144-1147

    Image steganography is a technique of embedding secret message into a digital image to securely send the information. In contrast, steganalysis focuses on detecting the presence of secret messages hidden by steganography. The modern approach in steganalysis is based on supervised learning where the training set must include the steganographic and natural image features. But if a new method of steganography is proposed, and the detector still trained on existing methods will generally lead to the serious detection accuracy drop due to the mismatch between training and detecting steganographic method. In this paper, we just attempt to process unsupervised learning problem and propose a detection model called self-learning ensemble discriminant clustering (SEDC), which aims at taking full advantage of the statistical property of the natural and testing images to estimate the optimal projection vector. This method can adaptively select the most discriminative subspace and then use K-means clustering to generate the ultimate class labels. Experimental results on J-UNIWARD and nsF5 steganographic methods with three feature extraction methods such as CC-JRM, DCTR, GFR show that the proposed scheme can effectively classification better than blind speculation.

  • A Method for FDOA Estimation with Expansion of RMS Integration Time

    Shangyu ZHANG  Zhen HUANG  Zhenqiang LI  Xinlong XIAO  Dexiu HU  

     
    PAPER-Sensing

      Pubricized:
    2016/11/29
      Vol:
    E100-B No:5
      Page(s):
    893-900

    The measurement accuracy of frequency difference of arrival (FDOA) is usually determinant for emitters location system using rapidly moving receivers. The classic technique of expanding the integration time of the cross ambiguity function (CAF) to achieve better performance of FDOA is likely to incur a significant computational burden especially for wideband signals. In this paper, a nonconsecutive short-time CAF's methods is proposed with expansion of root mean square (RMS) integration time, instead of the integration time, and a factor of estimation precision improvement is given which is relative to the general consecutive method. Furthermore, by analyzing the characteristic of coherent CAF and the influence of FDOA rate, an upper bound of the precision improvement factor is derived. Simulation results are provided to confirm the effectiveness of the proposed method.

  • Performance Comparison of Overloaded MIMO System with and without Antenna Selection

    Yasunori NIN  Hikari MATSUOKA  Yukitoshi SANADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/11/29
      Vol:
    E100-B No:5
      Page(s):
    762-770

    This paper investigates the performance of an overloaded multiple-input multiple-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system with and without antenna selection. In the overloaded MIMO-OFDM system, even if only a small amount of feedback is available, performance can be improved by selecting the transmit antennas. Thus, this paper compares the performance of an overloaded MIMO system with and without antenna selection under different code rates. It is shown that the performance of the MIMO-OFDM system for six signal streams with QPSK modulation is about 2.0dB better than that for three signal streams with 16QAM modulation while it is about 5.0dB better than that of the MIMO-OFDM system for two signal streams with 64QAM modulation at a bit error rate (BER) of 10-3. However, it is also shown that the performance of the overloaded MIMO system is worse if the code rate of the repetition code increases.

  • Massive Antenna Systems for Wireless Entrance (MAS-WE): Practical Application of Massive MIMO with Simplified Space Division Multiplexing Schemes

    Kazuki MARUTA  Atsushi OHTA  Satoshi KUROSAKI  Takuto ARAI  Masataka IIZUKA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/11/16
      Vol:
    E100-B No:5
      Page(s):
    779-787

    This paper proposes a practical application of Massive MIMO technology, Massive Antenna Systems for Wireless Entrance (MAS-WE), and along with related inter-user interference cancellation (IUIC) and scheduling techniques. MAS-WE, in which the entrance base station (EBS) employs a large number of antennas, can effectively provide high capacity wireless entrance links to a large number of access points (APs) distributed over a wide coverage area. The proposed techniques are simplified to practical implementation; EBS side uses around 100 antenna elements to spatially multiplex more than 16 signal streams. SIR performance is evaluated by system level simulations that consider imperfect channel state information (CSI). The results show that MAS-WE with the proposed techniques can reliably achieve high spectral efficiency with high level space division multiplexing.

  • An Improved EEHEMT RF Noise Model for 0.25 µm InGaP pHEMT Transistor Using Verilog-A Language

    An-Sam PENG  Lin-Kun WU  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    424-429

    In this paper, an accurate experimental noise model to improve the EEHEMT nonlinear model using the Verilog-A language in Agilent ADS is presented for the first time. The present EEHEMT model adopts channel noise to model the noise behavior of pseudomorphic high electron mobility transistor (pHEMT). To enhance the accuracy of the EEHEMT noise model, we add two extra noise sources: gate shot noise and induced gate noise current. Here we demonstrate the power spectral density of the channel noise Sid and gate noise Sig versus gate-source voltage for 0.25 µm pHEMT devices. Additionally, the related noise source parameters, i.e., P, R, and C are presented. Finally, we compare four noise parameters between the simulation and model, and the agreement between the measurement and simulation results shows that this proposed approach is dependable and accurate.

  • PdYb-Silicide with Low Schottky Barrier Height to n-Si Formed from Pd/Yb/Si(100) Stacked Structures

    Shun-ichiro OHMI  Mengyi CHEN  Weiguang ZUO  Yasushi MASAHIRO  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    458-462

    In this paper, we have investigated the characteristics of PdYb-silicide layer formed by the silicidation of Pd/Yb/n-Si(100) stacked structures for the first time. Pd (12-20 nm)/Yb (0-8 nm) stacked layers were deposited on n-Si(100) substrates by the RF magnetron sputtering at room temperature. Then, 10 nm-thick HfN encapsulating layer was deposited at room temperature. Next, silicidation was carried out by the RTA at 500°C/1 min in N2 followed by the selective etching. From the J-V characteristics of fabricated Schottky diode, Schottky barrier height (SBH) for electron was reduced from 0.73 eV of Pd2Si to 0.4 eV of PdYb-silicide in case the Pd/Yb thicknesses were 14/6 nm, respectively.

  • Improving Security Level of LTE Access Procedure by Using Short-Life Shared Key

    Fawad AHMAD  Marnel PERADILLA  Akanksha SAINI  Younchan JUNG  

     
    PAPER-Network

      Pubricized:
    2016/11/21
      Vol:
    E100-B No:5
      Page(s):
    738-748

    To ensure secure mobile communication, the communicating entities must know their mutual identities. The entities which need to be identified in a mobile communication system are mobile devices and the network. Third Generation Partnership Project (3GPP) has specified Evolved Packet System Authentication and Key Agreement (EPS AKA) procedure for the mutual authentication of user and the Long Term Evolution (LTE) network. EPS AKA certainly overcomes most of the vulnerabilities in the Global System for Mobile Communications (GSM) and Universal Mobile Telecommunication System (UMTS) access procedures. However, the LTE access procedure still has security weaknesses against some of the sophisticated security threats, such as, Denial-of-Service (DoS) attacks, Man-in-the-Middle (MitM) attacks, rogue base station attacks and fails to ensure privacy protection for some of the important parameters. This paper proposes an improved security framework for the LTE access procedure by ensuring the confidentiality protection of International Mobile Subscriber Identity (IMSI) and random-challenge RAND. Also, our proposed system is designed to reduce the impact of DoS attacks which try to overwhelm the network with useless computations. We use a one-time shared key with a short lifetime between the UE and MME to protect IMSI and RAND privacy. Finally, we explore the parameters design for the proposed system which leads to satisfy the requirements imposed on computational load and latency as well as security strength.

  • Non-Coherent MIMO of Per Transmit Antenna Differential Mapping (PADM) Employing Asymmetric Space-Time Mapping and Channel Prediction

    Hiroshi KUBO  Takuma YAMAGISHI  Toshiki MORI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/11/16
      Vol:
    E100-B No:5
      Page(s):
    808-817

    This paper proposes performance improvement schemes for non-coherent multiple-input multiple-output (MIMO) communication systems employing per transmit antenna differential mapping (PADM). PADM is one form of differential space-time coding (DSTC), which generates an independent differentially encoded sequence for each of the multiple transmit antennas by means of space-time coding and mapping. The features of the proposed schemes are as follows: 1) it employs an asymmetric space-time mapping instead of the conventional symmetric space-time mapping in order to lower the required signal to noise power ratio (SNR) for maintaining the bit error rate (BER) performance; 2) it employs an analytically derived branch metric criterion based on channel prediction for per-survivor processing (PSP) in order to track fast time-varying channels. Finally, computer simulation results confirm that the proposed schemes improve the required SNR by around 1dB and can track at the maximum Doppler frequency normalized by symbol rate of 5%.

  • Upper Bound on the Cross-Correlation between Two Decimated Sequences

    Chang-Min CHO  Wijik LEE  Jong-Seon NO  Young-Sik KIM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/11/28
      Vol:
    E100-B No:5
      Page(s):
    837-842

    In this paper, for an odd prime p, two positive integers n, m with n=2m, and pm≡1 (mod 4), we derive an upper bound on the magnitude of the cross-correlation function between two decimated sequences of a p-ary m-sequence. The two decimation factors are 2 and 2(pm+1), and the upper bound is derived as $ rac{3}{2}p^m + rac{1}{2}$. In fact, those two sequences correspond to the p-ary sequences used for the construction of Kasami sequences decimated by 2. This result is also used to obtain an upper bound on the cross-correlation magnitude between a p-ary m-sequence and its decimated sequence with the decimation factor $d= rac{(p^m +1)^2}{2}$.

  • Resource Sharing Strategy for D2D Communication Underlaying Multichannel Cellular Networks

    Yingjing QIAN  Ni ZHOU  Dajiang HE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/11/21
      Vol:
    E100-B No:5
      Page(s):
    818-825

    Device-to-device (D2D) communication enables two local users to communicate with each other directly instead of relaying through a third party, e.g., base station. In this paper, we study a subchannel sharing strategy underlaying multichannel cellular network for D2D pairs and existing cellular users (CUs). In the investigated scenario, we try to improve the spectrum efficiency of D2D pairs, but inevitably brings cross interference between two user groups. To combat interference, we attempt to assign each D2D pair with appropriate subchannels, which may belong to different CUs, and manipulate transmission power of all users so as to maximize the sum rate of all D2D pairs, while assuring each CU with a minimum data rate on its subchannel set. The formulated problem is a nonconvex problem and thus, obtaining its optimal solution is a tough task. However, we can find optimal power and subchannel assignment for a special case by setting an independent data rate constraint on each subchannel. Then we find an efficient method to calculate a gradient for our original problem. Finally, we propose a gradient-based search method to address the problem with coupled minimum data rate constraint. The performance of our proposed subchannel sharing strategy is illustrated via extensive simulation results.

  • Achieving Scalable and Optimized Attribute Revocation in Cloud Computing

    Somchart FUGKEAW  Hiroyuki SATO  

     
    PAPER

      Pubricized:
    2017/02/08
      Vol:
    E100-D No:5
      Page(s):
    973-983

    Revocation is one of the major problems for access control systems. Especially, the revocation cost for the data outsourced in the third party environment such as cloud storage systems. The revocation in the cloud-based access control typically deals with the cryptographic operations that introduce costly overheads for key re-generation, file re-encryption, and key re-distribution. Also, the communication for retrieving files for re-encryption and loading them back to the cloud is another non-trivial cost for data owners. In this paper, we propose a Very Lightweight Proxy Re-Encryption (VL-PRE) scheme to efficiently support attribute-based revocation and policy update in the collaborative data sharing in cloud computing environment. To this end, we propose three-phase VL-PRE protocol including re-encryption key generation, re-encryption key update, and re-encryption key renewal for supporting the optimized attribute revocation and policy update. Finally, we conduct the experiments to evaluate the performance of our VL-PRE and show that it exhibits less computation cost with higher scalability in comparison with existing PRE schemes.

  • Analysis of Effective Material Properties of Metal Dummy Fills in a CMOS Chip

    Takuichi HIRANO  Ning LI  Kenichi OKADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/11/21
      Vol:
    E100-B No:5
      Page(s):
    793-798

    The equivalent anisotropic material parameters of metal dummy fills in a CMOS chip were extracted through an eigenmode analysis of a unit-cell of a space filled with metal dummies. The validity of the parameters was confirmed by comparing the S-parameters of a parallel-plate waveguide with the metal dummy fills and their effective material properties. The validity of the effective material properties was also confirmed by using them in a simulation of an on-chip dipole antenna.

3361-3380hit(21534hit)