The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

11181-11200hit(21534hit)

  • Optimal Antenna Matching and Mutual Coupling Effect of Antenna Array in MIMO Receiver

    Hiroki IURA  Hiroyoshi YAMADA  Yasutaka OGAWA  Yoshio YAMAGUCHI  

     
    PAPER-Antennas and Propagation

      Vol:
    E90-B No:4
      Page(s):
    960-967

    Antenna array is essential factor for multiple- input multiple-output (MIMO) wireless systems. Since the antenna array is composed of closely spaced elements, the mutual coupling among the elements cannot be ignored for the best performance of the array. Mutual coupling affects the MIMO channel, so the performance of a MIMO system, including channel capacity and diversity, varies with the degree of mutual coupling. The effect of mutual coupling is a function of the antenna load impedance. Therefore, designing an optimal element-matched array for a MIMO system requires consideration of the optimal matching condition for the array elements, the one that maximizes the channel capacity. We evaluated the effects of mutual coupling with various matching conditions in dipole arrays, and investigated their effects on the path correlation and channel capacity of MIMO systems. Simulation showed that the conventional conjugate matching of each element is still suitable for closely spaced elements except when the separation is about less than 0.1λ. Theoretical consideration of the received power of a closely-spaced-element array is also provided to show the effects of mutual coupling.

  • Efficient 3-D Sound Movement with Time-Varying IIR Filters

    Kosuke TSUJINO  Wataru KOBAYASHI  Takao ONOYE  Yukihiro NAKAMURA  

     
    PAPER-Speech/Audio Processing

      Vol:
    E90-A No:3
      Page(s):
    618-625

    3-D sound using head-related transfer functions (HRTFs) is applicable to embedded systems such as portable devices, since it can create spatial sound effect without multichannel transducers. Low-order modeling of HRTF with an IIR filter is effective for the reduction of the computational load required in embedded applications. Although modeling of HRTFs with IIR filters has been studied earnestly, little attention has been paid to sound movement with IIR filters, which is important for practical applications of 3-D sound. In this paper, a practical method for sound movement is proposed, which utilizes time-varying IIR filters and variable delay filters. The computational cost for sound movement is reduced by about 50% with the proposed method, compared to conventional low-order FIR implementation. In order to facilitate efficient implementation of 3-D sound movement, tradeoffs between the subjective quality of the output sound and implementation parameters such as the size of filter coefficient database and the update period of filter coefficients are also discussed.

  • Low Power Small Area Modified Booth Multiplier Design for Predetermined Coefficients

    Yong-Eun KIM  Kyung-Ju CHO  Jin-Gyun CHUNG  

     
    LETTER-VLSI Design Technology and CAD

      Vol:
    E90-A No:3
      Page(s):
    694-697

    In this paper, based on the variation of the modified Booth encoding method, an efficient modified Booth multiplier design method for predetermined coefficient groups is proposed. In the case of pulse-shaping filter design used in CDMA, it is shown that by the proposed method, area and power consumption can be reduced up to 44% and 48%, respectively, compared with the conventional designs. Also, it is shown that in the case of 128-point radix-24 FFT, the area and power consumption can be reduced by 18% and 36%, respectively.

  • Delay Distribution of Data Calls in Integrated Voice/Data CDMA Systems

    Insoo KOO  Jeongrok YANG  Kiseon KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:3
      Page(s):
    668-671

    In this letter, we present a procedure to analyze the delay distribution of data traffic in CDMA systems supporting voice and delay-tolerant data services with a finite buffer. The queueing method using a buffer for a delay-tolerant traffic can be used to improve the system utilization or the availability of system resources. Under the first-come and first-serve (FCFS) service discipline, we present a numerical procedure for the formation of delay distribution that is defined as the probability that a new data call get a service within the maximum tolerable delay requirement, based on a two-dimensional Markov model.

  • Superconductivity for Mass Spectroscopy

    Masataka OHKUBO  

     
    INVITED PAPER

      Vol:
    E90-C No:3
      Page(s):
    550-555

    Time-of-Flight Mass Spectroscopy (TOF-MS) with superconducting detectors has two advantages over MS with conventional ion detectors. First, it is coverage for a very wide range of molecule weight over 1,000,000. Secondly, kinetic energies of accelerated molecules can be measured at impact events one by one. These unique features enable an ultimate detection efficiency of 100% for intact ions and a fragmentation analysis that is critical for top-down proteomics. Superconducting MS is expected to play a role in, for example, the detection of antigen-antibody complexes, which are important for medical diagnosis. In this paper, how superconductivity contributes to MS is described.

  • Multimedia Data Transmission over Wireless Network with Interference

    Shu MURAYAMA  Fouad A. TOBAGI  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E90-B No:3
      Page(s):
    651-659

    Transmitting multimedia data requires high bandwidth and low delay of the network. Today's wireless networks satisfy these requirements in ideal situations, but in practice multiple devices including those of neighboring networks share the same physical layer channel and the desired speeds in the wireless network can not be achieved. Traffic in one network causes interference to other neighboring networks. In this paper, we evaluate end user's playback quality of video content transmitted over a wireless network. We take into account the influence of interference from a neighboring network and define a multi-layer control strategy to maintain the quality on the network. Through simulations, we have obtained acceptable improvements in video playback quality by controlling the transmission power, the number of retransmissions, and other parameters at various layers.

  • Theoretical Simulation of the Mixing Performance of Distributed Superconducting Tunnel Junction Arrays at 1.2 THz

    Sheng-Cai SHI  Wen-Lei SHAN  Jing LI  

     
    INVITED PAPER

      Vol:
    E90-C No:3
      Page(s):
    556-565

    In this paper we focus on the numerical simulation of the mixing behaviors of distributed superconducting junction arrays at 1.2 THz. A novel type of superconducting tunnel junctions, i.e., NbN/AlN/Nb, which have a relatively high gap voltage (4.3 mV) and can reach a critical current density as high as several tens of kA/cm2, are proposed for this characterization along with conventional Nb/AlOx/Nb junctions. The former is incorporated with a NbN/SiO2/Al tuning circuit, and the latter with a Nb/SiO2/Al and a NbTiN/SiO2/Al tuning circuits. The noise performance, local-oscillator power requirement, IF bandwidth, and optimum embedding impedance are thoroughly characterized for the two types of distributed superconducting junction arrays.

  • Power Estimation of Partitioned Register Files in a Clustered Architecture with Performance Evaluation

    Yukinori SATO  Ken-ichi SUZUKI  Tadao NAKAMURA  

     
    PAPER-VLSI Systems

      Vol:
    E90-D No:3
      Page(s):
    627-636

    High power consumption and slow access of enlarged and multiported register files make it difficult to design high performance superscalar processors. The clustered architecture, where the conventional monolithic register file is partitioned into several smaller register files, is expect to overcome the register file issues. In the clustered architecture, the more a monolithic register file is partitioned, the lower power and faster access register files can be realized. However, the partitioning causes losses of IPC (instructions per clock cycle) due to communication among register files. Therefore, degree of partitioning has a strong impact on the trade-off between power consumption and performance. In addition, the organization of partitioned register files also affects the trade-off. In this paper, we attempt to investigate appropriate degrees of partitioning and organizations of partitioned register files in a clustered architecture to assess the trade-off. From the results of execute-driven simulation, we find that the organization of register files and the degree of partitioning have a strong impact on the IPC, and the configuration with non-consistent register files can make use of the partitioned resources more effectively. From the results of register file access time and energy modeling, we find that the configurations with the highly partitioned non-consistent register file organization can receive benefit of the partitioning in terms of operating frequency and access energy of register files. Further, we examine relationship between IPS (instructions per second) and the product of IPC and operating frequency of register files. The results suggest that highly partitioned non-consistent configurations tends to gain more advantage in performance and power.

  • ML Estimation of Frequency Offset for General ICI Self-Cancellation Based OFDM Systems

    Miin-Jong HAO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:3
      Page(s):
    586-590

    We develop a maximum likelihood estimation scheme for correcting the carrier frequency offsets prior to the general intercarrier interference (ICI) self-cancellation in the OFDM systems. Since the same data symbols employed for ICI self-cancellation are also used for frequency offset estimation, the proposed scheme does not consume additional bandwidth. The combined use of the estimation algorithm and ICI self-cancellation scheme provides both frequency offset compensation and ICI reduction hence improves the system performance greatly. The effectiveness of the proposed estimation-cancellation scheme is further verified by calculating the bit error rates of various OFDM receivers, and substantial improvements are found.

  • Frequency-Domain Space-Time Block Coded-Joint Transmit/Receive Diversity for Direct-Sequence Spread Spectrum Signal Transmission

    Hiromichi TOMEBA  Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:3
      Page(s):
    597-606

    Recently, we proposed space-time block coded-joint transmit/receive antenna diversity (STBC-JTRD) for narrow band transmission in a frequency-nonselective fading channel; it allows an arbitrary number of transmit antennas while limiting the number of receive antennas to 4. In this paper, we extend STBC-JTRD to the case of frequency-selective fading channels and propose frequency-domain STBC-JTRD for broadband direct sequence-spread spectrum (DSSS) signal transmission. A conditional bit error rate (BER) analysis is presented. The average BER performance in a frequency-selective Rayleigh fading is evaluated by Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation of the signal transmission. Performance comparison between frequency-domain STBC-JTRD transmission and joint space-time transmit diversity (STTD) and frequency-domain equalization (FDE) reception is also presented.

  • Novel Square Photonic Crystal Fibers with Ultra-Flattened Chromatic Dispersion and Low Confinement Losses

    Feroza BEGUM  Yoshinori NAMIHIRA  S.M. Abdur RAZZAK  Nianyu ZOU  

     
    PAPER-Optoelectronics

      Vol:
    E90-C No:3
      Page(s):
    607-612

    This study proposes a novel structure of index-guiding square photonic crystal fibers (SPCF) having simultaneously ultra-flattened chromatic dispersion characteristics and low confinement losses in a wide wavelength range. The finite difference method (FDM) with anisotropic perfectly matched layers (PMLs) is used to analyze the various properties of square PCF. The findings reveal that it is possible to design five-ring PCFs with a flattened negative chromatic dispersion of 0-1.5 ps/(nm.km) in a wavelength range of 1.27 µm to 1.7 µm and a flattened chromatic dispersion of 01.15 ps/(nm.km) in a wavelength range of 1.25 µm to 1.61 µm. Simultaneously it also exhibited that the confinement losses are less than 10-9 dB/m and 10-10 dB/m in the wavelength range of 1.25 µm to 1.7 µm.

  • IMM Estimator-Based Interference Prediction for Power Control in Broadband Wireless Packet Networks

    Young-Hun JUNG  Sun-Mog HONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:3
      Page(s):
    676-680

    An interference prediction scheme is proposed for power control in packet-switched TDMA wireless networks. The prediction scheme is based on the interacting multiple model (IMM) estimator, and it is effective to a wide range of nonstationary dynamic characteristics of the interference power. Numerical experiments show that, compared with a scheme based on a Kalman filter, the IMM estimator-based scheme predicts the interference power more accurately and allows us to adjust the transmit power more efficiently in achieving a desired level of signal-to-interference-plus-noise ratio (SINR).

  • Distributed Dynamic Spectrum Management for Digital Subscriber Lines

    Yu-Sun LIU  Zeng-Jey SU  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E90-B No:3
      Page(s):
    491-498

    This paper investigates the dynamic spectrum management problem for digital subscriber lines. Two new distributed dynamic spectrum management algorithms, which improve upon the existing iterative water-filling algorithm, are proposed. Unlike the iterative water-filling algorithm, in which crosstalk interference is reduced by using adaptive power backoff, the new algorithms employ full power and mitigate crosstalk interference by shifting one user's spectrum away from the other's. Simulation results show that the new algorithms achieve significant performance gains over the iterative water-filling algorithm in mixed central office/remote terminal (CO/RT) deployment asymmetric digital subscriber line (ADSL) and upstream very-high bit-rate digital subscriber line (VDSL).

  • Stochastic Pedestrian Tracking Based on 6-Stick Skeleton Model

    Ryusuke MIYAMOTO  Jumpei ASHIDA  Hiroshi TSUTSUI  Yukihiro NAKAMURA  

     
    PAPER-Image

      Vol:
    E90-A No:3
      Page(s):
    606-617

    A novel pedestrian tracking scheme based on a particle filter is proposed, which adopts a skeleton model of a pedestrian for a state space model and distance transformed images for likelihood computation. The 6-stick skeleton model used in the proposed approach is very distinctive in representing a pedestrian simply but effectively. By the experiment using the real sequences provided by PETS, it is shown that the target pedestrian is tracked adequately by the proposed approach with a simple silhouette extraction method which consists of only background subtraction, even if the tracking target moves so complicatedly and is often so cluttered by other obstacles that the pedestrian can not be tracked by the conventional methods. Moreover, it is demonstrated that the proposed scheme can track the multiple targets in the complex case that their trajectories intersect.

  • Circularly Polarized Printed Antenna Combining Slots and Patch

    Toshimitsu TANAKA  Tamotsu HOUZEN  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER-Antennas and Propagation

      Vol:
    E90-B No:3
      Page(s):
    621-629

    In this paper, the authors propose a circularly polarized printed antenna combining a slot array antenna and a patch antenna, with dual-band operation. The proposed antenna has good isolation performance, is compact, and has simple configuration. This antenna is composed of two parts, a patch antenna (for Rx) on the top, and a slot array antenna (for Tx) on the bottom, respectively. The element layout is such that the lower radiation element is not hidden by the upper one for wide observation angle. Hence, both radiation elements can naturally radiate the targeted polarization. Both slot array and patch antenna are fed by electromagnetically coupled microstrip line feed. With such a configuration, it is possible to efficiently obtain good isolation characteristics for both frequency bands. Furthermore, this antenna can be easily composed and it is not necessary to use any feeding pin or via hole. The target of this antenna is mobile communications applications such as mobile satellite communications, base-station of wireless LAN, etc. Here, the design techniques are discussed and the numerical and experimental analyses are presented.

  • Encryption of Composite Multimedia Contents for Access Control

    Masaaki FUJIYOSHI  Shoko IMAIZUMI  Hitoshi KIYA  

     
    PAPER-Image

      Vol:
    E90-A No:3
      Page(s):
    590-596

    An encryption scheme is proposed that considers hierarchies in media, such as text, images, sound, and so on, in a composite multimedia content to enable versatile access control. In the proposed scheme, a content provider has only one managed key (the master key) for a particular composite multimedia content, and an user who is permitted to access a reserved content entities in the composite content receives only one key that is subordinately generated from the master key. Another key generated from the identical master key is delivered to another user, and this permits the user to access different entities. This scheme introduces a new key concept, namely "unusable key," to keep all entities encrypted in a particular medium and to simultaneously decrypt several entities in other media. The other new key, "numbering key," is also used in this scheme to support simultaneous partial decryption of multiple images that are coded with a scalable coding technology. Simulation results show the effectiveness of the proposed scheme; in particular, the length of the managed master key and that of keys to be delivered to users are small.

  • A Novel High-Speed and Low-Voltage CMOS Level-Up/Down Shifter Design for Multiple-Power and Multiple-Clock Domain Chips

    Ji-Hoon LIM  Jong-Chan HA  Won-Young JUNG  Yong-Ju KIM  Jae-Kyung WEE  

     
    LETTER-Electronic Circuits

      Vol:
    E90-C No:3
      Page(s):
    644-648

    A novel high-speed and low-voltage CMOS level shifter circuit is proposed. The proposed circuit is suitable for block-level dynamic voltage and frequency scaling (DVFS) environment or multiple-clock and multiple-power-domain logic blocks. In order to achieve high performance in a chip consisting of logic blocks having different VDD voltages, the proposed circuit uses the circuit techniques to reduce the capacitive loading of input signals and to minimize the contention between pull-up and pull-down transistors through positive feedback loop. The techniques improve the slew rate of output signals, so that the level transient delay and duty distortions can be reduced. The proposed level up/down shifters are designed to operate over a wide range of voltage and frequency and verified with Berkeley's 65 nm CMOS model parameters, which can cover a voltage range from 0.6 to 1.6 V and at least frequency range up to 1000 MHz within 3% duty errors. Through simulation with Berkeley's 65 nm CMOS model parameters, the level shifter circuits can solve the duty distortion preventing them from high speed operation within the duty ratio error of 3% at 1 GHz. For verification through performance comparison with reported level shifts, the simulations are carried out with 0.35 µm CMOS technology, 0.13 µm IBM CMOS technology and Berkeley's 65 nm CMOS model parameters. The compared results show that delay time and duty ratio distortion are improved about 68% and 75%, respectively.

  • Reduced-Complexity Detection for DPC-OF/TDMA System Enhanced by Multi-Layer MIMO-OFDM in Wireless Multimedia Communications

    Ming LEI  Hiroshi HARADA  

     
    PAPER-Communications

      Vol:
    E90-A No:3
      Page(s):
    571-580

    During these years, we have been focusing on developing ultra high-data-rate wireless access systems for future wireless multimedia communications. One of such kind of systems is called DPC-OF/TDMA (dynamic parameter controlled orthogonal frequency and time division multiple access) which targets at beyond 100 Mbps data rate. In order to support higher data rates, e.g., several hundreds of Mbps or even Gbps for future wireless multimedia applications (e.g., streaming video and file transfer), it is necessary to enhance DPC-OF/TDMA system based on MIMO-OFDM (multiple-input multiple-output orthogonal frequency division multiplexing) platform. In this paper, we propose an enhanced DPC-OF/TDMA system based on Multi-Layer MIMO-OFDM scheme which combines both diversity and multiplexing in order to exploit potentials of both techniques. The performance investigation shows the proposed scheme has better performance than its counterpart based on full-multiplexing MIMO-OFDM scheme. In addition to the Exhaustive Detection (EXD) scheme which applies the same detection algorithm on each subcarrier independently, we propose the Reduced-Complexity Detection (RCD) scheme. The complexity reduction is achieved by exploiting the suboptimal Layer Detection Order and subcarrier correlation. The simulation results show that huge complexity can be reduced with very small performance loss, by using the proposed detection scheme. For example, 60.7% complexity can be cut off with only 1.1 dB performance loss for the 88 enhanced DPC-OF/TDMA system.

  • A High Quality Robust Digital Watermarking by Smart Distribution Technique and Effective Embedded Scheme

    Yu-Ting PAI  Shanq-Jang RUAN  

     
    PAPER-Image

      Vol:
    E90-A No:3
      Page(s):
    597-605

    In recent years, digital watermarking has become a popular technique for hiding information in digital images to help protect against copyright infringement. In this paper we develop a high quality and robust watermarking algorithm that combines the advantages of block-based permutation with that of neighboring coefficient embedding. The proposed approach uses the relationship between the coefficients of neighboring blocks to hide more information into high frequency blocks without causing serious distortion to the watermarked image. In addition, an extraction method for improving robustness to mid-frequency filter attacks is proposed. Our experimental results show that the proposed approach is very effective in achieving perceptual imperceptibility. Moreover, the proposed approach is robust to a variety of signal processing operations, such as compression (JPEG), image cropping, sharpening, blurring, and brightness adjustments. The robustness is especially evident under blurring attack.

  • Stability Analysis of Fourth-Order Charge-Pump PLLs Using Linearized Discrete-Time Models

    Chia-Yu YAO  Chun-Te HSU  Chiang-Ju CHIEN  

     
    PAPER-Integrated Electronics

      Vol:
    E90-C No:3
      Page(s):
    628-633

    In this paper, we derive state equations for linearized discrete-time models of forth-order charge-pump phase-locked loops. We solve the differential equations of the loop filter by using the initial conditions and the boundary conditions in a period. The solved equations are linearized and rearranged as discrete-time state equations for checking stability conditions. Some behavioral simulations are performed to verify the proposed method. By examining the stability of loops with different conditions, we also propose an expression between the lower bound of the reference frequency, the open loop unit gain bandwidth, and the phase margin.

11181-11200hit(21534hit)