The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

18381-18400hit(21534hit)

  • Requirements Specification and Analysis of Digital Systems Using FARHDL

    Victor R. L. SHEN  Feng-Ho KUO  Feipei LAI  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E81-D No:3
      Page(s):
    317-328

    As expert system technology gains wider acceptance in digital system design, the need to build and maintain a large scale knowledge base will assume greater importance. However, how to build a correct and efficient rule base is even a hard part in the knowledge-based system development. In this paper, we develop FARHDL (Frame-And-Rule-based Hardware Description Language) to form a knowledge base. The FARHDL is simple but powerful to specify the hardware requirements and can be directly simulated by PROLOG. Through the knowledge base transformed from FARHDL, a formal method can be developed to design, implement, and validate the digital hardware systems. Furthermore, behavioral properties, anomaly properties, structural properties, and timing properties are applied to analyze the requirements specification. The purposes of those properties are used to detect explicit/implicit incorrect specification clauses and to capture some desired requirements, such as completeness and consistency. Finally, the analysis results can be a useful tool for finding obscure problems in tricky digital system designs and can also aid in the development of formal specifications.

  • Architectural Choices in Large Scale ATM Switches

    Jonathan TURNER  Naoaki YAMANAKA  

     
    INVITED PAPER

      Vol:
    E81-B No:2
      Page(s):
    120-137

    The rapid development of Asynchronous Transfer Mode technology in the last 10-15 years has stimulated renewed interest in the design and analysis of switching systems, leading to new ideas for system designs and new insights into the performance and evaluation of such systems. As ATM moves closer to realizing the vision of ubiquitous broadband ISDN services, the design of switching systems takes on growing importance. This paper seeks to clarify the key architectural issues for ATM switching system design and provides a survey of the current state-of-the-art.

  • FD-TD Method with PMLs ABC Based on the Principles of Multidimensional Wave Digital Filters for Discrete-Time Modelling of Maxwell's Equations

    Yoshihiro NAKA  Hiroyoshi IKUNO  Masahiko NISHIMOTO  Akira YATA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E81-C No:2
      Page(s):
    305-314

    We present a finite-difference time-domain (FD-TD) method with the perfectly matched layers (PMLs) absorbing boundary condition (ABC) based on the multidimensional wave digital filters (MD-WDFs) for discrete-time modelling of Maxwell's equations and show its effectiveness. First we propose modified forms of the Maxwell's equations in the PMLs and its MD-WDFs' representation by using the current-controlled voltage sources. In order to estimate the lower bound of numerical errors which come from the discretization of the Maxwell's equations, we examine the numerical dispersion relation and show the advantage of the FD-TD method based on the MD-WDFs over the Yee algorithm. Simultaneously, we estimate numerical errors in practical problems as a function of grid cell size and show that the MD-WDFs can obtain highly accurate numerical solutions in comparison with the Yee algorithm. Then we analyze several typical dielectric optical waveguide problems such as the tapered waveguide and the grating filter, and confirm that the FD-TD method based on the MD-WDFs can also treat radiation and reflection phenomena, which commonly done using the Yee algorithm.

  • Theoretical and Experimental Study of Soliton Transmission in Dispersion Managed Links

    Thierry GEORGES  Francois FAVRE  Daniel Le GUEN  

     
    PAPER-Soliton Transmission

      Vol:
    E81-C No:2
      Page(s):
    226-231

    The propagation of solitons in a dispersion managed link can be mainly modeled with the evolution of two parameters γ and C, related to the spectral width and the chirp. Steady propagations are shown to be possible if the average dispersion lies in the anomalous domain. With the same conditions, periodical propagations are both theoretically and experimentally demonstrated. With the help of a perturbation theory, the jitter and the signal to noise ratio are theoretically evaluated. The latter is experimentally shown to be the low power limit of terrestrial systems based on non dispersion shifted fiber. Finally, wavelength and power margins of a single channel 20 Gbit/s soliton transmission over 11 amplifier spans of 102 km show that a 400 Gbit/s Wavelength Division Multiplexed transmission could be envisaged over the same distance.

  • Ultrashort Optical Pulse Shaping by Electrooptic Synthesizer

    Dae-Sik KIM  Tattee KHAYIM  Akihiro MORIMOTO  Tetsuro KOBAYASHI  

     
    LETTER

      Vol:
    E81-C No:2
      Page(s):
    260-263

    We demonstrate an electrooptic synthesis technique for generating arbitrarily shaped short optical pulses from a CW narrow linewidth laser. For the optical pulse shaping, a large-amplitude electrooptic phase modulator is specially fabricated by employing the quasi-velocity-matching. The phase modulated light having sidebands as wide as 1 THz is separated and phase-only-controlled spatially by a liquid crystal modulator array. After composing the light by using a grating, nearly 1. 2 ps of Fourier-transform-limited optical pulses is obtained.

  • On the Hilberts Technique for Use in Diffraction Problems Described in Terms of Bicomplex Mathematics

    Masahiro HASHIMOTO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E81-C No:2
      Page(s):
    315-318

    It is shown from the Hilberts theory that if the real function Π(θ) has no zeros over the interval [0, 2π], it can be factorized into a product of the factor π+(θ) and its complex conjugate π-(θ)(=). This factorization is tested to decompose a real far-zone field pattern having zeros. To this end, the factorized factors are described in terms of bicomplex mathematics. In our bicomplex mathematics, the temporal imaginary unit "j" is newly defined to distinguish from the spatial imaginary unit i, both of which satisfy i2=-1 and j2=-1.

  • Equal-R, Equal-C Current Mode Butterworth Lowpass Filters

    Ahmed M. SOLIMAN  

     
    LETTER-Analog Signal Processing

      Vol:
    E81-A No:2
      Page(s):
    340-342

    New grounded capacitor realizations of second order and third order current mode Butterworth lowpass filters are given. The proposed circuits employ the current conveyor as the active element, and have the attractive property of using equal valued capacitors and equal valued resistors. PSpice simulation results are included.

  • Tuning of a Fuzzy Classifier Derived from Data by Solving Inequalities

    Ruck THAWONMAS  Shigeo ABE  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E81-D No:2
      Page(s):
    224-235

    In this paper, we develop a novel method for tuning parameters known as the sensitivity parameters of membership functions used in a fuzzy classifier. The proposed method performs tuning by solving a set of inequalities. Each inequality represents a range of the ratio of the sensitivity parameters between the corresponding pair of classes. The range ensures the maximum classification rate for data of the two corresponding classes used for tuning. First, we discuss how such a set of inequalities is derived. We then propose an algorithm to solve the derived set of inequalities. We demonstrate the effectiveness of the proposed tuning method using two classification problems, namely, classification of commonly used iris data, and recognition of vehicle licence plates. The results are compared with those obtained by using the existing tuning method and with those by neural networks.

  • Refinement and Validation of Software Requirements Using Incremental Simulation

    Kyo-Chul KANG  Kwan W. LEE  Ji-young LEE  Jounghyun (Gerard) KIM  Hye-jung KIM  

     
    PAPER-Sofware System

      Vol:
    E81-D No:2
      Page(s):
    171-182

    Requirements engineering refers to activities of gathering and organizing customer requirements and system specifications, making explicit representations of them, and making sure that they are valid and accounted for during the course of the design lifecycle of software. One very popular software development practice is the incremental development practice. The incremental development refers to practices that allow a program, or similarly specifications, to be developed, validated, and delivered in stages. The incremental practice is characterized by its depth-first process where focuses are given to small parts of the system in sequence to fair amounts of detail. In this paper, we present a development and validation of specifications in such an incremental style using a tool called ASADAL, a comprehensive CASE tool for real-time systems. ASADAL supports incremental and hierarchical refinements of specifications using multiple representational constructs and the evolving incomplete specifications can be formally tested with respect to critical real time properties or be simulated to determine whether the specifications capture the intended system behavior. In particular, we highlight features of ASADAL's specification simulator, called ASADAL/SIM, that plays a critical role in the incremental validation and helps users gain insights into the validity of evolving specifications. Such features include the multiple and mixed level simulation, real-value simulation, presentation and analysis of simulation data, and variety of flexible simulation control schemes. We illustrate the overall process using an example of an incremental specification development of an elevator control system.

  • Multiple Implementations for a Set of Objects

    Masayoshi ARITSUGI  Kan YAMAMOTO  Akifumi MAKINOUCHI  

     
    PAPER-Databases

      Vol:
    E81-D No:2
      Page(s):
    183-192

    When a set of objects is shared among several applications, multiple implementations for the set are required in order to suit each application as much as possible. Furthermore, if a set of objects could have multiple implementations, the following issues arise: (1) how to select the best implementation when processing queries on the set, and (2) how to propagate updates on an implementation of the set to the others. In this paper we propose a mechanism of multiple implementations for a set, and also give a solution for the latter issue. In the proposal a set can be of multiple types, and each of the types corresponds to an implementation already contained within the set. Update propagation can be achieved by a rewriting technique at compilation time. We also present a performance study in which the feasibility and effectiveness of our proposal were examined.

  • A Field Theory of Pattern Identification Using the Concept of Gauge Fields

    Masahiro AGU  Mitsuhiro YAMADA  Andreas DAFFERTSHOFER  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E81-D No:2
      Page(s):
    206-214

    A field theory for geometrical pattern identification is developed based on the postulate that various modified patterns are identified via invariant characteristics of pattern transformations. The invariant characteristics of geometrical patterns are written as the functional of the light intensity distribution of pattern, its spatial gradient, and also its spatial curvature. Some definite expressions of the invariant characteristic functional for two dimensional linear transformation are derived, and their invariant and feature extracting property are examined numerically. It is also shown that the invariant property is conserved even when patterns are deformed locally by introducing a "gauge field" as new degree of freedom in the functional in form of a covariant derivative. Based on this idea, we discuss a field theoretical model for pattern identification performed in biological systems.

  • A Segmentation-Based Multiple-Baseline Stereo (SMBS) Scheme for Acquisition of Depth in 3-D Scenes

    Takashi IMORI  Tadahiko KIMOTO  Bunpei TOUJI  Toshiaki FUJII  Masayuki TANIMOTO  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E81-D No:2
      Page(s):
    215-223

    This paper presents a new scheme to estimate depth in a natural three-dimensional scene using a multi-viewpoint image set. In the conventional Multiple-Baseline Stereo (MBS) scheme for the image set, although errors of stereo matching are somewhat reduced by using multiple stereo pairs, the use of square blocks of fixed size sometimes causes false matching, especially, in that image area where occlusion occurs and that image area of small variance of brightness levels. In the proposed scheme, the reference image is segmented into regions which are capable of being arbitrarily shaped, and a depth value is estimated for each region. Also, by comparing the image generated by projection with the original image, depth values are newly estimated in a top-down manner. Then, the error of the previous depth value is detected, and it is corrected. The results of experiments show advantages of the proposed scheme over the MBS scheme.

  • New Formulas on Orthogonal Functionals of Stochastic Binary Sequence with Unequal Probability

    Lan GAO  Junichi NAKAYAMA  

     
    LETTER-Nonlinear Problems

      Vol:
    E81-A No:2
      Page(s):
    347-350

    This paper deals with an orthogonal functional expansion of a non-linear stochastic functional of a stationary binary sequence taking 1 with unequal probability. Several mathematical formulas, such as multivariate orthogonal polynomials, recurrence formula and generating function, are given in explicit form. A formula of an orthogonal functional expansion for a stochastic functional is presented; the completeness of expansion is discussed in Appendix.

  • Multicast Packet Switch Based on Dilated Network

    Pierre U. TAGLE  Neeraj K. SHARMA  

     
    PAPER-Multicasting in ATM switch

      Vol:
    E81-B No:2
      Page(s):
    258-265

    Multicasting is an important feature for any switching network being intended to support broadband integrated services digital networks (B-ISDN). This paper proposes an improved multicast packet switch based on Lee's nonblocking copy network. The improved design retains the desirable features of Lee's network including its nonblocking property while adopting techniques to overcome the various limitations mentioned in various literature. The proposed network architecture utilizes d-dilated banyan networks to increase the amount of cells that can be replicated within the copy network. Cell splitting is used to optimize the utilization of the network's available bandwidth. Furthermore, the proposed architecture allows for the modular expansion in capacity to accomodate changing traffic patterns. The modular design of the proposed switch likewise offers easy handling and replacement of faulty modules.

  • An 8 Bit Current-Mode CMOS A/D Converter with Three Level Folding Amplifiers

    Kyung-Myun KIM  Kwang Sub YOON  

     
    LETTER

      Vol:
    E81-A No:2
      Page(s):
    252-255

    An 8 bit current-mode folding and interpolation analog to digital converter (ADC) with three-level folding amplifiers is proposed in this paper. A current-mode three-level folding amplifier is employed not only to reduce the number of reference current sources, but also to decrease a power dissipation within the ADC. The designed ADC fabricated by a 0. 8 µ m n-well CMOS double metal/single poly process occupies the chip area of 2. 2 mm 1. 6 mm. The experimental result shows the power dissipation of 33. 6 mW with a power supply of 5 V.

  • Realization of Universal Active Complex Filter Using CCIIs and CFCCIIs

    Xiaoxing ZHANG  Xiayu NI  Masahiro IWAHASHI  Noriyoshi KAMBAYASHI  

     
    PAPER

      Vol:
    E81-A No:2
      Page(s):
    244-251

    In this paper, two universal building blocks for complex filter using CCIIs, CFCCIIs, grounded resistors and grounded capacitors are presented. These can be used to realize various complex bandpass filters with arbitrary order. The paper shows that the response error of the proposed circuit caused by nonideality of active components is more easily compensated than that of the conventional one employing op-amps, and that the sensitivities for all components are relatively small. Experimental results are used for verifying the validity of the proposed circuits.

  • Requirements on ATM Switch Architectures for Quality-of-Service Guarantees

    Masayuki MURATA  

     
    INVITED PAPER

      Vol:
    E81-B No:2
      Page(s):
    138-151

    While active researches have been continuously made on the ATM switch architectures and the QoS service guarantees, most of them have been treated independently in the past. In this paper, we first explain the architectural requirement on the ATM switches to implement the mechanism of QoS guarantees in the context of ATM congestion control. Then we discuss how a vital link between two should be built, and remaining problems are pointed out.

  • Generation of Low Timing Jitter, Sub-Picosecond Optical Pulses Using a Gain-Switched DFB-LD with CW Light Injection and a Nonlinear Optical Loop Mirror

    Hiroshi OHTA  Seiji NOGIWA  Haruo CHIBA  

     
    LETTER

      Vol:
    E81-C No:2
      Page(s):
    166-168

    The timing jitter of the optical pulse from a gain-switched laser diode is reduced by CW light injection. The reduction ratio of the timing jitter is 5. 5. The pulse width was compressed by a nonlinear optical loop mirror to a pedestal-free optical pulse with a pulse width of 420 fs.

  • Active-Impedance Analysis of Narrow-Band Crystal Oscillators with Resonator Filters and Its Application to Dual-Mode Crystal Oscillators

    lkuo NIIMI  Yasuaki WATANABE  Hitoshi SEKIMOTO  Shigeyoshi GOKA  

     
    PAPER-Electronic Circuits

      Vol:
    E81-C No:2
      Page(s):
    284-289

    This paper describes a method for analyzing active impedance, i. e. equivalent resistance and equivalent reactance, of a narrow-band transistor Colpitts crystal oscillator. This oscillator, employing an AT-cut resonator filter, has a very narrow-band width and an achievement of extremely low phase-noise characteristics is expected. The analysis proposed is based on an algebraic formula, which employs a nonlinear approximation for transistor gm, and a simplified circuit model. Calculated results are compared with the experimental results in the frequency characteristics of the oscillator active impedance with changing the driving signal current. Good agreement between the calculation and experimental results shows that the proposed technique is suitable for designing Colpitts crystal oscillators with resonator filters. In addition we apply this technique to the analysis of dual-mode crystal oscillators.

  • Generation of Ultrashort Pulses from Solid State Lasers

    N. P. BARRY  S. C. W. HYDE  Richard JONES  Robert MELLISH  Yuh-Ping TONG  P. M. W. FRENCH  J. R. TAYLOR  

     
    INVITED PAPER-Femtosecond Solid State Lasers

      Vol:
    E81-C No:2
      Page(s):
    103-111

    The characteristics of several femtosecond solid-state laser systems are described illustrating the diversity of the operational parameters of these lasers. The systems include Pr:YLF, Cr:LiSAF, Cr:Forsterite and Cr:YAG, with wavelength of operation from the visible to the near infra-red. Particular emphasis is placed upon compact, efficient pumping schemes, all-solid-state diode-pumped femtosecond oscillator configurations and newly configured, highly-efficient, tunable, femtosecond lasers pumped by high power fibre lasers.

18381-18400hit(21534hit)