The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

18821-18840hit(21534hit)

  • Detection and Processing of Lightning-Sourced Magnetotelluric Transients with the Wavelet Transform

    Yuanchou ZHANG  David GOLDAK  Ken PAULSON  

     
    PAPER-Digital Signal Processing

      Vol:
    E80-A No:5
      Page(s):
    849-858

    In audio-frequency magnetotelluric surveys, electromagnetic radiation from worldwide thunderstorm activity is used as an energy source for geophysical exploration. Owing to its origin, such a signal is inherently transient and short lived. Therefore, special care should be taken in the detection and processing of this transient signal because the interval of time between two successive transient events contains almost no information as far as the audio frequency magnetotellurist is concerned. In this paper, a wavelet transform detection, processing and analysis technique is developed. A complex-compactly-supported wavelet, known as the Morlet wavelet, is selected as the mother wavelet. With the Morlet wavelet, lightning transients can be easily identified in the noisy recordings and the magnetotelluric impedance tensor can be computed directly in the wavelet transform domain. This scheme has been tested on real data collected in the archipelago of Svalbard, Norway as well as on five sets of synthetic data contaminated with various kinds of noise. The results show the superior performance of the wavelet transform transient detection and analysis technique.

  • Improvement of Fuzzy ARTMAP Performance in Noisy Input Environment Using Weighted-Average Learning

    Jae Sul LEE  Chang Joo LEE  Choong Woong LEE  

     
    LETTER-Neural Networks

      Vol:
    E80-A No:5
      Page(s):
    932-935

    An effective learning method for the fuzzy ARTMAP in the recognition of noisy input patterns is presented. the weight vectors of the system are updated using the weighted average of the noisy input vector and the weight vector itself. This method leads to stable learning and prevents the excessive update of the weight vectors which may cause performance degradation. Simulation results show that the proposed method not only reduces the generation of spurious categories, but aloso increases the recognition ratio in the noisy environment.

  • The p-Collection Problem in a Flow Network with Lower Bounds

    Kaoru WATANABE  Hiroshi TAMURA  Keisuke NAKANO  Masakazu SENGOKU  

     
    PAPER

      Vol:
    E80-A No:4
      Page(s):
    651-657

    In this paper we extend the p-collection problem to a flow network with lower bounds, and call the extended problem the lower-bounded p-collection problem. First we discuss the complexity of this problem to show NP-hardness for a network with path structure. Next we present a linear time algorithm for the lower-bounded 1-collection problem in a network with tree structure, and a pseudo-polynomial time algorithm with dynamic programming type for the lower-bounded p-collection problem in a network with tree structure. Using the pseudo-polynomial time algorithm, we show an exponential algorithm, which is efficient in a connected network with few cycles, for the lower-bounded p-collection problem.

  • Parallelized Simulation of Complicated Polymer Structures and lts Efficiency

    Kazuhito SHIDA  Kaoru OHNO  Masayuki KIMURA  Yoshiyuki KAWAZOE  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    531-537

    A large scale simulation for polymer chains in good solvent is performed. The implementation technique for efficient parallel execution, optimization, and load-balancing are discussed on this practical application. Finally, a simple performance model is proposed.

  • Computational Power of Nondeterministic Ordered Binary Decision Diagrams and Their Subclasses

    Kazuyoshi TAKAGI  Koyo NITTA  Hironori BOUNO  Yasuhiko TAKENAGA  Shuzo YAJIMA  

     
    PAPER

      Vol:
    E80-A No:4
      Page(s):
    663-669

    Ordered Binary Decision Diagrams (OBDDs) are graph-based representations of Boolean functions which are widely used because of their good properties. In this paper, we introduce nondeterministic OBDDs (NOBDDs) and their restricted forms, and evaluate their expressive power. In some applications of OBDDs, canonicity, which is one of the good properties of OBDDs, is not necessary. In such cases, we can reduce the required amount of storage by using OBDDs in some non-canonical form. A class of NOBDDs can be used as a non-canonical form of OBDDs. In this paper, we focus on two particular methods which can be regarded as using restricted forms of NOBDDs. Our aim is to show how the size of OBDDs can be reduced in such forms from theoretical point of view. Firstly, we consider a method to solve satisfiability problem of combinational circuits using the structure of circuits as a key to reduce the NOBDD size. We show that the NOBDD size is related to the cutwidth of circuits. Secondly, we analyze methods that use OBDDs to represent Boolean functions as sets of product terms. We show that the class of functions treated feasibly in this representation strictly contains that in OBDDs and contained by that in NOBDDs.

  • Cost-Radius Balanced Spanning/Steiner Trees

    Hideki MITSUBAYASHI  Atsushi TAKAHASHI  Yoji KAJITANI  

     
    PAPER

      Vol:
    E80-A No:4
      Page(s):
    689-694

    The most crucial factor that degrades a high speed VLSI is the signal propagation delay in a routing tree. It is estimated by the sum of the delay caused by the source-to-sink path length and by the total length. To design a routing tree in which these two are both small and balanced, we propose an algorithm to construct such a spanning tree, based on the idea of constructing a tree combining the minimum-spanning-tree and shortest-path-tree algorithms. This idea is extended to finding a rectilinear Steiner tree. Experiments are presented to illustrate how the source-to-sink path length and total length can be ballanced and small.

  • Distributed Oil Sensors by Eccentric Core Fibers

    Kazunori NAKAMURA  Naotaka UCHINO  Yoshikazu MATSUDA  Toshihiko YOSHINO  

     
    PAPER

      Vol:
    E80-B No:4
      Page(s):
    528-534

    We demonstrate highly quick response and long distance distributed oil sensors using a newly developed eccentric core fiber (ECF). This distributed oil sensor,based on an interaction between measurand oil and evanescent-wave from the ECF, has achieved as short as 4 minutes response time by using an improved coating material and a sensing length over 17 km at a signal wavelength of 1310 nm. The observed sensitivity characteristics coincide with the calculations of the evanescent power outside the cladding and it is shown that the sensitivity can be well estimated from the amount of the outer cladding component of the evanescent power.

  • Beam Forming Characteristics of a Waveguide-Type Optical Phased Array Antenna

    Yasushi MURAKAMI  Keizo INAGAKI  Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E80-B No:4
      Page(s):
    617-624

    This paper presents the beam forming characteristics of an optical waveguide-type phased array antenna. Four linearly arranged array antenna was monolithically fabricated on one LiNbO3 substrate containing variable power dividers (VPDs) and optical phase shifters (OPSs). The amplitude and the phase of each antenna element was controlled by applying DC voltage on each VPD and OPS. Open ends of Ti-indiffused waveguides were used as antenna elements. This antenna was designed to operate at 1.3 µm wavelength band. Experimental results confirm the good beam forming capability of optical phased array antennas.

  • Intelligent Memory: An Architecture for Lock-Free Synchronization

    Nakun SEONG  Naihoon JUNG  Byungho KIM  Hyunsoo YOON  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    441-447

    This paper presents intelligent memory, a new memory architecture capable of providing efficient lock-free synchronization. In the intelligent memory, a sequence of operations on a shared object associated with that memory module can be processed without any intervention so that an environment for the synchronization can be provided by executing a critical section itself in that memory module. For this, we present a memory architecture for the intelligent memory having minimal instruction set and develop a progtramming model, called Critical Section Procedure (CSP), which consists of shared data structures and operations on them. Intelligent memory is intended to eliminate waste of processing time such as busy waiting in spin lock and the retry due to process contentions in existing lock-free synchronization schemes. Simulation results show that the intelligent memory provides better throughput compared with the spin lock and the existing lock-free synchronization schemes.

  • Non-Graph Based Approach on the Analysis of Pointers and Structures

    Dong-Soo HAN  Takao TSUDA  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    480-488

    In high performance compilers to process pointer-handling programs, precise pointer alias analysis is useful for the compilers to generate efficient object code. It is well known that most compiler techniques such as data flow analysis, dependence analysis, side effect analysis and optimizations are related to the alias problem. However, without data structure information, there is a limit on the precision of the alias analysis. Even though the automatic data structure detection problem is complex, when pointer manipulation satisfies some restrictions, some data structures can be detected automatically by compilers with some knowledge of aliases. In this paper, we propose an automatic data structure detection method for Pascal and Fortran 90. Linear list, tree and dag data structures are detected. Detected data structure information can be used not only for raising the precision of alias analysis but also for some optimizing techniques for pointer handling programs directly.

  • Implementation of the Multicolored SOR Method on a Vector Supercomputer

    Seiji FUJINO  Ryutaro HIMENO  Akira KOJIMA  Kazuo TERADA  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    518-523

    We describe the implementation of an iterative method with the goal of gaining a long vector length. The strategy for vectorization by means of multipoint stencils used for discretization of the partial differential equations is discussed. Numerical experiments show that the strategy that requires certain restrictions on the number of grid points in the x and y directions improves the performance on the vector supercomputer.

  • Extending SCI on Hierarchical Directory Trees for Large-Scale Multiprocessors

    Ing-Zong LU  Tien-Fu CHEN  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    434-440

    SCI (Scalable Coherent Interface) is pointerbased coherent directory scheme for massively parallel multiprocessors. Large message latency is one of the problems with SCI because of its linked list structure: the searching latency of messages could grow as a linear order of the number of processors. In this paper, we focus on a hierarchical architecture to propose a new schemeEST(Extending SCI-Tree), which may reduce the message traffic and also take the advantages of the topology property. Simulation results show that the EST scheme is effective in reducing message latency and communication cost when compared with other schemes.

  • A High-Performance Cluster Computing Environment Based on Hybrid Shared Memory/Message Passing Model

    Yoshimasa OHNISHI  Yoshinari SUGIMOTO  Toshinori SUEYOSHI  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    448-454

    We conducted research and development of Distributed Supercomputing Environment (DSE) based on distributed shared memory model to serve as a cluster computing environment to provide parallel processing facilities. Shared memory model and message passing model are well-known typical models of parallel processing. It is desired that hybrid programming environment will make the best use of the prominent features of both models. Consequently, we add a new message passing mechanism to present DSE, and create a prototype called Hybrid DSE as a hybrid model based cluster computing environment. In this paper, we describe the implementation of a message passing mechanism on DSE and performance evaluation of Hybrid DSE.

  • Design of Polarization-Maintaining Optical Fiber Suitable for Thermally-Diffused Expanded Core Techniques

    Hirohisa YOKOTA  Emiko OKITSU  Yutaka SASAKI  

     
    PAPER

      Vol:
    E80-B No:4
      Page(s):
    516-521

    Thermally-diffused expanded core (TEC) techniques brought the fibers with the mode fields expanded by thermal diffusion of core dopants. The techniques are effective to the reduction of splice or connection losses between the different kind of fibers, and are applied to the integrations of thin film optical devices in fiber networks, the fabrications of chirped fiber gratings, and so on. In the practical use of TEC techniques, the fibers are heated high temperature of about 1650 because of a short peried of time in processing by microburners. The mode field diameter expansion (MFDE) ratio, which is defined as the ratio of the mode field diameter in the fiber section having the core expanded and that unexpanded, is desired to be more than 2.0 from the viewpoint of loss reduction in industrial uses of the TEC techniques. When the TEC techniques are applied to polarization-maintaining optical fibers (PM fibers), such as PANDA fibers, both core dopants and stress applying part (SAP) dopants diffuse simultaneously. So the MFDE ratio is less than two without mode field deformation in conventional PANDA fibers which are practically used as PM fibers. In this paper a PANDA fiber design suitable for the TEC techniques is newly proposed. The fiber has 1.28 µm cutoff wavelength and the mode field diameter is about 11 µm before core expansion at 1.3µm wavelength.

  • Nonuniform Output Traffic Distributions in the Multipath Crossbar Network

    Byungho KIM  Boseob KWON  Hyunsoo YOON  Jung Wan CHO  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    417-424

    Multipath interconnection networks can support higher bandwidth than those of nonblocking networks by passing multiple packets to the same output simultaneously and these packets are buffered in the output buffer. The delay-throughput performance of the output buffer in multipath networks is closely related to output traffic distribution, packet arrival process at each output link connected to a given output buffer. The output traffic distributions are different according to the various input traffic patterns. Focusing on nonuniform output traffic distributions, this paper develops a new, general analytic model of the output buffer in multipath networks, which enables us to investigate the delay-throughput performance of the output buffer under various input traffic patterns. This paper also introduces Multipath Crossbar network as a representative multipath network which is the base architecture of our analysis. It is shown that the output buffer performances such as packet loss probability and delay improve as nonuniformity of the output traffic distribution becomes larger.

  • Modified Error Correction/Detection Decoding Scheme of Binary Hamming Codes

    Siu-Wai MOK  Mu-Zhong WANG  Kam-Chi LI  

     
    LETTER-Information Theory and Coding Theory

      Vol:
    E80-A No:4
      Page(s):
    786-788

    A modified error correction/detection scheme based on the scheme by Yi and Lee is proposed. Algebraic decoding is used to perform error correction. Error detection is performed by an absolute value test. It is shown that the proposed scheme bridges the performance gap between Yi and Lee's scheme and Forney's optimal scheme.

  • A Novel Chirped Fiber Bragg Grating Utilizing Thermal Diffusion of Core Dopant

    Satoshi OKUDE  Tetsuya SAKAI  Masaaki SUDOH  Akira WADA  Ryozo YAMAUCHI  

     
    PAPER

      Vol:
    E80-B No:4
      Page(s):
    551-556

    A novel technique is proposed to fabricate a chirped fiber Bragg grating utilizing thermal diffusion of core dopant. The chirped grating is written with a uniform period by using UV exposure technique in the fiber whose effective index of the guided mode varies along its length. Thermal diffusion of the core dopant it employed to realize this change of the effective index. Through the thermal diffusion process, the effective index of the fiber decreases from its initial value. When the grating is written in the diffused core region, its reflection wavelength becomes shorter than that in the non-diffused region. The continuous change of effective index is required for making a chirped grating. The fiber is heated by a non-uniform heat source. When the uniform grating is written in this region, the reflection wavelength smoothly changes along the fiber length although the grating period is constant. By optimizing the fiber parameters to realize a highly chirped grating, we have obtained a typical one whose bandwidth is 14.1 nm at half maximum and maximum rejection in transmission is 29 dB. Additionally, the proposed method has an advantage to control the chirp profile with high mechanical reliability.

  • Blind Separation of Sources Using Temporal Correlation of the Observed Signals

    Mitsuru KAWAMOTO  Kiyotoshi MATSUOKA  Masahiro OYA  

     
    PAPER-Digital Signal Processing

      Vol:
    E80-A No:4
      Page(s):
    695-704

    This paper proposes a new method for recovering the original signals from their linear mixtures observed by the same number of sensors. It is performed by identifying the linear transform from the sources to the sensors, only using the sensor signals. The only assumption of the source signals is basically the fact that they are statistically mutually independent. In order to perform the 'blind' identification, some time-correlational information in the observed signals are utilized. The most important feature of the method is that the full information of available time-correlation data (second-order statistics) is evaluated, as opposed to the conventional methods. To this end, an information-theoretic cost function is introduced, and the unknown linear transform is found by minimizing it. The propsed method gives a more stable solution than the conventional methods.

  • Low Rayleigh Scattering Silicate Glasses for Optical Fibers

    Shigeki SAKAGUCHI  Shin-ichi TODOROKI  

     
    PAPER

      Vol:
    E80-B No:4
      Page(s):
    508-515

    We propose low Rayleigh scattering Na2O-MgO-SiO2 (NMS) glass as a candidate material for low-loss optical fibers. This glass exhibits Rayleigh scattering which is only 0.4 times that of silica glass, and a theoretical evaluation suggests that it is dominated by density fluctuation. An investigation of the optical properties of NMS glass reveals that a minimum loss of 0.06 dB/km is expected at a wavelength of 1.6 µm and that the zero-material dispersion wavelength is found in the 1.5 µm band. To establish the waveguide structure, we evaluated the feasibility of using F-doped NMS (NMS-F) glass as a cladding layer for an NMS core and found that it is suitable because it exhibits low relative scattering (e.g. 0.7) and is versatile in terms of viscosity matching. We also describe an attempt to draw optical fibers using the double crucible technique.

  • Low Consumption Power Application of Pulse-Doped GaAs MESFET's

    Nobuo SHIGA  Kenji OTOBE  Nobuhiro KUWATA  Ken-ichiro MATSUZAKI  Shigeru NAKAJIMA  

     
    PAPER-Quantum Electronics

      Vol:
    E80-C No:4
      Page(s):
    597-603

    The application of pulse-doped GaAs MESFET's to a power amplifier module is discussed in this paper. The epitaxial layer structure was redesigned to have a dual pulse-doped structure for power applications, achieving a sufficient gate-drain brakdown voltage with excellent linearity. The measured load-pull characteristics of the redesigned device for the minimum power consumption design was presented. This device was shown to have almost twice the power-added efficiency of a conventional ion-implanted GaAs MESFET. Two kinds of power amplifiers were designed and fabricated, achieving Pout of 28.6 dBm at IM3 of -40 dBc with Pdc of 8 W and Pout of 33.0 dBm at IM3 of -40 dBc with Pdc of 32 W, respectively.

18821-18840hit(21534hit)