The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

23521-23540hit(30728hit)

  • Asymmetric Transmission Spectrum of a Long-Period Fiber Grating and Its Removal Using a Beam Scanning Method

    Tae-Jung EOM  Young-Jae KIM  Youngjoo CHUNG  Won-Taek HAN  Un-Chul PAEK  Byeong Ha LEE  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-B No:5
      Page(s):
    1241-1246

    In an ideal fiber grating having a uniform refractive index modulation, the reflection or the transmission spectrum is symmetric with equal amount of side lobes on both sides of the resonant wavelength of the fiber grating. It is observed that a long-period fiber grating made by a non-uniform UV laser beam through a uniform amplitude mask has an asymmetric transmission spectrum. The asymmetric characteristic is explained with Mach-Zehnder effect in the long-period fiber grating. The non-uniform UV laser beam makes also a non-uniform index modulation along the fiber core. Therefore, a beam coupled to a cladding mode at a section of the grating can be re-coupled to the core mode after passing a certain distance. The re-coupled beam makes Mach-Zehnder-like interference with the un-coupled core mode. However, it is presented that the asymmetric phenomenon can be overcome by scanning the UV laser beam along the fiber over the mask. The beam scanning method is able to suffer the same fluence of the UV laser beam on the fiber. Finally, a linearly chirped long-period fiber grating was made using the non-uniform UV laser beam. Due to the asymmetricity the chirping effect was not clearly observed. It is also presented that the beam scanning method could remove the asymmetric problem and recover the typical spectrum of the linearly chirped fiber grating.

  • High-Performance VCSELs for Optical Data Links

    Rainer MICHALZIK  Karl Joachim EBELING  Max KICHERER  Felix MEDERER  Roger KING  Heiko UNOLD  Roland JAGER  

     
    INVITED PAPER-Optical Active Devices and Modules

      Vol:
    E84-B No:5
      Page(s):
    1255-1264

    The present paper discusses several promising application areas for optical data links based on high-performance vertical-cavity surface-emitting laser diodes (VCSELs). Both 850 and 980 nm emission wavelength devices realized in the GaAs-AlGaAs or InGaAs-AlGaAs material systems are considered. We show data transmission results of 10 Gb/s signals at 830 nm wavelength over a new high-bandwidth multimode silica fiber of up to 1.6 km length. The same fiber type is employed to demonstrate the first 40 Gb/s transport over 300 m distance by means of a 4-channel coarse wavelength-division multiplexing approach. A first 1 10 linear VCSEL array capable of 10 Gb/s per channel operation is presented for use in next generation parallel optical modules. To improve the singlemode emission characteristics for output power in the 5 mW range we introduce a new device concept incorporating a long monolithic cavity. For low-cost short-distance data links we investigate graded-index polymer optical fibers and report on up to 9 Gb/s transmission over a length of 100 m. Polymer waveguides are also used in an optical layer of a hybrid electrical-optical printed circuit board. Transmitted 10 Gb/s optical data over a prototype board show the potential of this new technology. Finally we present two-dimensional VCSEL arrays for highly parallel data transport on a CMOS chip level. Both 980 and 850 nm bottom emitting devices with modulation capabilities up to 12.5 Gb/s are discussed.

  • Superior Noise Performance and Wide Dynamic Range Erbium Doped Fiber Amplifiers Employing Variable Attenuation Slope Compensator

    Haruo NAKAJI  Motoki KAKUI  Hitoshi HATAYAMA  Chisai HIROSE  Hiroyuki KURATA  Masayuki NISHIMURA  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-B No:5
      Page(s):
    1224-1230

    In order to realize automatic-level-controlled (ALC) erbium doped fiber amplifiers (EDFAs) with both wide dynamic range and good noise performance, we propose EDFAs employing the automatic power control (APC) scheme and a variable attenuation slope compensator (VASC). The VASC consists of two asymmetrical Mach-Zehnder interferometers (MZIs) concatenated in series and thermo optic (TO) heaters are attached to the arms of each MZIs. By adjusting the electric power supplied to the TO heaters, an almost linear attenuation slope can be varied by plus minus 5 dB or more over the operational wavelength band of 30 nm. The EDFA employing the APC scheme and the VASC has exhibited a dynamic range as large as 20 dB with the output power variation as small as 0.7 dB, which is as good as that of the EDFA employing the APC scheme and a variable optical attenuator (VOA). The noise figure (NF) of the EDFA employing the VASC was degraded about 4.1 dB with increasing the input power by 20 dB, while it was degraded about 7.3 dB with increasing the input power by only 15 dB in the EDFA employing the VOA. The EDFA employing the VASC can realize the ALC operation over a wider dynamic range with reduced noise figure degradation. In the EDFA employing the VASC, the power excursion was suppressed to less than 1.1 dB, when the input signal level was changed between -23 dBm/ch and -18 dBm/ch with the rise/fall time of 8 ms.

  • Photonic Crystal Fibres: An Endless Variety

    Timothy A. BIRKS  Jonathan C. KNIGHT  Brian J. MANGAN  Philip St. J. RUSSELL  

     
    INVITED PAPER-Optical Fibers and Cables

      Vol:
    E84-B No:5
      Page(s):
    1211-1218

    A photonic crystal fibre has an array of microscopic air holes running along its length. The periodicity of the array is broken by a deliberate "defect" that acts as a waveguide core. Light is confined to this core by the holes. Although some designs of photonic crystal fibre guide light by total internal reflection and so can be considered analogues of conventional optical fibres, their properties can be strikingly different. Other designs guide light by photonic bandgap confinement and represent a totally new type of fibre.

  • A Novel Optical Add/Drop Multiplexer Utilizing Free Spectral Range Periodicity of Arrayed Waveguide Grating Multiplexer

    Masahide MIYACHI  Shigeru OHSHIMA  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-B No:5
      Page(s):
    1205-1210

    We propose a novel optical add/drop multiplexer (OADM) utilizing free spectral range (FSR) periodicity of an arrayed-waveguide multiplexer (AWG). In this OADM, wavelength-division multiplex (WDM) signal is multiplexed and/or de-multiplexed in two steps. Power penalty due to coherent crosstalk is drastically reduced compared with that of conventional OADM where AWG multiplexers are opposite to each other. The calculated power penalty due to the coherent crosstalk is about 0.7 dB after the 16 OADMs in the case of 128 wavelengths. It was confirmed through a computer simulation that more than one hundred channels at 10 Gbps data rate could be accommodated in an OADM network with 16 nodes. These results show that the OADM network with over 1 Tbps capacity and 16 nodes could be constructed.

  • Polarization-Independent Wavelength Conversion Using Four-Wave Mixing in Single-Mode Fibers Pumped with Cross-Polarized High Frequency Pulses

    Kenichiro TSUJI  Hideaki YOKOTA  Masatoshi SARUWATARI  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-B No:5
      Page(s):
    1190-1196

    This paper describes a simple polarization-independent wavelength conversion method using degenerated four-wave mixing (FWM) in single-mode fibers pumped with cross-polarized high frequency, saw-tooth pulses from a single pump source. Successful polarization-independent wavelength conversion is experimentally confirmed with less than 12% and 5.6% variation using a gain-switched LD pumping and a mode-locked fiber laser pumping, respectively. We clarify that the interference effect between two orthogonal pump pulses must be taken into account to achieve a good polarization-insensitive operation, since even the small pulse edges bring about the large polarization fluctuations when they are interfered. Furthermore, it is reveal that the shorter pump pulse broadens its own spectrum due to the self-phase modulation in fibers, resulting in poor FWM efficiency. Finally, possibility of high-speed operation is discussed taking into account the pump pulse conditions.

  • High Power Tolerant Optical Duobinary Signal Transmission

    Akihiko MATSUURA  Kazushige YONENAGA  Yutaka MIYAMOTO  Akihide SANO  Hiromu TOBA  Mikio YONEYAMA  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-B No:5
      Page(s):
    1173-1178

    We investigated the characteristics of optical duobinary signals in achieving high fiber input power transmission focusing on the idea of optimum residual dispersion equalization. We confirm through calculations and experiments that setting the total link dispersion at a non-zero value allows high fiber launched power (+18 dBm) and large dispersion tolerance (350 ps/nm) at 10 Gbit/s. We demonstrate repeaterless 250-km single mode fiber (SMF) transmission with a 10-Gbit/s optical duobinary signal. We also demonstrate high-speed complete optical duobinary coding and transmit synchronous digital hierarchy (SDH) frames over optical duobinary signals for the first time.

  • Long-Haul Ultra High-Speed Transmission Using Dispersion Managed Solitons

    Lee J. RICHARDSON  Wladek FORYSIAK  Nick J. DORAN  Keith J. BLOW  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-B No:5
      Page(s):
    1159-1166

    We demonstrate, through numerical simulations, the possibility of trans-oceanic single channel transmission at 160 Gbit/s with no active control. This was achieved using short period dispersion management, which supports short pulse propagation at practical map strengths. We demonstrate that through careful selection and optimisation of the system parameters the performance of this system can be extended. We also define the tolerable limits of the system to the residual dispersion slope and polarisation mode dispersion.

  • Wavelength Stabilization Technique Using Dithering-Induced AM Cancellation for DWDM Systems

    Yukio HORIUCHI  Shu YAMAMOTO  Masatoshi SUZUKI  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-B No:5
      Page(s):
    1145-1152

    We proposed and demonstrated a novel wavelength stabilization technique for dense wavelength division multiplexing (DWDM) systems using dithering-induced AM cancellation which improves both wavelength stability and data transmission performance. Our wavelength stabilization technique consists of an optical frequency discriminating function and a function for canceling AM components induced by frequency dithering of the light source. The frequency discrimination in this technique is based on an FM-AM conversion effect, obtained by interaction from frequency dithering of the light with the bandpass characteristic of an arrayed-waveguide grating (AWG) multiplexer. The AM cancellation function was added to suppress optical frequency discriminating errors occurring due to AM components induced by frequency dithering in this wavelength stabilization architecture. In this scheme, an electro-absorption (EA) modulator is employed not only for modulating high-speed data traffic but also for suppressing AM components induced by frequency dithering on the light signal. Since the EA modulator is usually used for modulating high-speed data traffic, dedicated optical devices are not required for suppressing the AM components. The wavelength stability of a light source can therefore be enhanced with simple architecture. In the demonstration, a reduction of fluctuations within 50 MHz versus changes in the modulation index, and long-term stability within 320 MHz after more than 60 hours was achieved in 10 Gbit/s NRZ transmission. We also confirmed that the proposed AM cancellation technique effectively reduces the transmission penalties due to frequency dithering in 10 Gbit/s NRZ data transmission performance.

  • Photonic Core Node Based on a 2.56-Terabit/s Opto-Electronic Switching Fabric

    Soichiro ARAKI  Naoya HENMI  Yoshiharu MAENO  Kazuhiko MATSUDA  Osamu NAKAKUBO  Masayuki SHINOHARA  Yoshihiko SUEMURA  Akio TAJIMA  Hiroaki TAKAHASHI  Seigo TAKAHASHI  Hiromi KOGANEMARU  Ken-ichi SAISHO  

     
    INVITED PAPER-Communication Networks

      Vol:
    E84-B No:5
      Page(s):
    1111-1118

    This paper proposes Photonic Core Node based on a 2.56-Terabit/s opto-electronic switching fabric, which can economically handle the rapidly increasing multimedia traffics, such as Internet traffic. We have successfully developed the first prototype of Photonic Core Node. The prototype consists of a single-stage full-crossbar opto-electronic switching fabric, super-packet buffers for input queuing, and a desynchronized-round-robin scheduler. The switching fabric is upgradable up to 2.56 Tb/s, and employs wavelength-division-multiplexing techniques, which dramatically reduce the total number of optical switching elements down to one-eighth the number of those used in a conventional switching fabric. The super-packet buffer assembles 16 ATM cells routed to the same output port into a single fixed-length packet. The super-packet-switching scheme drastically reduces the overhead of optical switching from 32 to 2.9%, although it tends to decrease effective throughput. The desynchronized-round-robin scheduler maintains nearly 100% effective throughput for random traffic, recursively resolving the contention of connection requests in one scheduling routine while keeping fairness in a round robin manner. The proposed Photonic Core Node can accommodate not only ATM switching but also WDM optical path grooming/multiplexing, and IP routing by using IP input buffer interfaces, because optical switches are bit-rate/format-independent.

  • Optical Label Switching Using Optical Label Based on Wavelength and Pilot Tone Frequency

    Kiyoshi TANAKA  Katsuhiro SHIMANO  Kyo INOUE  Shigeru KUWANO  Takeshi KITAGAWA  Kimio OGUCHI  

     
    PAPER-Communication Networks

      Vol:
    E84-C No:5
      Page(s):
    501-508

    This paper describes a new optical label switching technique; wavelength and pilot tone frequency are combined to form labels that are used to control transport network routing. This technique is very attractive for achieving simple nodes that offer extremely rapid forwarding. Experimental results on the discrimination of optical labels and all-optical label conversion are also presented.

  • New Planar Lightwave Circuit (PLC) Platform Eliminating Si Terraces and Its Application to Opto-electronic Hybrid Integrated Modules

    Takashi YAMADA  Toshikazu HASHIMOTO  Takaharu OHYAMA  Yuji AKAHORI  Akimasa KANEKO  Kazutoshi KATO  Ryouichi KASAHARA  Mikitaka ITO  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E84-C No:5
      Page(s):
    685-692

    We have developed a new planar lightwave circuit (PLC) platform eliminating Si terraces for hybrid integrated optical modules. This PLC platform has the advantage of a lower fabrication cost than the conventional PLC platform with an Si terrace, because it does not require fabrication processes such as Si terrace forming and mechanical polishing. Using our new PLC platform structure, we fabricated a transceiver for optical access networks and an 8-channel multi-channel photoreceiver for wavelength division multiplexing (WDM) interconnection systems.

  • Influence of Wavelength Detuning on Device Performance of Electroabsorption Modulator Integrated Distributed Feedback Lasers Based on Identical Epitaxial Layer Approach

    Chang-Zheng SUN  Bing XIONG  Guo-Peng WEN  Yi LUO  Tong-Ning LI  Yoshiaki NAKANO  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E84-C No:5
      Page(s):
    656-659

    The effect of wavelength detuning on the device performance of identical-epitaxial-layer (IEL) electroabsorption (EA) modulator integrated distributed feedback (DFB) lasers is studied in detail. Based on the lasing behavior of integrated devices with different amount of wavelength detuning and the photocurrent spectra under different reverse biases, the optimal wavelength detuning is experimentally determined to be around 30-40 nm for our IEL integrated devices. By adopting gain-coupled DFB laser section, integrated devices with optimal wavelength detuning have demonstrated excellent single mode performances. The extinction ratio is measured to be greater than 15 dB at -3 V, and the modulation bandwidth is around 8 GHz.

  • Temperature Dependence of Gain Characteristics in 1.3-µm AlGaInAs/InP Strained Multiple-Quantum-Well Semiconductor Lasers

    Toshio HIGASHI  Tsuyoshi YAMAMOTO  Tsutomu ISHIKAWA  Takuya FUJII  Haruhisa SODA  Minoru YAMADA  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E84-C No:5
      Page(s):
    648-655

    We have measured the temperature dependence of the gain characteristics in 1.3-µm AlGaInAs/InP strained multiple-quantum-well (MQW) semiconductor lasers using Hakki-Paoli method. By measuring the temperature dependences of the peak gain value and the gain peak wavelength, we evaluated the temperature dependences of the threshold current and the oscillation wavelength, respectively. The small temperature dependence of the threshold current in AlGaInAs/InP lasers is caused by the small temperature dependence of the transparency current density, which is represented by the characteristic temperature TJtr of 116 K. In AlGaInAs/InP high T0 lasers, the temperature dependence of the oscillation wavelength is slightly larger than that in GaInAsP/InP lasers because of the larger temperature dependence of bandgap wavelength 0.55 nm/K.

  • Temperature Insensitive Micromachined GaAlAs/GaAs Vertical Cavity Wavelength Filter

    Takeru AMANO  Fumio KOYAMA  Nobuhiko NISHIYAMA  Akihiro MATSUTANI  Kenichi IGA  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E84-C No:5
      Page(s):
    678-684

    A novel temperature insensitive wavelength filter consisting of GaAlAs/GaAs distributed Bragg reflectors (DBRs) has been demonstrated. This micromachined DBR is mechanically tuned by differential thermal expansion. The strain-induced displacement of one mirror can generate wavelength tuning and trimming functions with an adjustable temperature dependence. We succeeded in the control of temperature dependence in this micromachined semiconductor filter by properly designing a vertical cavity structure. The achieved temperature dependence was as small as +0.01 nm/K, which is one-tenth of that of conventional semiconductor based optical filters. Also, a wavelength trimming of over 20 nm was demonstrated after completing the device fabrication. In addition, we demonstrated a 4 4 multiple wavelength micromachined vertical cavity filter array. The multi-wavelength filter array with a wavelength span of 45 nm was fabricated by partially etching off a GaAs wavelength control layer loaded on the top surface of device.

  • A Novel Optical Add/Drop Multiplexer Utilizing Free Spectral Range Periodicity of Arrayed Waveguide Grating Multiplexer

    Masahide MIYACHI  Shigeru OHSHIMA  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-C No:5
      Page(s):
    579-584

    We propose a novel optical add/drop multiplexer (OADM) utilizing free spectral range (FSR) periodicity of an arrayed-waveguide multiplexer (AWG). In this OADM, wavelength-division multiplex (WDM) signal is multiplexed and/or de-multiplexed in two steps. Power penalty due to coherent crosstalk is drastically reduced compared with that of conventional OADM where AWG multiplexers are opposite to each other. The calculated power penalty due to the coherent crosstalk is about 0.7 dB after the 16 OADMs in the case of 128 wavelengths. It was confirmed through a computer simulation that more than one hundred channels at 10 Gbps data rate could be accommodated in an OADM network with 16 nodes. These results show that the OADM network with over 1 Tbps capacity and 16 nodes could be constructed.

  • Polarization Insensitive SOA-PLC Hybrid Integrated Michelson Interferometric Wavelength Converter and Its Application to DWDM Networks

    Rieko SATO  Toshio ITO  Katsuaki MAGARI  Akira OKADA  Manabu OGUMA  Yasumasa SUZAKI  Yoshihiro KAWAGUCHI  Yasuhiro SUZUKI  Akira HIMENO  Noboru ISHIHARA  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-C No:5
      Page(s):
    571-578

    We fabricated a 1.55-µm polarization insensitive Michelson interferometric wavelength converter (MI-WC). The MI-WC consists of a two-channel spot-size converter integrated semiconductor optical amplifier (SS-SOA) on a planar lightwave circuit (PLC) platform. Clear eye opening and no power penalty in the back-to-back condition were obtained at 10 Gb/s modulation. We also confirmed the polarization insensitive operation on the input signal. Moreover, for an application of the MI-WC to DWDM networks, we demonstrated the selective wavelength conversion of 2.5 G/s optical packets from Fabry-Perot laser diode (FP-LD) light to four ITU-T grid wavelengths. We confirmed the good feasibility of this technique for use in DWDM networks. The wavelength conversion we describe here is indispensable for future all-optical networks, in which optical signal sources without wavelength control will be used at user-end terminals.

  • Polarization-Independent Wavelength Conversion Using Four-Wave Mixing in Single-Mode Fibers Pumped with Cross-Polarized High Frequency Pulses

    Kenichiro TSUJI  Hideaki YOKOTA  Masatoshi SARUWATARI  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-C No:5
      Page(s):
    564-570

    This paper describes a simple polarization-independent wavelength conversion method using degenerated four-wave mixing (FWM) in single-mode fibers pumped with cross-polarized high frequency, saw-tooth pulses from a single pump source. Successful polarization-independent wavelength conversion is experimentally confirmed with less than 12% and 5.6% variation using a gain-switched LD pumping and a mode-locked fiber laser pumping, respectively. We clarify that the interference effect between two orthogonal pump pulses must be taken into account to achieve a good polarization-insensitive operation, since even the small pulse edges bring about the large polarization fluctuations when they are interfered. Furthermore, it is reveal that the shorter pump pulse broadens its own spectrum due to the self-phase modulation in fibers, resulting in poor FWM efficiency. Finally, possibility of high-speed operation is discussed taking into account the pump pulse conditions.

  • All-Optical Signal Processing Using Highly-Nonlinear Optical Fibers

    Shigeki WATANABE  Fumio FUTAMI  

     
    INVITED PAPER-Optical Systems and Technologies

      Vol:
    E84-C No:5
      Page(s):
    553-563

    The effectiveness and possible applications of all-optical signal processing using highly-nonlinear dispersion-shifted fibers (HNL-DSFs) are described. Transparent and simultaneous processings of multi-channels WDM signal are key features of optical fiber processors. Simultaneous wavelength conversion of 3210 Gb/s WDM signal by four-wave mixing, all-optical 3R regeneration of 220 Gb/s WDM signal using nonlinear loop mirrors, and simultaneous recovery of 2020 GHz WDM optical clocks by supercontinuum were successfully demonstrated using HNL-DSFs, and possible applications of ultra-fast and multi-channel processing in future photonic networks are discussed.

  • Photonic Crystal Fibres: An Endless Variety

    Timothy A. BIRKS  Jonathan C. KNIGHT  Brian J. MANGAN  Philip St. J. RUSSELL  

     
    INVITED PAPER-Optical Fibers and Cables

      Vol:
    E84-C No:5
      Page(s):
    585-592

    A photonic crystal fibre has an array of microscopic air holes running along its length. The periodicity of the array is broken by a deliberate "defect" that acts as a waveguide core. Light is confined to this core by the holes. Although some designs of photonic crystal fibre guide light by total internal reflection and so can be considered analogues of conventional optical fibres, their properties can be strikingly different. Other designs guide light by photonic bandgap confinement and represent a totally new type of fibre.

23521-23540hit(30728hit)