The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

28721-28740hit(30728hit)

  • AlGaAs/GaAs Micromachining for Monolithic Integration of Micromechanical Structures with Laser Diodes

    Yuji UENISHI  Hidenao TANAKA  Hiroo UKITA  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    139-145

    GaAs-based micromachining is a very attractive technique for integrating mechanical structures and active optical devices, such as laser diodes and photodiodes. For monolithically integrating mechanical parts onto laser diode wafers, the micromachining technique must be compatible with the laser diode fabrication process. Our micromachining technique features three major processes: epitaxitial growth (MOVPE) for both the structural and sacrificial layers, reactive dry-etching by chlorine for high-aspect, three-dimensional structures, and selective wet-etching by peroxide/ammonium hydroxide solution to release the moving parts. These processes are compatible with laser fabrication, so a cantilever beam structure can be fabricated at the same time as a laser diode structure. Furthermore, a single-crystal epitaxial layer has little residual stress, so precise microstructures can be obtained without significant deformation. We fabricated a microbeam resonator sensor composed of two laser diodes, a photodiode, and a micro-cantilever beam with an area of 400700 µm. The cantilever beam is 3 µm wide, 5 µm high, and either 110µm long for a 200-kHz resonant frequency or 50 µm long for a 1-MHz resonant frequency. The cantilever beam is excited by an intensity-modulated laser beam from an integrated excitation laser diode; the vibration signal is detected by a coupled cavity laser diode and a photodiode.

  • 3-Dimensional Specific Thickness Glass Diaphragm Lens for Dynamic Focusing

    Takashi KANEKO  Yutaka YAMAGATA  Takaharu IDOGAKI  Tadashi HATTORI  Toshiro HIGUCHI  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    123-127

    A 3-dimensional specific thickness profile was fabricated on a thin glass diaphragm lens to reduce aberration at short focal distances for greater dynamic focusing. The deformation of the diaphragm was calculated by stress analysis utilizing the Finite Element Method (FEM). Geometric non linearity is considered in the FEM analysis. The glass diaphragm is 10 mm in diameter and the average thickness is 11 µm. To obtain both a curved shape and an optical surface on the glass diaphragm, the 3-dimensional precision grinding technique was utilized. The processed shape matches the designed one with less than 0.3 µm deviation, and the average surface roughness is 0.005 µm. Optical characteristics of the dynamic focusing lens having a specific thickness profile, were measured by Modulation Transfer Function (MTF) measurement equipment. At a focal distance of 250 mm, the specific thickness diaphragm lens resolution is 10 cycles/mm, whereas, the uniform thickness diaphragm is 4 cycles/mm. Even at other focal distances, the specific thickness diaphragm shows superior optical characteristics in comparison with those of the uniform thickness diaphragm. The 3-dimensional profile diaphragm resolution is 2.5 times finer at a focal distance of 250 mm, thus, being capable of displacement control for variable optic devices. This was achieved by employing semiconductor processing methods in conjunction with precision grinding techniques which are necessary for fabricating micro structures.

  • Dry-Released Nickel Micromotors with Low-Friction Bearing Structure

    Toshiki HIRANO  Tomotake FURUHATA  Hiroyuki FUJITA  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    132-138

    A new electrostatic wobble motor design and fabrication method were proposed, and micromotors were successfully fabricated and operated. The advantages are (1) thicker structural size, resulting in larger torque, (2) simple and safe fabrication process and (3) needle-shaped bearing to support the rotor. Needle-shaped bearing used here is expected to have lower friction comparing with the existing motor, since the load is smaller for this kind of bearing structure. Two major sources of the load, electrostatic force and capillary force, were considered to prove this tendency. Diamond-like Carbon (DLC) film was employed as a solid lubricant for its bearing. The friction of DLC and that of ilicon-dioxide were compared by experiment.

  • Temperature Compensated Piezoresistor Fabricated by High Energy Ion Implantation

    Takahiro NISHIMOTO  Shuichi SHOJI  Kazuyuki MINAMI  Masayoshi ESASHI  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    152-156

    We developed piezoresistors with an intrinsic compensation of the offset temperature characteristics. High energy ion implantation was applied to fabricate this type of piezoresistor. The dopant profile of the buried piezoresistor resembles to that of the junction gate field effect transistor (JFET). The buried layer corresponds to a channel of JFET, and the substrate bias corresponds to the gate voltage. Owing to the independent temperature varying parameters, i.e., width of the depletion layer and carrier mobility in the channel, the drain current of the JFET has a temperature independent point at an appropriate gate source voltage. The effect was used in the new type of buried piezoresistor which has a driving point of zero temperature coefficient of resistance at an appropriate gate source voltage.

  • Metal Injection Molding (MIM) Processing for Micro Structures; Part 1--Vibrational Processing to Improve the Surface Roughness of the Forming Molds--

    Haruo OGAWA  Yuichiro TAKAHASHI  Jun INAHASHI  Toru SENGA  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    162-166

    The objective of this study is to realize a manipulator of 0.5 mm in outside diameter as a part of 'research and development of micro machine technology.' This manipulator is intended as a part of a working robot to fix or observe the inside wall of a small pipe. One of the important problems of this research is to establish a processing method of a tubular small structure. MIM, metal injection molding, has been adopted to fabricate such a small structure. As a processing method to machine small molds for MIM, finish processing with surface roughness of Rmax 0.1 µm has been under our research applying 'vibrational processing technology,' which was developed on our own. This paper presents the results of 'vibrational processing technology' surface finishing of molds for metal injection.

  • Vertical Cavity Surface-Emitting Laser Array for 1.3 µm Range Parallel Optical Fiber Transmissions

    Toshihiko BABA  Yukiaki YOGO  Katsumasa SUZUKI  Tomonobu KONDO  Fumio KOYAMA  Kenichi IGA  

     
    LETTER-Opto-Electronics

      Vol:
    E78-C No:2
      Page(s):
    201-203

    Long-wavelength 1.3 µm GaInAsP/InP vertical cavity surface-emitting lasers (VCSELs) have been demonstrated in an array configuration. With the strong current confinement by a buried heterostructure and the efficient optical feedback by a dielectric cavity, five VCSEL elements in a 24 array operated at room temperature with 5 mW total power output and wavelength error within 5%. The stacked planar optics including the VCSEL array is a promising optical transmitter in ultra large scale parallel optical communication systems.

  • Design and Manufacturing of Resistive-Sheet Type Wave Absorber at 60GHz Frequency Band

    Osamu HASHIMOTO  Takumi ABE  Ryuji SATAKE  Miki KANEKO  Yasuo HASHIMOTO  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    246-252

    We present a design chart and a manufacturing process for mm-wave absorber consisting of two spacers (poly-carbonate) and two-resistive sheets (polyethylene terephthalate deposited with Indium Tin Oxide). The conventional design chart gives us necessary information to make a desirable absorber. Based on the design chart, a multi-layered type absorber was manufactured and it is concluded that a significant absorption level (-20dB) is attained at a wide-frequency range of 46-66GHz.

  • Approximation of Surface-SAR in a Realistic Head Model for Microwave Exposure Using External Magnetic Near-Field

    Osamu FUJIWARA  Michihiko NOMURA  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    140-144

    A method is described for approximately estimating the surface specific-absorption-rate (SAR) in an anatomically realistic model of the human head for microwave exposure using the external magnetic near-field. The finite-difference time-domain (FD-TD) technique is used to compute the electromagnetic fields in the head model for 750-MHz and 1.5-GHz far-field exposures with the 1991 ANSI specified safety level. The spatial pattern tracking between the one-gram averaged surface-SAR and external magnetic near-field is demonstrated on the horizontal cross sectional perimeter of the head model. The regression coefficients between them are also obtained on the fifty-five horizontal cross sectional perimeters, which could give an approximate value of the surface-SAR in an acutual head, if the external magnetic near-field would be measured. This is validated by the theoretical results in a semi-infinite homogeneous flat model for normal incidence microwave exposure.

  • A High Slew Rate Operational Amplifier for an LCD Driver IC

    Tetsuro ITAKURA  

     
    LETTER

      Vol:
    E78-A No:2
      Page(s):
    191-195

    This paper describes an efficient slew rate enhancement technique especially suitable for an operational amplifier used in an LCD driver IC. This technique employs an input-dependent biasing without directly monitoring an input; instead, monitoring an output of the first stage of the amplifier. This enhancement technique is easily applied to a conventional two-stage operational amplifier and requires only 8 additional transistors to increase slew rates for both rising and falling edges. The bias currents of the first and the second stages are simultaneously controlled by this biasing. Experimental operational amplifiers with and without this enhancement have been fabricated to demonstrate the improvement of slew rate. Slew rates of 12.5V/µsec for the rising edge and 50V/µsec for the falling edge with a 100 pF load capacitance have been achieved by this technique, compared with slew rates of 0.3V/µsec for the rising edge and 5V/µsec for the falling edge in the conventional amplifier.

  • Mechanizing Explicit Inductive Equational Reasoning by DTRC

    Su FENG  Toshiki SAKABE  Yasuyoshi INAGAKI  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E78-D No:2
      Page(s):
    113-121

    Dynamic Term Rewriting Calculus (DTRC) is a new computation model aiming at formal description and verification of algorithms treating Term Rewriting Systems (TRSs). In this paper, we show that we can use DTRC to mechanize explicit induction for proving an inductive theorem, that is, we can translate the statements of base and induction steps for proving by induction into a DTRC term. The translation reduces the proof of the statements into the evaluation of the corresponding DTRC term.

  • Attenuation of Electric Field by Small Reinforced Concrete Building: Measured and Computed Results

    Antonio ORLANDI  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    212-217

    Results of an empirical investigation of the shielding properties of a small pre-fabricated reinforced concrete building are presented. The electric field attenuation was measured in the frequency range of approximately 20kHz to 500MHz. The experiments were performed in collaboration with the Italian National Board of Post an Telecommunications (ISPT). An equivalent stick model has been analyzed in frequency domain by numerically solving a set of electric field integral equations. The influence of the real reinforcement mesh (dimensions, spatial disposition, electrical parameters) on the attenuation of the electric field has been investigated. A comparison between computed and measured results is presented.

  • Defect-Tolerant WSI File Memory System Using Address Permutation for Spare Allocation

    Eiji FUJIWARA  Masaharu TANAKA  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E78-D No:2
      Page(s):
    130-137

    This paper proposes a large capacity high-speed file memory system implemented with wafer scale RAM which adopts a novel defect-tolerant technique. Based on set-associative mapping, the defective memory blocks on the wafer are repaired by switching with the spare memory blocks. In order to repair the clustered defective blocks, these are permuted logically with other blocks by adding some constant value to the input block addresses. The defective blocks remaining even after applying the above two methods are repaired by using error control codes which correct soft errors induced by alpha particles in an on-line operation as well as hard errors induced by the remaining defective blocks. By using the proposed technique, this paper demonstrates a large capacity high-speed WSI file memory system implemented with high fabrication yield and low redundancy rate.

  • Efficient Guided-Probe Fault Location Method for Sequential Circuits

    Xiaoging WEN  Kozo KINOSHITA  Hideo TAMAMOTO  Hiroshi YOKOYAMA  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E78-D No:2
      Page(s):
    122-129

    The efficiency of a guided-probe fault location process is affected by the number of the probed lines. This number depends on the size of the target area and the method by which a line is selected for probing. This paper presents a method for reducing the size of the target area in a sequential circuit by introducing the concepts of Type- and Type- faults. This paper also presents a method of selecting lines for probing in a more efficient way. The efficiency of the proposed methods is demonstrated by experimental results.

  • Digital Analytical Method for Propagation Characteristics on Mutually Coupling Lines

    Yang Xiao DONG  Kunihiko OKAMOTO  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    152-158

    On mutually coupling lines, the transmission signal is dispersively propagated by crosstalk coupling between lines and shows complex propagation characteristics caused by reciprocal reflections. Usually, the differential equation and the integral equation have been applied to analyze the solutions of transmission lines. In this paper, we propose a different analytical method of the propagation characteristics of signal and crosstalk noise. By setting up crosstalk coupling line as a sectionally divided digital transmission network and by using the signal flow graph and the difference equation, the propagation characteristics in the frequency domain, the space domain and the time domain on mutually coupling lines can be obtained. To verify the validity of this method and analyze the complex propagation problems, we first study the crosstalk characteristics of a twisted pair cable via the third circuit by unidirectional coupling. Subsequently we will analyze the coupling theory of bidirectional coupling lines.

  • Parallel Algorithms for Refutation Tree Problem on Formal Graph Systems

    Tomoyuki UCHIDA  Takayoshi SHOUDAI  Satoru MIYANO  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E78-D No:2
      Page(s):
    99-112

    We define a new framework for rewriting graphs, called a formal graph system (FGS), which is a logic program having hypergraphs instead of terms in first-order logic. We first prove that a class of graphs is generated by a hyperedge replacement grammar if and only if it is defined by an FGS of a special form called a regular FGS. In the same way as logic programs, we can define a refutation tree for an FGS. The classes of TTSP graphs and outerplanar graphs are definable by regular FGSs. Then, we consider the problem of constructing a refutation tree of a graph for these FGSs. For the FGS defining TTSP graphs, we present a refutation tree algorithm of O(log2nlogm) time with O(nm) processors on an EREW PRAM. For the FGS defining outerplanar graphs, we show that the refutation tree problem can be solved in O(log2n) time with O(nm) processors on an EREW PRAM. Here, n and m are the numbers of vertices and edges of an input graph, respectively.

  • An Experimental Study on Subjective Evaluation of TV Picture Degradation by Electromagnetic Noise--Opinion Tests on Still and Motion Pictures--

    Motoshi TANAKA  Hiroshi INOUE  Tasuku TAKAGI  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    168-172

    The effects of Gaussian electromagnetic noise and non-Gaussian one on TV picture degradation are studied by using a composite noise generator which can control noise parameters. Three kinds of still pictures and four kinds of motion pictures are tested, and the picture degradation is subjectively evaluated with five-grade impairment scale. The tendency of the picture degradation against the every picture is almost the same. But MOS (Mean Opinion Score) between still picture and motion picture degradation is different in some measure when the power of burst noise is small.

  • Measurements of Fast Transient Fields in the Vicinity of Short Gap Discharges

    Shinobu ISHIGAMI  Ryoichi GOKITA  Yoshifumi NISHIYAMA  Ichiro YOKOSHIMA  Takashi IWASAKI  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    199-206

    The wave forms of electric and magnetic fields radiated by short gap discharges are measured to analyze electrostatic discharge (ESD) events in the near-field zone with the monopole antennas, the loop antenna and the 5.5GHz bandwidth waveform digitizer. The antenna outputs are corrected by the measured characteristics of the antennas. The relations between the measured electric field and the discharge currents are discussed.

  • Improving Generalization Performance by Information Minimization

    Ryotaro KAMIMURA  Toshiyuki TAKAGI  Shohachiro NAKANISHI  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E78-D No:2
      Page(s):
    163-173

    In the present paper, we attempt to show that the information about input patterns must be as small as possible for improving the generalization performance under the condition that the network can produce targets with appropriate accuracy. The information is defined with respect to the hidden unit activity and we suppose that the hidden unit has a crucial role to store the information content about input patterns. The information is defined by the difference between uncertainty of the hidden unit at the initial stage of the learning and the uncertainty of the hidden unit at the final stage of the learning. After having formulated an update rule for the information minimization, we applied the method to a problem of language acquisition: the inference of the past tense forms of regular and irregular verbs. Experimental results confirmed that by our method, the information was significantly decreased and the generalization performance was greatly improved.

  • Computation of Potential Attenuation Process for Charged Human Body Using Numerical Inverse Laplace Transform

    Osamu FUJIWARA  Hironori ENDOH  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    188-192

    The potential attenuation process of charged human body (HB) is analyzed. A two-dimensional circuit model is presented for predicting the potential attenuation characteristics of the HB charged on the floor. The theoretical equation for the HB potential is derived in the closed form in the Laplacian transformation domain, and the numerical inverse Laplace transform is used to compute it. The half-life or relaxation time of the HB potential for decay is numerically examined with respect to the electrical parameters of shoes. The experiment is also conducted for verifying the validity of the computed result.

  • New Lightning-Surge Test Method for Subscriber Telecommunication Equipment Considering Nearby Lightning Return Strokes

    Hiroshi YAMANE  Masaji SATO  Tsuyoshi IDEGUCHI  Masamitsu TOKUDA  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    193-198

    It has become very important to study the lightning surges that were induced in subscriber telecommunication equipment because of the increase of susceptible circuits to the over voltage. The test generator is desire to be developed evaluating the resistibility of equipments against lightning surges. This paper proposes a new lightning-test method for subscriber telecommunication equipment. The waveform of the test generator simulates that of the induced lightning surge voltage caused by a nearby return stroke. The output impedance of the surge generator is determined to match the common-mode impedance of telecommunication lines. The damaged condition of circuit parts and the trouble occurrence rate estimated by using this method agree well with actual observations.

28721-28740hit(30728hit)