Koichi NARAHARA Koichi MAEZAWA
The transition dynamics of a multistable tunnel-diode oscillator is characterized for modulating amplitude of outputted oscillatory signal. The base oscillator possesses fixed-point and limit-cycle stable points for a unique bias voltage. Switching these two stable points by external signal can render an efficient method for modulation of output amplitude. The time required for state transition is expected to be dominated by the aftereffect of the limiting point. However, it is found that its influence decreases exponentially with respect to the amplitude of external signal. Herein, we first describe numerically the pulse generation scheme with the transition dynamics of the oscillator and then validate it with several time-domain measurements using a test circuit.
Shintaro NARISADA Hiroki OKADA Kazuhide FUKUSHIMA Shinsaku KIYOMOTO
The hardness in solving the shortest vector problem (SVP) is a fundamental assumption for the security of lattice-based cryptographic algorithms. In 2010, Micciancio and Voulgaris proposed an algorithm named the Gauss Sieve, which is a fast and heuristic algorithm for solving the SVP. Schneider presented another algorithm named the Ideal Gauss Sieve in 2011, which is applicable to a special class of lattices, called ideal lattices. The Ideal Gauss Sieve speeds up the Gauss Sieve by using some properties of the ideal lattices. However, the algorithm is applicable only if the dimension of the ideal lattice n is a power of two or n+1 is a prime. Ishiguro et al. proposed an extension to the Ideal Gauss Sieve algorithm in 2014, which is applicable only if the prime factor of n is 2 or 3. In this paper, we first generalize the dimensions that can be applied to the ideal lattice properties to when the prime factor of n is derived from 2, p or q for two primes p and q. To the best of our knowledge, no algorithm using ideal lattice properties has been proposed so far with dimensions such as: 20, 44, 80, 84, and 92. Then we present an algorithm that speeds up the Gauss Sieve for these dimensions. Our experiments show that our proposed algorithm is 10 times faster than the original Gauss Sieve in solving an 80-dimensional SVP problem. Moreover, we propose a rotation-based Gauss Sieve that is approximately 1.5 times faster than the Ideal Gauss Sieve.
A fully homomorphic encryption (FHE) would be the important cryptosystem as the basic scheme for the cloud computing. Since Gentry discovered in 2009 the first fully homomorphic encryption scheme, some fully homomorphic encryption schemes were proposed. In the systems proposed until now the bootstrapping process is the main bottleneck and the large complexity for computing the ciphertext is required. In 2011 Zvika Brakerski et al. proposed a leveled FHE without bootstrapping. But circuit of arbitrary level cannot be evaluated in their scheme while in our scheme circuit of any level can be evaluated. The existence of an efficient fully homomorphic cryptosystem would have great practical implications in the outsourcing of private computations, for instance, in the field of the cloud computing. In this paper, IND-CCA1secure FHE based on the difficulty of prime factorization is proposed which does not need the bootstrapping and it is thought that our scheme is more efficient than the previous schemes. In particular the computational overhead for homomorphic evaluation is O(1).
Daisaku MUKAIYAMA Masayoshi YAMAMOTO
Aluminum Electrolytic Capacitors are widely used as the smoothing capacitors in power converter circuits. Recently, there are a lot of studies to detect the residual life of the smoothing Aluminum Electrolytic Capacitors from the information of the operational circuit, such as the ripple voltage and the ripple current of the smoothing capacitor. To develop this kind of technology, more precise impedance models of Aluminum Electrolytic Capacitors become desired. In the case of the low-temperature operation of the power converters, e.g., photovoltaic inverters, the impedance of the smoothing Aluminum Electrolytic Capacitor is the key to avoid the switching element failure due to the switching surge. In this paper, we introduce the impedance calculation model of Aluminum Electrolytic Capacitors, which provides accurate impedance values in wide temperature and frequency ranges.
Incident ticket classification plays an important role in the complex system maintenance. However, low classification accuracy will result in high maintenance costs. To solve this issue, this paper proposes a fuzzy output support vector machine (FOSVM) based incident ticket classification approach, which can be implemented in the context of both two-class SVMs and multi-class SVMs such as one-versus-one and one-versus-rest. Our purpose is to solve the unclassifiable regions of multi-class SVMs to output reliable and robust results by more fine-grained analysis. Experiments on both benchmark data sets and real-world ticket data demonstrate that our method has better performance than commonly used multi-class SVM and fuzzy SVM methods.
Smart business management has been built to efficiently carry out enterprise business activities and improve its business outcomes in a global business circumstance. Firms have applied their smart business to their business activities in order to enhance the smart business results. The outcome of an enterprise's smart business fulfillment has to be managed and measured to effectively establish and control the smart business environment based on its business plan and business departments. In this circumstance, we need the measurement framework that can reasonably gauge a firm's smart business output in order to control and advance its smart business ability. This research presents a measurement instrument for an enterprise smart business performance in terms of a general smart business outcome. The developed measurement scale is verified on its validity and reliability through factor analysis and reliability analysis based on previous literature. This study presents an 11-item measurement tool that can reasonably gauge a firm smart business performance in both of finance and non-finance perspective.
To enhance the user's privacy in electronic ID, anonymous credential systems have been researched. In the anonymous credential system, a trusted issuing organization first issues a certificate certifying the user's attributes to a user. Then, in addition to the possession of the certificate, the user can anonymously prove only the necessary attributes. Previously, an anonymous credential system was proposed, where CNF (Conjunctive Normal Form) formulas on attributes can be proved. The advantage is that the attribute proof in the authentication has the constant size for the number of attributes that the user owns and the size of the proved formula. Thus, various expressive logical relations on attributes can be efficiently verified. However, the previous system has a limitation: The proved CNF formulas cannot include any negation. Therefore, in this paper, we propose an anonymous credential system with constant-size attribute proofs such that the user can prove CNF formulas with negations. For the proposed system, we extend the previous accumulator for the limited CNF formulas to verify CNF formulas with negations.
Di YAO Xin ZHANG Bin HU Xiaochuan WU
A robust adaptive beamforming algorithm is proposed based on the precise interference-plus-noise covariance matrix reconstruction and steering vector estimation of the desired signal, even existing large gain-phase errors. Firstly, the model of array mismatches is proposed with the first-order Taylor series expansion. Then, an iterative method is designed to jointly estimate calibration coefficients and steering vectors of the desired signal and interferences. Next, the powers of interferences and noise are estimated by solving a quadratic optimization question with the derived closed-form solution. At last, the actual interference-plus-noise covariance matrix can be reconstructed as a weighted sum of the steering vectors and the corresponding powers. Simulation results demonstrate the effectiveness and advancement of the proposed method.
In an internet of things (IoT) system using an energy harvesting device and a secondary (2nd) battery, regardless of the age of the 2nd battery, the power management shortens the lifespan of the entire system. In this paper, we propose a scheme that extends the lifetime of the energy harvesting-based IoT system equipped with a Lithium 2nd battery. The proposed scheme includes several policies of using a supercapacitor as a primary energy storage, limiting the charging level according to the predicted harvesting energy, swinging the energy level around the minimum stress state of charge (SOC) level, and delaying the charge start time. Experiments with natural solar energy measurements based on a battery aging approximation model show that the proposed method can extend the operation lifetime of an existing IoT system from less than one and a half year to more than four years.
Shigeru KOZONO Yuya TASHIRO Yuuki KANEMIYO Hiroaki NAKABAYASHI
In a multiple-user MIMO system in which numerous users simultaneously communicate in a cell, the channel matrix properties depend on the parameters of the individual users in such a way that they can be modeled as points randomly moving within the cell. Although these properties can be simulated by computer, they need to be expressed analytically to develop MIMO systems with diversity. Given a small area with an equivalent multi-path, we assume that a user u is at a certain “user point” $P^u(lambda _p^u,xi _p^u)$ in a cell, or (radius $lambda _p^u$ from origin, angle $xi _p^u)$ and that the user moves with movement $M^u(f_{max}^u, xi_v^u)$ around that point, or (Doppler frequency $f_{max}^u$, direction $xi_v^u$). The MU-MIMO channel model consists of a multipath environment, user parameters, and antenna configuration. A general formula of the correlation $ ho_{i - j,i' - j'}^{u - u'} (bm)$ between the channel matrix elements of users u and u' and one for given multipath conditions are derived. As a feature of the MU-MIMO channel, the movement factor $F^{u - u'}(gamma^u,xi_n ,xi_v^u)$, which means a fall coefficient of the spatial correlation calculated from only the user points of u and u', is also derived. As the difference in speed or direction between u and u' increases, $F^{u - u'}(gamma^u,xi_n ,xi_v^u)$ becomes smaller. Consequently, even if the path is LOS, $ ho_{i - j,i' - j'}^{u - u'} (bm)$ becomes low enough owing to the movement factor, even though the correlation in the single-user MIMO channel is high. If the parameters of u and u' are the same, the factor equals 1, and the channels correspond to the users' own channels and work like SU-MIMO channel. These analytical findings are verified by computer simulation.
Ayana KAWAMURA Yuma KINOSHITA Takayuki NAKACHI Sayaka SHIOTA Hitoshi KIYA
We propose a privacy-preserving machine learning scheme with encryption-then-compression (EtC) images, where EtC images are images encrypted by using a block-based encryption method proposed for EtC systems with JPEG compression. In this paper, a novel property of EtC images is first discussed, although EtC ones was already shown to be compressible as a property. The novel property allows us to directly apply EtC images to machine learning algorithms non-specialized for computing encrypted data. In addition, the proposed scheme is demonstrated to provide no degradation in the performance of some typical machine learning algorithms including the support vector machine algorithm with kernel trick and random forests under the use of z-score normalization. A number of facial recognition experiments with are carried out to confirm the effectiveness of the proposed scheme.
Myat Hsu AUNG Hiroshi TSUTSUI Yoshikazu MIYANAGA
In this paper, we propose a WiFi-based indoor positioning system using a fingerprint method, whose database is constructed with estimated reference locations. The reference locations and their information, called data sets in this paper, are obtained by moving reference devices at a constant speed while gathering information of available access points (APs). In this approach, the reference locations can be estimated using the velocity without any precise reference location information. Therefore, the cost of database construction can be dramatically reduced. However, each data set includes some errors due to such as the fluctuation of received signal strength indicator (RSSI) values, the device-specific WiFi sensitivities, the AP installations, and removals. In this paper, we propose a method to merge data sets to construct a consistent database suppressing such undesired effects. The proposed approach assumes that the intervals of reference locations in the database are constant and that the fingerprint for each reference location is calculated from multiple data sets. Through experimental results, we reveal that our approach can achieve an accuracy of 80%. We also show a detailed discussion on the results related parameters in the proposed approach.
Hiroto KAWAKAMI Shoichiro KUWAHARA Yoshiaki KISAKA
We show that imperfection in an IQ-modulator degrades the accuracy of the auto bias control (ABC) circuit connected to the modulator's complementary port. Theoretical analyses show that the IQ-modulator constructed by a nested Mach-Zehnder modulator with a low extinction ratio can distort a constellation of modulated light observed at the complementary port. We propose an auto calibration technique for the ABC circuit that can effectively suppress this degradation. Experimental results using 32-Gbaud, 16-QAM signals showed the measured Q-factor improved by 0.5dB with our proposed technique.
Daichi FURUBAYASHI Yuta KASHIWAGI Takanori SATO Tadashi KAWAI Akira ENOKIHARA Naokatsu YAMAMOTO Tetsuya KAWANISHI
A new structure of the electro-optic modulator to compensate the third-order intermodulation distortion (IMD3) is introduced. The modulator includes two Mach-Zehnder modulators (MZMs) operating with frequency chirp and the two modulated outputs are combined with an adequate phase difference. We revealed by theoretical analysis and numerical calculations that the IMD3 components in the receiver output could be selectively suppressed when the two MZMs operate with chirp parameters of opposite signs to each other. Spectral power of the IMD3 components in the proposed modulator was more than 15dB lower than that in a normal Mach-Zehnder modulator at modulation index between 0.15π and 0.25π rad. The IMD3 compensation properties of the proposed modulator was experimentally confirmed by using a dual parallel Mach-Zehnder modulator (DPMZM) structure. We designed and fabricated the modulator with the single-chip structure and the single-input operation by integrating with 180° hybrid coupler on the modulator substrate. Modulation signals were applied to each modulation electrode by the 180° hybrid coupler to set the chirp parameters of two MZMs of the DPMZM. The properties of the fabricated modulator were measured by using 10GHz two-tone signals. The performance of the IMD3 compensation agreed with that in the calculation. It was confirmed that the IMD3 compensation could be realized even by the fabricated modulator structure.
Yohei SOBU Shinsuke TANAKA Yu TANAKA
Silicon photonics technology is a promising candidate for small form factor transceivers that can be used in data-center applications. This technology has a small footprint, a low fabrication cost, and good temperature immunity. However, its main challenge is due to the high baud rate operation for optical modulators with a low power consumption. This paper investigates an all-Silicon Mach-Zehnder modulator based on the lumped-electrode optical phase shifters. These phase shifters are driven by a complementary metal oxide semiconductor (CMOS) inverter driver to achieve a low power optical transmitter. This architecture improves the power efficiency because an electrical digital-to-analog converter (DAC) and a linear driver are not required. In addition, the current only flows at the time of data transition. For this purpose, we use a PIN-diode phase shifter. These phase shifters have a large capacitance so the driving voltage can be reduced while maintaining an optical phase shift. On the other hand, this study integrates a passive resistance-capacitance (RC) equalizer with a PIN-phase shifter to expand the electro-optic (EO) bandwidth of a modulator. Therefore, the modulation efficiency and the EO bandwidth can be optimized by designing the capacitor of the RC equalizer. This paper reviews the recent progress for the high-speed operation of an all-Si PIN-RC modulator. This study introduces a metal-insulator-metal (MIM) structure for a capacitor with a passive RC equalizer to obtain a wider EO bandwidth. As a result, this investigation achieves an EO bandwidth of 35.7-37 GHz and a 70 Gbaud NRZ operation is confirmed.
Yosuke HINAKURA Hiroyuki ARAI Toshihiko BABA
A compact silicon photonic crystal waveguide (PCW) slow-light modulator is presented. The proposed modulator is capable of achieving a 64 Gbps bit-rate in a wide operating spectrum. The slow-light enhances the modulation efficiency in proportion to its group index ng. Two types of 200-µm-long PCW modulators are presented. These are low- and high-dispersion devices, which are implemented using a complementary metal-oxide-insulator process. The lattice-shifted PCW achieved low-dispersion slow-light and exhibited ng ≈ 20 with an operating spectrum Δλ ≈ 20 nm, in which the fluctuation of the extinction ratio is ±0.5 dB. The PCW device without the lattice shift exhibited high-dispersion, for which a large or small value of ng can be set on demand by changing the wavelength. It was found that for a large ng, the frequency response was degraded due to the electro-optic phase mismatch between the RF signals and slow-light even for such small-size modulators. Meander-line electrodes, which bypass and delay the RF signals to compensate for the phase mismatch, are proposed. A high cutoff frequency of 55 GHz was theoretically predicted, whereas the experimentally measured value was 38 GHz. A high-quality open eye pattern for a drive voltage of 1 V at 32 Gbps was observed. The clear eye pattern was maintained for 50-64 Gbps, although the drive voltage increased to 3.5-5.3 V. A preliminary operation of a 2-bits pulse amplitude modulation up to 100 Gbps was also attempted.
Hajime TANAKA Tsutomu ISHIKAWA Takashi KITAMURA Masataka WATANABE Ryuji YAMABI Ryo YAMAGUCHI Naoya KONO Takehiko KIKUCHI Morihiro SEKI Tomokazu KATSUYAMA Mitsuru EKAWA Hajime SHOJI
We fabricated an InP-based dual-polarization In-phase and Quadrature (DP-IQ) modulator consisting of a Mach-Zehnder (MZ) modulator array integrated with RF termination resistors and backside via holes for high-bandwidth coherent driver modulators and revealed its high reliability. These integrations allowed the chip size (Chip size: 4.4mm×3mm) to be reduced by 59% compared with the previous chip without these integrations, that is, the previous chip needed 8 chip-resistors for terminating RF signals and 12 RF electrode pads for the electrical connection with these resistors in a Signal-Ground-Signal configuration. This MZ modulator exhibited a 3-dB bandwidth of around 40 GHz as its electrical/optical response, which is sufficient for over 400 Gbit/s coherent transmission systems using 16-ary quadrature amplitude modulation (QAM) and 64QAM signals. Also, we investigated a rapid degradation which affects the reliability of InP-based DP-IQ modulators. This rapid degradation we called optical damage is caused by strong incident light power and a high reverse bias voltage condition at the entrance of an electrode in each arm of the MZ modulators. This rapid degradation makes it difficult to estimate the lifetime of the chip using an accelerated aging test, because the value of the breakdown voltage which induces optical damage varies considerably depending on conditions, such as light power, operation wavelength, and chip temperature. Therefore, we opted for the step stress test method to investigate the lifetime of the chip. As a result, we confirmed that optical damage occurred when photo-current density at the entrance of an electrode exceeded threshold current density and demonstrated that InP-based modulators did not degrade unless operation conditions reached threshold current density. This threshold current density was independent of incident light power, operation wavelength and chip temperature.
We propose a nonphotorealistic rendering method for generating checkered pattern images from photographic images. The proposed method is executed by iterative calculation using a Prewitt filter with an expanded window size and can automatically generate checkered patterns according to changes in edges and shade of photographic images. To verify the effectiveness of the proposed method, an experiment was conducted using various photographic images. An additional experiment was conducted to visually confirm the checkered pattern images generated by changing the iteration number, window size, and parameter to emphasize the checkered patterns.
Ryo IGARASHI Masamichi FUJIWARA Takuya KANAI Hiro SUZUKI Jun-ichi KANI Jun TERADA
Effective user accommodation will be more and more important in passive optical networks (PONs) in the next decade since the number of subscribers has been leveling off as well and it is becoming more difficult for network operators to keep sufficient numbers of maintenance workers. Drastically reducing the number of small-scale communication buildings while keeping the number of accommodated users is one of the most attractive solutions to meet this situation. To achieve this, we propose two types of long-reach repeater-free upstream transmission configurations for PON systems; (i) one utilizes a semiconductor optical amplifier (SOA) as a pre-amplifier and (ii) the other utilizes distributed Raman amplification (DRA) in addition to the SOA. Our simulations assuming 10G-EPON specifications and transmission experiments on a 10G-EPON prototype confirm that configuration (i) can add a 17km trunk fiber to a normal PON system with 10km access reach and 1 : 64 split (total 27km reach), while configuration (ii) can further expand the trunk fiber distance to 37km (total 47km reach). Network operators can select these configurations depending on their service areas.
Toshiya MURAI Yuya SHOJI Nobuhiko NISHIYAMA Tetsuya MIZUMOTO
Magneto-optical (MO) switches operate with a dynamically applied magnetic field. The MO devices presented in this paper consist of microring resonators (MRRs) fabricated on amorphous silicon-on-garnet platform. Two types of MO switches with MRRs were developed. In the first type, the switching state is controlled by an external magnetic field component included in the device. By combination of MO and thermo-optic effects, wavelength tunable operation is possible without any additional heater, and broadband switching is achievable. The other type of switch is a self-holding optical switch integrated with an FeCoB thin-film magnet. The switching state is driven by the remanence of the integrated thin-film magnet, and the state is maintained without any power supply.