The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

20541-20560hit(22683hit)

  • Copper Thick Film Conductor for Aluminum Nitride Substrates

    Tsuneo ENDOH  Yasutoshi KURIHARA  

     
    PAPER-Electronic Circuits

      Vol:
    E79-C No:6
      Page(s):
    845-852

    A copper(Cu) thick film conductor containing glass and metal oxide for aluminum niride(AlN) substrate was developed. The conductor showed adhesion strength and reliability which were almost comparable to those of Ag-Pd conductors and also had good solder wettability and erosion properties. The Cu conductors must be fired in a nitrogen atmosphere containing oxygen gas. When they were fired under a low oxygen concentration, the gasses thermally decomposed and their properties changed which meant that the molten gasses could not flow smoothly to the AlN surface, so adhesion strength decreased. On the other hand, under high oxygen concentration, the adhesion strength increased because the thermal decomposition and property changes were suppressed. However, poorer solder wettability was brought about because copper was oxidized. Metal oxide added to the conductor could improve the wettability without decreasing the adhesion strength, even if it was fired at the higher oxygen concentration. Suitable metal oxides were CdO, Co3O5 and Fe2O3.

  • Virtualized Endoscope System--An Application of Virtual Reality Technology to Diagnostic Aid--

    Kensaku MORI  Akihiro URANO  Jun-ichi HASEGAWA  Jun-ichiro TORIWAKI  Hirofumi ANNO  Kazuhiro KATADA  

     
    PAPER

      Vol:
    E79-D No:6
      Page(s):
    809-819

    In this paper we propose a new medical image processing system called Virtualized Endoscope System (VES)", which can examine the inside of a virtualized human body. The virtualized human body is a 3-D digital image which is taken by such as X-ray CT scanner or MRI scanner. VES consists of three modules; (1) imaging, (2) segmentation and reconstruction and (3) interactive operation. The interactive operation module has following thee major functions; (a) display of, (b) measurement from, and (c) manipulation to the virtualized human body. The user of the system can observe freely both the inside and the outside of a target organ from any point and any direction freely, and can perform necessary measurement interactively concerning angle and length at any time during observation. VES enables to observe repeatedly an area where the real endoscope can not enter without pain from any direction which the real endoscope can not. We applied this system to real 3-D X-ray CT images and obtained good result.

  • MEMORI: MHEG Engine for Multimedia Information Object Retrieval and Interchange*

    Hyungseok CHUNG  Kwangsue CHUNG  

     
    PAPER

      Vol:
    E79-D No:6
      Page(s):
    680-686

    This paper presents the design concept of the MEMORI, MHEG Engine for Multimedia information Object Retrieval and Interchange, which consists of three functional modules; the decoder, the object manager, and interpreter. Based on our modular design, the MEMORI has been implemented on the UNIX workstation. The menu-driven object generator has also been developed to generate the test objects conforming to the MHEG. Using the object generator, several multimedia/hypermedia test objects have been composed on the basis of presentation scenarios. The results show that the MEMORI correctly decodes, manages, and interprets the MHEG objects. The MEMORI can be utilized for the interactive multimedia server as well as the multimedia presentation system.

  • A Proposal of Network Protocol with Performance for Multimedia Communication System*

    Ken OHTA  Takashi WATANABE  Tadanori MIZUNO  

     
    PAPER

      Vol:
    E79-D No:6
      Page(s):
    719-727

    Time-critical-communication, which should guarantee a time limit of a communication service is getting important in multimedia and factory automation fields. This paper proposes an IP-based protocol, Network Protocol with Performance (NPP) to provide the advanced best-effort service which takes a time constraint into account for real-time applications on the Internet. NPP uses the packet-scheduling function to make an effort to guarantee time constraints. Packet-scheduling algorithm chooses a packet in a NPP queue by a precedent level and a time constraint of each packet. We also discuss an application of NPP to multimedia communication system, and investigate performance of NPP by simulation.

  • A Method for Displaying Virtual Spaces of Natural Scenes Employing Fractal-Based Shape Data Simplification and Visual Properties

    Noriaki KUWAHARA  Shin-ichi SHIWA  Fumio KISHINO  

     
    PAPER

      Vol:
    E79-D No:6
      Page(s):
    781-791

    In order to display complicated virtual spaces in real time, such as spaces consisting of a dynamic natural scenery, we earlier proposed a method for simplifying the shape data of 3-D trees whereby the amount of shape data is efficiently reduced. The method generates tree shapes based on a fractal model according to the required level of details (LOD). By using a texture-mapping technique, we experimentally showed that our method can display 3-D tree images with allowable image quality in real time. However, methods for controlling the LOD of 3-D tree shapes in virtual spaces have yet to be discussed. In this paper, quantitative evaluations were made on the effect of a data simplification method employing such visual properties as resolution difference between the central vision and peripheral vision. Results showed that it is possible to display a complicated scene containing many trees in real time by controlling the LOD of tree shapes in the virtual space considering such visual properties. Furthermore, so that reality can be added to the virtual space, we consider that it is important to display the natural sways of wind-blown trees and plants in real time. Therefore, we propose a method for generating sway data for simplified tree shape data based on a simple physical model, in which each branch is connected to several other branches by springs, and also a new texture-mapping technique for rendering simplified tree shapes, making it appear as if the shapes have a high LOD. Finally, we show some examples of images of trees generated in real time by using our method, in which many trees exist and sway due to wind.

  • Position Measurement Improvement on a Force Display Device Using Tensed Strings

    Yi CAI  Shengjin WANG  Masahiro ISHII  Makoto SATO  

     
    PAPER

      Vol:
    E79-D No:6
      Page(s):
    792-798

    To develop human interface for virtual environment, we have constructed a tensed strings based interface device called SPIDAR, which allow us to manipulate virtual object directly just like in real space. SPIDAR can both measure the movement of user's finger tip and offer force display. Since proper force feedback comes out of the proper position measurement, in this paper, we will analyze the possible reasons that may cause position measurement error, and propose an algorithm which can revise the error and improve position measurement precision.

  • Vision-Based Human Interface System with World-Fixed and Human-Centered Frames Using Multiple View Invariance

    Kang-Hyun JO  Kentaro HAYASHI  Yoshinori KUNO  Yoshiaki SHIRAI  

     
    PAPER

      Vol:
    E79-D No:6
      Page(s):
    799-808

    This paper presents a vision-based human interface system that enables a user to move a target object in a 3D CG world by moving his hand. The system can interpret hand motions both in a frame fixed in the world and a frame attached to the user. If the latter is chosen, the user can move the object forward by moving his hand forward even if he has changed his body position. In addition, the user does not have to keep in mind that his hand is in the camera field of view. The active camera system tracks the user to keep him in its field of view. Moreover, the system does not need any camera calibration. The key for the realization of the system with such features is vision algorithms based on the multiple view affine invariance theory. We demon-strate an experimental system as well as the vision algorithms. Human operation experiments show the usefulness of the system.

  • Performance Evaluation of Neural Network Hardware Using Time-Shared Bus and Integer Representation Architecture

    Moritoshi YASUNAGA  Tatsuo OCHIAI  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E79-D No:6
      Page(s):
    888-896

    Neural network hardware using time-shared bus and integer representation architecture has already been fabricated and reported from the design viewpoint. However, nothing related to performance evaluation of hardware has yet been presented. Computation-speed, scalability and learning accuracy of hardware are evaluated theoretically and experimentally using a Back Propagation (BP) algorithm. In addition, a mirror-weight assignment technique is proposed for high-speed computation in the BP. NETTalk, an English-pronunciation-reasoning task, has been chosen as the target application for the BP. In the experiment, recently-developed neuro-hardware based on the above architecture and its parallel programming language are used. An outline of the language is described along with BP programming. Mirror-weight assignment allows maximum speed at 55.0 MCUPS (Million Connections Updated Per Second) using 256 neurons in the hidden-layer (numbers of neurons in input-and output-layers are fixed at 203 and 26 respectively in NETTalk). In addition, if scalability is defined as a function of the number of neurons in the hidden-layer, the machine retains high scalability at 0.5 if such a maximum speed needs to be used. No degradation in learning accuracy occurs when experimental results computed using the neuro-hardware are compared with those obtained by floating-point representation architecture (workstation). The experiment indicates that the present integer representational design of the neuro-hardware is sufficient for NETTalk. Performance has been evaluated theoretically. For evaluation purposes, it is assumed that most of the total execution-time is taken up by bus cycles. On the basis of this assumption, an analytical model of computation-speed and scalability is proposed. Analytical predictions agreed well with experimental results.

  • Analysis of Periodic Attractor in a Simple Hysteresis Network

    Kenya JIN'NO  Toshimichi SAITO  

     
    PAPER-Nonlinear Problems

      Vol:
    E79-A No:6
      Page(s):
    873-882

    We analyze dynamics of a simple hysteresis network (ab. SHN) which has only two parameters. We classify the periodic orbits and clarify the number of attractors and their domain of attraction. The SHN is a piecewise linear system, and therefore we can calculate the trajectory using exact solutions. We clarify the bifurcation sets on which equilibrium attractors bifurcate to the periodic orbits. We also give a sufficient condition for stability of the periodic orbits, and the stability is verified by laboratory experiment. The results of this paper may contribute to the development of an efficient multi functional artificial neural network.

  • A 5 ns Cycle 1 Mb Synchronous SRAM with a Fast Write Technology

    Sadayuki OHKUMA  Hiroshi ICHIKAWA  Seigo YUKUTAKE  Hitoshi ENDO  Shuichi KUBOUCHI  

     
    PAPER-Static RAMs

      Vol:
    E79-C No:6
      Page(s):
    763-766

    A GTL/LV-CMOS interfaced 1 M bit(32k words 36bits/64k words18bits) BiCMOS cache SRAM is designed within a 5.65 10.54mm2 chip size. The process is 0.4µm BiCMOS with 4 poly-Si layers, 3 Metal layers, and TFT memory cells(2.66 4.94µm2). The late write operation is newly adopted. The late write operation method improvements make the fast access time 6 ns and the shorter cycle time 5 ns.

  • Object Surface Representation Using Occlusion Analysis of Spatiotemporal Images*

    Takayuki YASUNO  Satoshi SUZUKI  Yasuhiko YASUDA  

     
    PAPER

      Vol:
    E79-D No:6
      Page(s):
    764-771

    Three dimensional model based coding methods are proposed as next generation image coding methods. These new representations need 3D reconstruction techniques. This paper presents a method that extracts the surfaces of static objects that occlude other objects from a spatiotemporal image captured with straight-line camera motion. We propose the concept of occlusion types and show that the occlusion types are restricted to only eight patterns. Furthermore, we show occlusion type pairs contain information that confirms the existence of surfaces. Occlusion information gives strong cues for segmentation and representation. The method can estimate not only the 3D positions of edge points but also the surfaces bounded by the edge points. We show that combinations of occlusion types contain information that can confirm surface existence. The method was tested successfully on real images by reconstructing flat and curved surfaces. Videos can be hierarchically structured with the method. The method makes various applications possible, such as object selective image communication and object selective video editing.

  • Structural Active Object Systems for Mixed-Mode Simulation

    Doohun EUM  Toshimi MINOURA  

     
    PAPER-Sofware System

      Vol:
    E79-D No:6
      Page(s):
    855-865

    A structural active-object system (SAOS) is a transition-based object-oriented system suitable for rapid development of hardware logic simulators. A SAOS consists of a collection of interacting structural active objects (SAOs), whose behaviors are determined by the transition statements provided in their class definitions. Furthermore, SAOs can be structurally and hierarchically composed from their component SAOs like hardware components. These features allow SAOs to model components for circuit simulation more naturally than passive objects used in ordinary object-oriented programming. Also, we can easily create new kinds of components by using the inheritance mechanism. Executions of transition statements may be event-and/or time-driven, and hence digital, analog, and mixed-mode simulation is possible. Prototype simulation programs with graphical user interfaces have been developed as SAOS programs for digital, analog, and mixed-mode circuit simulation.

  • DAVIC: Interoperability Solution for Video-on-Demand Systems

    Hisashi KASAHARA  Hidenori OKUDA  Kazunori SHIMAMURA  

     
    INVITED PAPER

      Vol:
    E79-D No:6
      Page(s):
    647-652

    This paper illustrates activities and accomplishments being made by DAVIC, a non-profit organization pushing forward its open, international, cross-industry standards for audio-visual information systems, of which video-on-demand is the representative. Core technologies selected in its firstly published specifications and their interoperability aspects are summarized here. Preliminary results in our interoperability testing are also shown. Finally, we touch upon the coming work plan of DAVIC which covers wider range of access network capabilities and service domains, e.g. internet.

  • Estimation of Signal Using Covariance Information Given Uncertain Observations in Continuous-Time Systems

    Seiichi NAKAMORI  

     
    PAPER

      Vol:
    E79-A No:6
      Page(s):
    736-745

    This paper designs recursive least-squares fixed-point smoother and filter, which use the observed value, the probability that the signal exists, and the covariance information relevant to the signal and observation noises, on the estimation problem associated with the uncertain observations in linear continuous-time systems.

  • Analysis of Communication Behaviors in ISDN-TV Model Conferences Using Synchronous and Asynchronous Speech Transmission

    Sooja CHOI  

     
    PAPER

      Vol:
    E79-D No:6
      Page(s):
    728-736

    Intricate Speech Communication Mode (I-SC Mode) is observed in verbal interaction during ISDN-TV conferencing. It is characterized by conflicts and multiple interactions of speech. I-SC Mode might cause mental stress to participants and be obstacles for smooth communication. However, the reasons of I-SC Mode on the environment of information transmission are hitherto unknown. Furthermore, analyses on the talks inside a conference site (LT: local talk or a talk inside a local site) and between remote sites (MT: media talk or a talk between remote sites) are originally conceived on assumed differences in cognitive distance and media intimacy. This study deals with communication effects/barriers and cognitive distance/intimacy of media correlated with audio-video transmission signals and speech modes or talk types and response delay in human speech interactions by using an innovated conference model (decision-making transaction model: DT-Model) in synchronous ISDN-TV conference systems (SYN) and asynchronous ones (ASYN). The effects of intricate communication can be predicted to a certain extent and in some ways. In I-SC Mode, because a timely answer can not be received from recipients (or partner), response time delay and response rate are analyzed. These factors are thus analyzed with an innovated dynamic model, where the recognizable acceptance of delay is evaluated. The nonlinear model shows that the larger the response time delay, the lower the response rate becomes. Comparing the response rate between SYN and ASYN, the latter is notably lower than the former. This indicates that the communication efficiency is lower in ASYN. An I-SC Mode is the main mode that occurs during ASYN conferences, and this in turn causes psychological stress. Statistics show the prevalence of a high incidence of complicated plural talks and a low response rate exists as the main factors preventing smooth human-to-human communication. Furthermore, comparing the response delays in face-to-face LT (Tf) and machine-mediated MT (Tm), human communication delay is significantly extended by the effects of initial mechanical delays. Therefore, cognitive intimacy of media is clearly affected by the existence of physical distance.

  • A 4-Mb SRAM Using a New Hierarchical Bit Line Organization Utilizing a T-Shaped Bit Line for a Small Sized Die

    Yoshiyuki HARAGUCHI  Toshihiko HIROSE  Motomu UKITA  Tomohisa WADA  Masanao EINO  Minoru SAITO  Michihiro YAMADA  Akihiko YASUOKA  

     
    PAPER-Static RAMs

      Vol:
    E79-C No:6
      Page(s):
    743-749

    This paper describes a new hierarchical bit line organization utilizing a T-shaped bit line(H-BLT) and its practical implementation in a 4-Mb SRAM using a 0.4µm CMOS process. The H-BLT has reduced the number of I/O circuits for multiplexers, sense amplifiers and write drivers, resulting in an efficient multiple blockdivision of the memory cell array. The size of the SRAM die was reduced by 14% without an access penalty. The active current is 30mA at 5 V and 10 MHz. The typical address access time is 35 ns with a 4.5 V supply voltage and a 30 pF load capacitance. The operating voltage range is 2.5 V to 6.0 V. H-BLT is a bright and useful architecture for the high density SRAMs of the future.

  • Effects of Path Loss and Cell Loading on Frequency Reuse Efficiency and Soft Handoff in CDMA System

    DongSeung KWON  EungSoon SHIN  JaeHeung KIM  InMyoung JEONG  

     
    PAPER

      Vol:
    E79-A No:6
      Page(s):
    790-795

    This paper presents the computer simulation results on frequency reuse efficiency and soft handoff statistics in the CDMA forward link according to path loss and cell loading. The soft handoff threshold effect on the handoff statistics is also evaluated. The frequency reuse efficiency is not a fixed value but varying as function of distance from the home cell, path loss slopes, and cell loading. The total soft handoff pecentile ranges from 0.0 to 64.9 according to cell loading, even if path loss slope is constant.

  • On-Line Fault Diagnosis by Using Fuzzy Cognitive Map

    Keesang LEE  Sungho KIM  Masatoshi SAKAWA  

     
    PAPER-Reliability and Fault Analysis

      Vol:
    E79-A No:6
      Page(s):
    921-927

    A system based on application of Fuzzy Cognitive Map (FCM) to perform on-line fault diagnosis is presented. The diagnostic part of the system is composed of two diagnostic schemes. The first one (basic diagnostic algorithm) can be considered as a simple transition of Shiozaki's signed directed graph approach to FCM framework. The second one is an extended version of the basic diagnostic algorithm where an important concept, the temporal associative memories (TAM) recall of FCM, is adopted. In on-line application, self-generated fault FCM model generates predicted pattern sequence through the TAM recall process, which is compared with observed pattern sequence to declare the origin of fault. As the resultant diagnosis scheme takes short computation time, it can be used for on-line fault diagnosis of large and complex processes, and even for incipient fault diagnosis. In practical case, since real observed pattern sequence may be different from predicted one through the TAM recall owing to propagation delay between process variables, the time indexed fault FCM model incorporating delay time is proposed. The utility of the proposed system is illustrated in fault diagnosis of a tank-pipe system.

  • Qualitative Decomposition and Recognition of Infrared Spectra

    Qi ZHAO  Toyoaki NISHIDA  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E79-D No:6
      Page(s):
    881-887

    The objective of this paper is to provide an effective approach to infrared spectrum recognition. Traditionally, recognizing infrared spectra is a quantitative analysis problem. However, only using quantitative analysis has met two difficulties in practice: (1) quantitative analysis generally very complex, and in some cases it may even become intractable; and (2) when spectral data are inaccurate, it is hard to give concrete solutions. Our approach performs qualitative reasoning before complex quantitative analysis starts so that the above difficulties can be efficiently overcome. We present a novel model for qualitatively decomposing and analyzing infrared spectra. A list of candidates can be obtained based on the solutions of the model, then quantitative analysis will only be applied to the limited candidates. We also present a novel model for handling inaccuracy of spectral data. The model can capture qualitative features of infrared spectra, and can consider qualitative correlations among spectral data as evidence when spectral data are inaccurate. We have tested the approach against about 300 real infrared spectra. This paper also introduces the implementation of the approach.

  • Automatic Hardware Synthesis of Multimedia Synchronizers from High-Level Specifications

    Kshirasagar NAIK  

     
    PAPER

      Vol:
    E79-D No:6
      Page(s):
    743-751

    In this paper, we show that by suitably selecting a notation to construct synchronization requirement specifications (SRS) for multimedia presentation we can express the timing characteristics at an abstract level, verify the specification, and obtain a hardware implementation through a sequence of transformations of the specification. First, we introduce the notion of a well-formed SRS and its hardware model. Second, we model an SRS as a timed Petri net and interpret the transitions of the net as hardware signals. To obtain logic functions from the SRS, we simplify the net and obtain a signal transition graph satisfying the unique state coding property. Finally, we show how to obtain a logic-level design of synchronizers.

20541-20560hit(22683hit)