Kari H. A. KARKKAINEN Pentti A. LEPPANEN
It is demonstrated with the Berlekamp-Massey shift-register synthesis algorithm that the linear complexity value of binary complementary sequences is at least 3/4 of the sequence length. For some sequence pairs the linear complexity value can be even 0.98 times the sequence length. In the light of these results strongly non-linear complementary sequences are considered suitable for information security applications employing the spread-spectrum (SS) technique.
It is well recognized that the electromagnetic interference due to indirect electrostatic discharge (ESD) is not always proportional to the ESD voltage and also that the lower voltage ESD sometimes causes the more serious failure to high-tech information equipment. In order to theoretically examine the peculiar phenomenon, we propose an analytical approach to model the indirect ESD effect. A source ESD model is given here using the spark resistance presented by Rompe and Weizel. Transient electromagnetic fields due to the ESD event are analyzed, which are compared with the experimental data carefully given by Wilson and Ma. A model experiment for indirect ESD is also conducted to confirm the validity of the ESD model presented here.
Takashi FUJI Takeshi TANIGAWA Masahiro INUI Takeo SAEGUSA
In the business systems design learning environment, there may be more than one solution to any given problem. For instance, the data model will be different depending on each learner's perspective. Accordingly, group learning systems are very effective in this domain. We have developed CAMELOT (Collaborative and Multimedia Environment for Learners on Teams) [18] using the Nominal Group Technique for group problem solving. In this paper, the basic framework of the collaborative learning system and the effectiveness of collaborative learning in designing the Data Model are described. By using CAMELOT, each learner learns how to analyze through case studies and how to cooperate with his or her group in problem solving. Learners come to a deeper understanding from using CAMELOT than from studying independently because they are enabled to reach better solutions through discussion, tips from other learners, and examination of one another's works.
Hiroshi MAKINO Hiroaki SUZUKI Hiroyuki MORINAKA Yasunobu NAKASE Hirofumi SHINOHARA Koichiro MASHIKO Tadashi SUMI Yasutaka HORIBA
This paper describes the design of a high-speed 4-2 compressor for fast multipliers. Through the survey of the six kinds of representative conventional 4-2 compressor (RBA 1-3 and NBA 1-3) in both the redundant binary (RB) and the normal binary (NB) scheme, we extracted two problems that degrades the operating speed. The first is the use of multi-input complex gates and the second is the existence of transmission gates (TG) at the input and/or output stages. To solve these problems, we propose high-speed 4-2 compressors using the RB scheme, which we call the high-speed redundant binary adders (HSRBAs). Six kinds of HSRBAs, HSRBA 1-6, were derived by making the Boolean equations suitable for high-speed CMOS circuits. Among them, HSRBA2, HSRBA4 and HSRBA6 have no multi-input complex gate and input/output TG, and perform at a delay time of 0.89 ns which is the fastest of all 4-2 compressors. We investigated the logical relation between HSRBAs and conventional 4-2 compressors by analyzing the Boolean equations for each circuit. This investigation shows that all the conventional redundant binary adders RBA1-3 have the same logic structures as HSRBA2. We also showed the conventional normal binary adders NBA1-3 have the same logic structures as HSRBA1, HSRBA3 and HSRBA5, respectively. This implies all 4-2 compressors can be derived from the same equation regardless of RB or NB. We applied the HSRBA2 to a 5454-bit multiplier using 0.5-µm CMOS technology. The multiplication time at the supply voltage of 3.3 V was 8.8 ns. This is the fastest 5454-bit multiplier with 0.5-µm CMOS so far, and 83% of the speed improvement is due to the high speed 4-2 compressor.
It has become very important to study the lightning surges that flow into telecommunications equipment because of the increased use of circuits susceptible to excess voltage. This paper reports for the first time simultaneous measurements of distributed lightning current at many positions in a mountain-top radio relay station caused by natural direct lightning strikes. More than 90% of the direct lightning current flowed from the lightning rod to the ground through building structural components such as antenna tower legs, waveguides, and so on, with the high frequency components of the lightning current tending to flow into the outside parts of those structural components. And then, 25 to 43 % of the lightning current flowed out again to outside telecommunications cables and power lines because the lightning current raised the station's ground potential. Based on these measurements, to help predict lightning current which is dangerous to telecommunications equipment, lightning current occurrence probabilities at the waveguide and cables were estimated by analyzing the distribution ratios between the current in those components.
Eiji OKAMOTO Wayne AITKEN George Robert BLAKLEY
Polynomials are called permutation polynomials if they induce bijective functions. This paper investigates algebraic properties of permutation polynomials over a finite field, especially properties associated with permutation cycles. A permutation polynomial has a simple structure but good randomness properties suitable for applications. The cycle structure of permutations are considered to be related to randomness. We investigate the algebraic structure from the viewpoint of randomness. First we show the relationship between polynomials and permutations using a matrix equation. Then, we give a general form of a permutation polynomial corresponding to a product C1C2
An adaptive decoding scheme for a concatenated code used in the frequency-hopped spread-spectrum communication system in the presence of a pulse-burst jammer is proposed and its performance is analyzed. Concatenated coding schemes employing binary inner-code and Reed-Solomon outer code are investigated and the use of side information is allowed to decode both erasures and errors. The proposed scheme makes the decoder enable to adapt to the jamming level by switching between two decoding modes such that the decoded bit error rate can be reduced. The optimal threshold value for switching in this proposed scheme is derived. It has been shown that the proposed decoding scheme yields a significant performance improvement over a conventional decoding scheme. In addition, performance analysis and its variation of adaptive decoding scheme with the imperfect side information are also presented.
Hitoshi SUMIDA Atsuo HIRABAYASHI
This letter describes the collector-short technique for improving the blocking capability of the lateral IGBT (LIGBT) on the SOI film. The concept of our proposed techniques is to prevent the injection of the minority carrier from the collector region to the high electric field area. This can be done by replacing the p+-collector layer at the sharp corner of the collector region, where the potential distribution in the device is subject to the diffusion curvature effect of the n-buffer layer, with the n+-collector-short layer. By only introducing the collector-short region to the sharp corner of the collector region, an increase of about 40 V in the breakdown voltage over the LIGBT without the collector-short region can be achieved.
Masaki KUMANOYA Toshiyuki OGAWA Yasuhiro KONISHI Katsumi DOSAKA Kazuhiro SHIMOTORI
Various kinds of new architectures have been proposed to enhance operating performance of the DRAM. This paper reviews these architectures including EDO, SDRAM, RDRAM, EDRAM, and CDRAM. The EDO slightly modifies the output control of the conventional DRAM architecture. Other innovative architectures try to enhance the performance by taking advantage of DRAM's internal multiple bits architecture with internal pipeline, parallel-serial conversion, or static buffers/on-chip cache. A quantitative analysis based on an assumption of wait cycles was made to compare PC system performance with some architectures. The calculation indicated the effectiveness of external or on-chip cache. Future trends cover high-speed I/O interface, unified memory architecture, and system integrated memory. The interface includes limited I/O swing such as HSTL and SSTL to realize more than 100MHz operation. Also, Ramlink and SyncLink are briefly reviewed as candidates for next generation interface. Unified memory architecture attempts to save total memory capacity by combining graphics and main memory. Advanced device technology enables system integration which combine system logic and memory. It suggests one potential direction towards system on a chip in the future.
Atsushi KAMEYAMA Alan MASSENGALE Changhong DAI James S. HARRIS, Jr.
The base transit time of an Aluminum-graded-base PNp AlGaAs/GaAs heterojunction bipolar transistor (HBT) was studied in order to clarify the effect of aluminum grading in the base. Theoretical analysis using a classical drift diffusion model with velocity saturation at the base-collector junction and a high base quasielectric field (58 keV/cm) created by 20%-aluminum linear grading in a 400 base, leads to a base transit time (τb) of 0.9 ps. The base transit time is reduced by four times, compared to the base transit time of 3.6 ps without aluminum grading in the base. In order to demonstrate this advantage, we fabricated aluminum-graded-base PNp AlGaAs/GaAs heterojunction transistor which employs a 20%-aluminum linear graded 400 -wide base. The device with a 2 µm 10 µm emitter showed high RF performance with a cut-off frequency (ft) of 37 GHz and a maximum oscillation frequency (fmax) of 30 GHz at a collector current density of 3.4 104 A/cm2. Further analysis using direct parameter extraction of a small signal circuit model under the collector current density of 1.1-9.9104 A/cm2 indicated the intrinsic transit time, which is the sum of the base transit time and the collector depletion layer transit time (τSC), was as low as 2.3 ps under lowinjection level. Subtracting the collector depletion-layer transit time from the intrinsic time leads to a base transit time of 1.1 ps, which is close to the theoretical base transit time and is the shortest value ever reported. The structure is very attractive for pnp-type AlGaAs HBTs combined with Npn HBTs for complementary applications.
Kohji HOSONO Kiyotaka TSUJI Kazuhiro SHIBAO Eiji IO Hiroo YONEZU Naoki OHSHIMA Kangsa PAK
Using fundamental device and circuits, we have realized three functions required for synaptic connections in self-organizing neural networks: long term memory of synaptic weights, fixed total amount of synaptic weights in a neuron, and lateral inhibition. The first two functions have been condensed into an optical adaptive device and circuits with floating gates. Lateral inhibition has been realized by a winner-take-all circuit and a following lateral excitatory connection circuit. We have fabricated these devices and circuits using CMOS technology and confirmed the three functions. In addition, topological mapping, which is essential for feature extraction, has been formed in a primitive network constructed with the fundamental device and circuits.
For the purpose of automatic speech recognition, language models (LMs) are used to predict possible succeeding words for a given partial word sequence and thereby to reduce the search space. In this paper several kinds of stochastic language models (SLMs) are evaluated-bigram, trigram, hidden Markov model (HMM), bigram-HMM, stochastic context-free grammar (SCFG) and hand-written Bunsetsu Grammar. To compare the predictive power of these SLMs, the evaluation was conducted from two points of views: (1) relationship between the number of model parameters and entropy, (2) predictive rate of succeeding part of speech (POS) and succeeding word. We propose a new type of bigram-HMM and compare it with the other models. Two kinds of approximations are tried and examined through experiments. Results based on both of English Brown-Corpus and Japanese ATR dialog database showed that the extended bigram-HMM had better performance than the others and was more suitable to be a language model.
Jianliang XU Katsushi INOUE Yue WANG Akira ITO
This paper investigates some fundamental properties of alternating one-way (or two-way) pushdown automata (pda's) with sublogarithmic space. We first show that strongly (weakly) sublogarithmic space-bounded two-way alternating pda's are more powerful than one-way alternating pda's with the same space-bound. Then, we show that weakly sublogarithmic space-bounded two-way (one-way) alternating pda's are more powerful than two-way (one-way) nondeterministic pda's and alternating pda's with only universal states using the same space, and we also show that weakly sublogarithmic space-bounded one-way nondeterministic Turing machines are incomparable with one-way alternating Turing machines with only universal states using the same space. Furthermore, we investigate several fundamental closure properties, and show that the class of languages accepted by weakly sublogarithmic space-bounded one-way alternating pda's and the class of languages accepted by sublogarithmic space-bounded two-way deterministic pda's (nondeterministic pda's, alternating pda's with only universal states) are not closed under concatenation, Kleene closure, and length preserving homomorphism. Finally, we briefly investigate a relationship between 'strongly' and 'weakly'.
Seiichiro TANI Kiyoharu HAMAGUCHI Shuzo YAJIMA
An ordered binary decision diagram (OBDD) is a directed acyclic graph for representing a Boolean function. OBDDs are widely used in various areas which require Boolean function manipulation, since they can represent efficiently many practical Boolean functions and have other desirable properties. However, there is very little theoretical research on the complexity of constructing an OBDD. In this paper, we prove that the optimal variable ordering problem of a shared BDD is NP-complete, and briefly discuss the approximation hardness of this problem and related OBDD problems.
Jonghyun LEE Inhwan JUNG Songchun MOON
Recently, a number of concurrency control algorithms have been proposed for multidatabase system (MDBS) concurrency control methods (CCMs) and the most challenging issue of them has been a concern about how to ensure global serializability (GSR). In this paper, we examine two concurrency control algorithms of MDBS through simulation approach: optimistic ticket method (OTM) and global ticket method (GTM). In historical note, OTM is known to be the first practical solution, since this approach ensures GSR by way of automatically resolving indirect conflicts among global transactions without making any restrictions on local CCMs. However, OTM is expected to yield poor performance since it enforces all global transactions to take a local ticket which causes direct conflicts between them. In GTM, the global transaction manager in an MDBS assigns a global ticket to global transactions rather than accessing a local ticket as in OTM. Our experimental results showed that GTM outperforms OTM in cases that short timeout values are given. However, in case that the timeout value relatively becomes long, our results demonstrated that OTM outperforms GTM.
We propose a new algorithm for minimizing the number of vertices of an approximate curve by keeping the error within a given bound (min-# problem) with the parallel-strip error criterion. The best existing algorithm which solves this problem has O (n2 log n) time complexity. Our algorithm which uses the Cone Intersection Method does not have an improved time complexity, but does have a high efficiency. In particular, for practical data such as those which represent the boundaries or the skeletons of an object, the new algorithm can solve the min-# problem in nearly O(n2) time.
Among three factors mainly affecting the cache access time, i. e., hit access time, miss rate and miss penalty, previous approaches were focused on reducing the hit access time and miss rate. In this paper, we propose a scheme called MPC (Miss-Predicting Cache) which achives additional reduction of the average instruction cache access time through reducing the miss penalty. The MPC scheme which predicts cache miss and starts cache miss operations in advance, therefore, is supplementary to previous cache schemes targeted for reducing the miss rate and/or hit access time. Performance of the MPC scheme was evaluated using dinero, a trace-driven cache simulator, with the estimation of silicon area using 0.8 µm CMOS standard cell library.
Masahiro GESHIRO Toshiaki KITAMURA Tadashi YOSHIKAWA Shinnosuke SAWA
A two-waveguide tapered velocity coupler is presented for a variable divider of optical beams. The coupler consists of one tapered slab waveguide in dimension and the other slab waveguide with a constant film thickness. It is assumed that the device is fabricated on a LiNbO3 substrate, with a push/pull external electric field parallel with the optic axis applied only in the film regions of the coupler. Various numerical simulations through the finite difference beam propagation analysis show that a wide range of dividing ratios from - 15 dB to 15 dB or more can be achieved with considerably small values of driving-voltage electrode-length product and that the dividing characteristics are stable over a wide range of frequencies.
Nobuyuki TOKURA Hideo TATSUNO Yoshio KAJIYAMA
This paper shows that a network supplying variable bit rate services can be prevented from becoming congested if each terminal limits the capacity of its connection in terms of its rate of increase. Variable bit rate sources are adequately assessed with two new concepts: the bit rate increase per unit time (acceleration-rate=αbit/sec2) or the bit rate increase ratio (acceleration-ratio=exp (β) ). The dimension of the acceleration-ratio coefficient βis seconds-1. The upper limits α and β are regulated to guarantee the network's QoS. The proposed concepts allow the network state to be accurately estimated and avoid congestion. The proposed method can be applied to ATM networks, Frame Relay networks, Fast Reservation Protocol systems and so on.
Lightning surge protection semiconductor devices have been developed for subscriber telecommunication equipment that utilize transient thermal and low energy dissipation designs to improve surge-handling capability. A fabricated eight-cell device based on transient thermal design and a four-cell device with a thin substrate based on low energy dissipation design have a 1.83 and 1.80 times higher surge-handling capability, respectively, than a conventional device for lightning surge current waveforms of (1.5/30) µs.