The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

21201-21220hit(22683hit)

  • Blazing Effects of Dielectric Grating with Periodically Modulated Two Layers

    Tsuneki YAMASAKI  

     
    LETTER-Electromagnetic Theory

      Vol:
    E78-C No:3
      Page(s):
    322-327

    The blazing effects of dielectric grating consisting of two adjacent sinusoidally modulated layers which lead to the asymmetric profiles on a substrate are analyzed by using improved Fourier series expansion method. This method can be applied to the wide range of grating structure and gave high accurate results by comparing with those obtained by previous method. In this paper, the efficient blazing effects can be achieved by varying normalized distance (w/p) and the normalized thickness (d1/D), where D is kept fixed. The results are greater than those of trapezoidal profiles and triangular profiles. The influences of the second order of modulation index on the radiation efficiencies and normalized leakage factor are also discussed.

  • A New Robust Block Adaptive Filter for Colored Signal Input

    Shigenori KINJO  Hiroshi OCHI  

     
    LETTER-Digital Signal Processing

      Vol:
    E78-A No:3
      Page(s):
    437-439

    In this report, we propose a robust block adaptive digital filter (BADF) which can improve the accuracy of the estimated weights by averaging the adaptive weight vectors. We show that the improvement of the estimated weights is independent of the input signal correlation.

  • New Communication Systems via Chaotic Synchronizations and Modulations

    Makoto ITOH  Hiroyuki MURAKAMI  

     
    PAPER-Nonlinear Problems

      Vol:
    E78-A No:3
      Page(s):
    285-290

    In this paper, we demonstrate how Yamakawa's chaotic chips and Chua's circuits can be used to implement a secure communication system. Furthermore, their performance for the secure communication is discussed.

  • Macro- and Micro-Tribological Properties of Polished CVD Diamond Films and Trial Processing of Diamond

    Shojiro MIYAKE  Takanori MIYAMOTO  Reizo KANEKO  Toshiyuki MIYAZAKI  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    180-185

    Micro-tribology is a key technology in micro-machine. Atomic-scale wear and friction fluctuations degrade the performance of micro-machines. New wear-resistant, low friction materials should be useful in reducing micro- and macro-tribological wear and friction fluctuations. Our investigation of the frictional characteristics of polished CVD diamond films by FFM (friction force microscope), AFM (atomic force microscope) and conventional reciprocating tribometer and trial micro processing of diamond produced three main results. First, the friction coefficient of diamond film increases rapidly with decreasing load in the micro-load region. This is partially due to the surface tension of adsorbed water on the surface under high humidity. In the macro-load region also, the friction coefficient increases with decreasing load, but, in this case it is due to elastic deformation. The second result is that diamond film has excellent wear resistance in the micro-load region compared with silicon and diamond-like carbon (DLC) film. Finally, a micro-diamond gear and diamond shaft were fabricated by laser machining and thermo-chemical etching, and then assembled.

  • A Multielement Flexible Microstrip Patch Applicator for Microwave Hyperthermia

    Yoshio NIKAWA  Masahiro YAMAMOTO  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    145-151

    A light, thin and flexible applicator using a microstrip patch array for microwave heating is presented and tested in this work. The applicator is made of a flat silicone rubber bag, inside of which flows cooling water. EM coupling feeding is applied, which has no direct contact between the feed and the patch, to improve durability and reliability when it is repeatedly applied to the uneven surface of the heated portion of the human body. Simulations of SAR distribution are performed using the finite difference time domain (FD-TD) method. Simulated data are compared with the experimental ones using cubic and cylindrical phantom models with single and multielement patch applicators. Simulations of temperature distribution are also performed using the heat transfer equation. Simulated data are compared with the experimental ones using cubic and cylindrical phantom models. The simulated results agree well with the experimental ones. The results obtained here show that the multielement flexible microstrip patch applicator which operates at 430MHz can heat a relatively shallow and widespread area on the human body for hyperthermia treatments.

  • Electrostatic Actuator with Electret

    Mitsuo ICHIYA  Fumihiro KASANO  Hiromi NISHIMURA  Jacques LEWINER  Didier PERINO  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    128-131

    In this paper, an electrostatic actuator with electret is proposed. Electrets are the electrical equivalent of magnets. They are dielectric's carrying a non equilibrium permanent space charge or polarization distribution. This distribution can create either an external electric field or internal properties such as piezo or pyroelectricity. In the first case it is possible to make new types of electrostatic actuators by the external electric field. An electrostatic relay with electret is fabricated to demonstrate the possibility of an electrostatic actuator with electret. The size of relay is 5.2 mm11.5 mm. Its amature beam is 50 µm thick, 2.9 mm wide, 6.3 mm long, and acts as a moving electrode. Facing it, the stationary electrode is 20 µm away from the moving electrode. On the stationary electrode, new type of electret made from SiO2 is deposited. We have succeeded in making the armature operate at low applied voltage 20 V. On the same structure without electret, we need more than 120 V to make the same armature operation. We have also succeeded in making the armature latching.

  • AlGaAs/GaAs Micromachining for Monolithic Integration of Micromechanical Structures with Laser Diodes

    Yuji UENISHI  Hidenao TANAKA  Hiroo UKITA  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    139-145

    GaAs-based micromachining is a very attractive technique for integrating mechanical structures and active optical devices, such as laser diodes and photodiodes. For monolithically integrating mechanical parts onto laser diode wafers, the micromachining technique must be compatible with the laser diode fabrication process. Our micromachining technique features three major processes: epitaxitial growth (MOVPE) for both the structural and sacrificial layers, reactive dry-etching by chlorine for high-aspect, three-dimensional structures, and selective wet-etching by peroxide/ammonium hydroxide solution to release the moving parts. These processes are compatible with laser fabrication, so a cantilever beam structure can be fabricated at the same time as a laser diode structure. Furthermore, a single-crystal epitaxial layer has little residual stress, so precise microstructures can be obtained without significant deformation. We fabricated a microbeam resonator sensor composed of two laser diodes, a photodiode, and a micro-cantilever beam with an area of 400700 µm. The cantilever beam is 3 µm wide, 5 µm high, and either 110µm long for a 200-kHz resonant frequency or 50 µm long for a 1-MHz resonant frequency. The cantilever beam is excited by an intensity-modulated laser beam from an integrated excitation laser diode; the vibration signal is detected by a coupled cavity laser diode and a photodiode.

  • 3-Dimensional Specific Thickness Glass Diaphragm Lens for Dynamic Focusing

    Takashi KANEKO  Yutaka YAMAGATA  Takaharu IDOGAKI  Tadashi HATTORI  Toshiro HIGUCHI  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    123-127

    A 3-dimensional specific thickness profile was fabricated on a thin glass diaphragm lens to reduce aberration at short focal distances for greater dynamic focusing. The deformation of the diaphragm was calculated by stress analysis utilizing the Finite Element Method (FEM). Geometric non linearity is considered in the FEM analysis. The glass diaphragm is 10 mm in diameter and the average thickness is 11 µm. To obtain both a curved shape and an optical surface on the glass diaphragm, the 3-dimensional precision grinding technique was utilized. The processed shape matches the designed one with less than 0.3 µm deviation, and the average surface roughness is 0.005 µm. Optical characteristics of the dynamic focusing lens having a specific thickness profile, were measured by Modulation Transfer Function (MTF) measurement equipment. At a focal distance of 250 mm, the specific thickness diaphragm lens resolution is 10 cycles/mm, whereas, the uniform thickness diaphragm is 4 cycles/mm. Even at other focal distances, the specific thickness diaphragm shows superior optical characteristics in comparison with those of the uniform thickness diaphragm. The 3-dimensional profile diaphragm resolution is 2.5 times finer at a focal distance of 250 mm, thus, being capable of displacement control for variable optic devices. This was achieved by employing semiconductor processing methods in conjunction with precision grinding techniques which are necessary for fabricating micro structures.

  • Modeling of Curved Conductor Surface in Analysis of Cavity Resonators by Spatial Network Method

    Yukio IIDA  Masanobu MORITA  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E78-C No:2
      Page(s):
    193-200

    This paper describes the method of applying the integral form of Maxwell's equations to the transmission-line network used in the spatial network method for the modeling of curved conductor surfaces. The techniques of dealing with the transmission-line network near cylindrical conductor surface are explained in detail. To compare exact solutions with computed values, a cylindrical cavity resonator is analysed. The resonant frequencies and unloaded Q's for the computed three modes are obtained with the error of about 1%. Moreover, applying this treatment to the waveguide with magnetron anodeshape cross section, a cutoff-constant is computed successfully. It is found that the treatment proposed in this paper can be used as the method for modeling of curved conductor surface in the spatial network method. It is also considered that this treatment can be extend to TLM method.

  • Vertical Cavity Surface-Emitting Laser Array for 1.3 µm Range Parallel Optical Fiber Transmissions

    Toshihiko BABA  Yukiaki YOGO  Katsumasa SUZUKI  Tomonobu KONDO  Fumio KOYAMA  Kenichi IGA  

     
    LETTER-Opto-Electronics

      Vol:
    E78-C No:2
      Page(s):
    201-203

    Long-wavelength 1.3 µm GaInAsP/InP vertical cavity surface-emitting lasers (VCSELs) have been demonstrated in an array configuration. With the strong current confinement by a buried heterostructure and the efficient optical feedback by a dielectric cavity, five VCSEL elements in a 24 array operated at room temperature with 5 mW total power output and wavelength error within 5%. The stacked planar optics including the VCSEL array is a promising optical transmitter in ultra large scale parallel optical communication systems.

  • Mechanizing Explicit Inductive Equational Reasoning by DTRC

    Su FENG  Toshiki SAKABE  Yasuyoshi INAGAKI  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E78-D No:2
      Page(s):
    113-121

    Dynamic Term Rewriting Calculus (DTRC) is a new computation model aiming at formal description and verification of algorithms treating Term Rewriting Systems (TRSs). In this paper, we show that we can use DTRC to mechanize explicit induction for proving an inductive theorem, that is, we can translate the statements of base and induction steps for proving by induction into a DTRC term. The translation reduces the proof of the statements into the evaluation of the corresponding DTRC term.

  • Parallel Algorithms for Refutation Tree Problem on Formal Graph Systems

    Tomoyuki UCHIDA  Takayoshi SHOUDAI  Satoru MIYANO  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E78-D No:2
      Page(s):
    99-112

    We define a new framework for rewriting graphs, called a formal graph system (FGS), which is a logic program having hypergraphs instead of terms in first-order logic. We first prove that a class of graphs is generated by a hyperedge replacement grammar if and only if it is defined by an FGS of a special form called a regular FGS. In the same way as logic programs, we can define a refutation tree for an FGS. The classes of TTSP graphs and outerplanar graphs are definable by regular FGSs. Then, we consider the problem of constructing a refutation tree of a graph for these FGSs. For the FGS defining TTSP graphs, we present a refutation tree algorithm of O(log2nlogm) time with O(nm) processors on an EREW PRAM. For the FGS defining outerplanar graphs, we show that the refutation tree problem can be solved in O(log2n) time with O(nm) processors on an EREW PRAM. Here, n and m are the numbers of vertices and edges of an input graph, respectively.

  • Defect-Tolerant WSI File Memory System Using Address Permutation for Spare Allocation

    Eiji FUJIWARA  Masaharu TANAKA  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E78-D No:2
      Page(s):
    130-137

    This paper proposes a large capacity high-speed file memory system implemented with wafer scale RAM which adopts a novel defect-tolerant technique. Based on set-associative mapping, the defective memory blocks on the wafer are repaired by switching with the spare memory blocks. In order to repair the clustered defective blocks, these are permuted logically with other blocks by adding some constant value to the input block addresses. The defective blocks remaining even after applying the above two methods are repaired by using error control codes which correct soft errors induced by alpha particles in an on-line operation as well as hard errors induced by the remaining defective blocks. By using the proposed technique, this paper demonstrates a large capacity high-speed WSI file memory system implemented with high fabrication yield and low redundancy rate.

  • Improving Generalization Performance by Information Minimization

    Ryotaro KAMIMURA  Toshiyuki TAKAGI  Shohachiro NAKANISHI  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E78-D No:2
      Page(s):
    163-173

    In the present paper, we attempt to show that the information about input patterns must be as small as possible for improving the generalization performance under the condition that the network can produce targets with appropriate accuracy. The information is defined with respect to the hidden unit activity and we suppose that the hidden unit has a crucial role to store the information content about input patterns. The information is defined by the difference between uncertainty of the hidden unit at the initial stage of the learning and the uncertainty of the hidden unit at the final stage of the learning. After having formulated an update rule for the information minimization, we applied the method to a problem of language acquisition: the inference of the past tense forms of regular and irregular verbs. Experimental results confirmed that by our method, the information was significantly decreased and the generalization performance was greatly improved.

  • Computation of Potential Attenuation Process for Charged Human Body Using Numerical Inverse Laplace Transform

    Osamu FUJIWARA  Hironori ENDOH  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    188-192

    The potential attenuation process of charged human body (HB) is analyzed. A two-dimensional circuit model is presented for predicting the potential attenuation characteristics of the HB charged on the floor. The theoretical equation for the HB potential is derived in the closed form in the Laplacian transformation domain, and the numerical inverse Laplace transform is used to compute it. The half-life or relaxation time of the HB potential for decay is numerically examined with respect to the electrical parameters of shoes. The experiment is also conducted for verifying the validity of the computed result.

  • An Effect on Chip Interleaving and Hard Limiter against Burst Noise in Direct Sequence Spread Spectrum Communication Systems

    Shin'ichi TACHIKAWA  

     
    LETTER-Spread Spectrum Technology

      Vol:
    E78-A No:2
      Page(s):
    272-276

    This paper presents improvement of data error rate against burst noise by using both chip interleaving and hard limiter in direct sequence spread spectrum (DS/SS) communication systems. Chip interleaving, which is a unique method of DS/SS systems, is effective when burst noise power is small. However, when the burst noise power is large, date error rate is degraded. While, though hard limiter suppresses burst noise power, it gives little effectiveness when the burst noise length is long. Using chip interleaving and hard limiter together, as they work complementary, stable and considerable improvement of data error rate is achieved.

  • A Rule-Embedded Neural-Network and Its Effectiveness in Pattern Recognition with -Posed Conditions

    Mina MARUYAMA  Nobuo TSUDA  Kiyoshi NAKABAYASHI  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E78-D No:2
      Page(s):
    152-162

    This paper describes an advanced rule-embedded neural network (RENN+) that has an extended framework for achieving a very tight integration of learning-based neural networks and rule-bases of existing if-then rules. The RENN+ is effective in pattern recognition with ill-posed conditions. It is basically composed of several component RENNs and an output RENN, which are three-layer back-propagation (BP) networks except for the input layer. Each RENN can be pre-organized by embedding the if-then rules through translation of the rules into logic functions in a disjunctive normal form, and can be trainded to acquire adaptive rules as required. A weight-modification-reduced learning algorithm (WMR) capable of standard regularization is used for the post-training to suppress excessive modification of the weights for the embedded rules. To estimate the effectiveness of the proposed RENN+, it was used for pattern recognition in a radar system for detection of buried pipes. This trial showed that a RENN+ with two component RENNs had good recognition capability, whereas a conventional BP network was ineffective.

  • Geometric Shape Recognition with Fuzzy Filtered Input to a Backpropagation Neural Network

    Figen ULGEN  Andrew C. FLAVELL  Norio AKAMATSU  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E78-D No:2
      Page(s):
    174-183

    Recognition of hand drawn shapes is beneficial in drawing packages and automated sketch entry in hand-held computers. Although it is possible to store and retrieve drawings through the use of electronic ink, further manipulation of these drawings require recognition to be performed. In this paper, we propose a new approach to invariant geometric shape recognition which utilizes a fuzzy function to reduce noise and a neural network for classification. Instead of recognizing segments of a drawing and then performing syntactical analysis to match with a predefined shape, which is weak in terms of generalization and dealing with noise, we examine the shape as a whole. The main concept of the recognition method is derived from the fact that internal angles are very important in the perception of the shape. Our application's aim is to recognize and correctively redraw hand drawn ellipses, circles, rectangles, squares and triangles. The neural network learns the relationships between the internal angles of a shape and its classification, therefore only a few training samples which represent the class of the shape is sufficient. The results are very successful, such that the neural network correctly classified shapes which were not included in the training set.

  • Design and Manufacturing of Resistive-Sheet Type Wave Absorber at 60GHz Frequency Band

    Osamu HASHIMOTO  Takumi ABE  Ryuji SATAKE  Miki KANEKO  Yasuo HASHIMOTO  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    246-252

    We present a design chart and a manufacturing process for mm-wave absorber consisting of two spacers (poly-carbonate) and two-resistive sheets (polyethylene terephthalate deposited with Indium Tin Oxide). The conventional design chart gives us necessary information to make a desirable absorber. Based on the design chart, a multi-layered type absorber was manufactured and it is concluded that a significant absorption level (-20dB) is attained at a wide-frequency range of 46-66GHz.

  • Three-Dimensional Microfabrication of Single-Crystal Silicon by Plasma Etching

    Tomoaki GOTO  Kouji MATSUSHITA  Katsumi HIRONO  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    167-173

    A conventional anode coupled plasma etching process has been developed to etch 300 µm-deep cavities and 600 µm-through holes with nearly vertical sidewalls into single crystal silicon. An optimized SF6/O2 gas mixture results in a nearly vertical etching profile. A silicon wafer was fabricated with a large number of cavities and through holes with less than 1 percent uniformity. It was also experimentally confirmed that this process can be used to etch vertical cavities and through holes in single-crystal silicon with any orientation. This process has the advantage of unlimited etching depth and etching patterns. Advantages in mechanical strength are obtained because a micro-curve is formed at the bottom edge of the cavities. This etching process developed on a conventional plasma etching system was utilized to fabricate a torsional vibrator that consists of single-crystal silicon and Pyrex glass.

21201-21220hit(22683hit)