The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

21681-21700hit(22683hit)

  • Praseodymium-Doped Fiber Amplifiers at 1.3m

    Yasutake OHISHI  Terutoshi KANAMORI  Makoto SHIMIZU  Makoto YAMADA  Yukio TERUNUMA  Jiro TEMMYO  Masato WADA  Shoichi SUDO  

     
    INVITED PAPER

      Vol:
    E77-B No:4
      Page(s):
    421-440

    Fundamentals and development of PDFAs are described. Spectroscopic data of Pr3+ in a fluoride glass are presented with a view to understanding the performance of PDFA. An amplification mechanism model which explains PDFA performance is established. On the basis of the model pump schemes which efficiently extract the potential in Pr3+-doped fluoride fiber are discussed in order to construct amplifier modules. Gain characteristics of Pr3+-doped fluoride fibers are clarified. Codoping effect on pump wavelength extension is investigated. LD-pumped PDFA construction and performance are described. PDFAs are shown to be attractive device to upgrade the performance of optical systems at 1.3µm. Furthermore future approaches to PDFA research are discussed.

  • Traffic Analysis of the Stop-and-Wait ARQ over A Markov Error Channel

    Masaharu KOMATSU  Chun-Xiang CHEN  Kozo KINOSHITA  

     
    PAPER-Communication Theory

      Vol:
    E77-B No:4
      Page(s):
    477-484

    Recently, the throughput performances of ARQ's have been analyzed over a Markov error channel. It has been shown that given a round-trip-delay, the throughput of the Stop-and-Wait ARQ is dependent only on the overall average packet-error probability. In this paper, we exactly analyze the Stop-and-Wait ARQ scheme under the condition that the channel is slotted and packet errors occur according to a two-state Markov chain which is characterized by the decay factor. The distribution of packet delay time and the channel usage factor are obtained. From the analytical results and numerical examples, it is shown that for a given round-trip-delay, the average packet delay time and the channel utilization factor depend on both the overall average packet-error probability and the decay factor characterizing the two-state Markov chain. Furthermore, the decay factor gives different influence on the average delay time and the channel usage factor depending on whether the round-trip-delay is even slots or not.

  • LSI Failure Analysis with CAD-Linked Electron Beam Test System and Its Cost Evaluation

    Hiromu FUJIOKA  Koji NAKAMAE  

     
    INVITED PAPER

      Vol:
    E77-C No:4
      Page(s):
    535-545

    Following a discussion of various testing methods used in the electron beam (EB) test system, new waveform-based and image-based approaches in the CAD-linked electron beam (EB) test system are proposed. A waveform-based automatic tracing algorithm of the transistor-level performance faults is first discussed. Then, the method to improve the efficiency of an image-based method called dynamic fault imaging (DFI) by fully utilizing the CAD data is described. Third, the VLSI development cost is analyzed by using the fault models that make possible to take into consideration the effect of new testing technologies such as EB testing and focused ion beam (FIB) microfabrication. Finally, the future prospects are discussed.

  • Taper-Shape Dependence of Tapered-Waveguide Traveling Wave Semiconductor Laser Amplifier (TTW-SLA)

    Syamsul EL YUMIN  Kazuhiro KOMORI  Shigehisa ARAI  Giampaolo BENDELLI  

     
    PAPER-Opto-Electronics

      Vol:
    E77-C No:4
      Page(s):
    624-632

    Operation characteristics of tapered-waveguide traveling wave semiconductor laser amplifier (TTW-SLA) are calculated in terms of quasi adiabatic single mode propagation, signal gain and saturation output power, device efficiency(the efficiency of conversion between the electrical and amplified optical power), and amplified spontaneous emission (ASE) power, and their dependences on the shape of the taper are compared for linear, quadratic, Gaussian and exponential functions, It was found that in the allowed quasi adiabatic single mode propagation condition, linear and Gaussian TTW-SLA have higher saturation output power property, while the exponential TTW-SLA has higher device efficiency property and lower ASE noise of about 0.1 times that of a broad type TW-SLA.

  • On Evaluation of Reference Vector Density for Self-Organizing Feature Map

    Toshiyuki TANAKA  

     
    PAPER-Mapping

      Vol:
    E77-D No:4
      Page(s):
    402-408

    In this paper, I investigate a property of self-organizing feature map (SOFM) in terms of reference vector density q(x) when probability density function of input signal fed into SOFM is p(x). Difficulty of general analysis on this property is briefly discussed. Then, I employ an assumption (conformal map assumption) to evaluate this property, and it is shown that for equilibrium state, q(x)p(x)s holds. By giving Lyapunov functioin for time evolution of reference vector density q(x) in SOFM, the equilibrium state is proved to be stable in terms of distribution. Comparison of the result with one which is based on different assumption reveals that there is no unique result of a simple form, such as conjectured by Kohonen. However, as there are cases in which these assumptions hold, these results suggest that we can consider a range of the property of SOFM. On the basis of it, we make comparison on this property between SOFM and fundamental adaptive vector quantization algorithm, in terms of the exponent s of the relation q(x)p(x)s. Difference on this property between SOFM and fundamental adaptive vector quantization algorithm, and propriety of mean squared quantization error for a performance measure of SOFM, are discussed.

  • Analysis of the Circuit for Dead Angle Compensation in the DC-to-DC Converter Controlled by a Magnetic Amplifier

    Kazurou HARADA  Koosuke HARADA  

     
    PAPER-Power Supply

      Vol:
    E77-B No:4
      Page(s):
    494-500

    An analysis of the circuit for dead angle compensation in the dc-to-dc converter controlled by a magnetic amplifier is presented. This circuit suppresses the dead angle so that the core loss may be reduced without spoiling the current surge suppression characteristics of the magnetic amplifier. The analysis is given by modeling the magnetization characteristics of the core containing the saturation inductance and the reverse recovery of the diode. As a result, the control characteristics of the converter with the compensation circuit are expressed analytically and a limit of compensation is derived theoretically.

  • Designing Efficient Geometric Search Algorithms Using Persistent Binary-Binary Search Trees

    Xuehou TAN  Tomio HIRATA  Yasuyoshi INAGAKI  

     
    PAPER

      Vol:
    E77-A No:4
      Page(s):
    601-607

    Persistent data structures, introduced by Sarnak and Tarjan, have been found especially useful in designing geometric algorithms. In this paper, we present a persistent form of binary-binary search tree, and then apply this data structure to solve various geometric searching problems, such as, three dimensional ray-shooting, hidden surface removal, polygonal point enclosure searching and so on. In all applications, we are able to either improve existing bounds or establish new bounds.

  • High Speed Electron Beam Cell Projection Exposure System

    Yoshihiko OKAMOTO  Norio SAITOU  Haruo YODA  Yoshio SAKITANI  

     
    PAPER-Process Technology

      Vol:
    E77-C No:3
      Page(s):
    445-452

    An electron beam cell projection system has been developed that can effectively expose the fine, demagnified resultant pattern of repeated and non-repeated patterns such as the 256 Mb DRAM on a semiconductor wafer. Particular attention was given to the beam shaping and deflecting optics, which has two stage deflectors for the cell projection beam selection as well as the beam sizing, and three stage deflectors for objective deflection. The cell mask with a rectangular aperture and multiple figure apertures is fabricated by modified Si wafer processes. A new exposure control data for the cell projection is proposed. This data is fitted for the combination of pattern data for the cell mask projection and pattern data for the variable rectangular shape beam within the divided units of the objective deflection. On this exposure system, selective exposure of the desired pattern becomes possible on the semiconductor wafer while a mounting stage of the wafer is being moved, even if the pattern exposure of the repeated and non-repeated patterns is to be carried out. The total overhead time for selecting a subset of multiple figures and a rectangular aperture of the cell mask is less than 5 seconds/wafer. The estimated throughput of this system is approximately 20 wafers/hour.

  • Performance Bounds for MLSE Equalization and Decoding with Repeat Request for Fading Dispersive Channels

    Hiroshi NOGAMI  Gordon L. STÜBER  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E77-A No:3
      Page(s):
    553-562

    Upper bounds on the bit error probability and repeat request probability, and lower bounds on the throughput are derived for a Hybrid-ARQ scheme that employs trellis-coded modulation on a fading dispersive channel. The receiver employs a modified Viterbi algorithm to perform joint maximum likelihood sequence estimation (MLSE) equalization and decoding. Retransmissions are generated by using the approach suggested by Yamamoto and Itoh. The analytical bounds are extended to trellis-coded modulation on fading dispersive channels with code combining. Comparison of the analytical bounds with simulation results shows that the analytical bounds are quite loose when diversity reception is not employed. However, no other analytical bounds exist in the literature for the trellis-coded Hybrid ARQ system studied in this paper. Therefore, the results presented in this paper can provide the basis for comparison with more sophisticated analytical bounds that may be derived in the future.

  • Enhancement of Defocus Characteristics with Intermediate Phase Interference in Phase Shift Method

    Hiroshi OHTSUKA  Toshio ONODERA  Kazuyuki KUWAHARA  Takashi TAGUCHI  

     
    PAPER-Process Technology

      Vol:
    E77-C No:3
      Page(s):
    438-444

    A new phase shift lithography method has been developed that allows different integrated circuit features to be focused on different optical planes that conform to the wafer surface topography. In principle, each pattern in the circuit has its own unique focal plane. The direction and magnitude of each focus shift is determined by the design of the shifter patterns. This method is applicable for use with conventional opaque mask patterns and unattenuated phase shift patterns. The characteristics of this multiple-focus-plane technique have been evaluated experimentally and confirmed theoretically through mathematical modeling using TCC optical imaging theory. Experiments were conducted using i-line positive resist processes for different phase-shift patterns. This paper discusses the effects of changes in phase shift and recommends practical mask design approaches.

  • Identification of the Particle Source in LSI Manufacturing Process Equipment

    Yoshimasa TAKII  Nobuo AOI  Yuichi HIROFUJI  

     
    PAPER-Process Technology

      Vol:
    E77-C No:3
      Page(s):
    486-491

    Today, defect sources of LSI device mainly lie in the process equipments. The particles generating in these equipments are introduced onto the wafer, and form the defects resulting in functional failures of LSI device. Thus, reducing these particles is acquired for increasing production yield and higher productivity, and it is important to identify the particle source in the equipment. In this study, we discussed new two methods to identify this source in the equipment used in the production line. The important point of identifing is to estimate the particle generation with short time and high accuracy, and to minimize long time stop of the equipment requiring disassembly. First, we illustrated "particle distribution analysis method." In this method, we showed the procedure to express the particle distribution mathematically. We applied this method to our etching equipment, and could identify the particle source without stopping this etching equipment. Secondly, we illustrated the method of "in-situ particle monitoring method," and applied this method to our AP-CVD equipment. As a result, it was clear the main particle source of this equipment and the procedure for decreasing these particles. By using this method, we could estimate the particle generation at real time in process without stopping this equipment. Thus, both methods shown in this study could estimate the particle generation and identify the particle source with short time and high accuracy. Furthermore, they do not require long time stop of the process equipment and interrupting the production line. Therefore, these methods are concluded to be very useful and effective in LSI manufacturing process.

  • Recovered Bounds for the Solution to the Discrete Lyapunov Matrix Equation

    Takehiro MORI  

     
    LETTER-Control and Computing

      Vol:
    E77-A No:3
      Page(s):
    571-572

    For a discrete Lyapunov matrix equation, we present another such equation that shares the solution to the original one. This renders some existing lower bounds for measures of the size of the solution meaningful, when they yield only trivial bounds. A generalization of this result is suggested.

  • High Performance Lithography with Advanced Modified Illumination

    Ho-Young KANG  Cheol-Hong KIM  Joong-Hyun LEE  Woo-Sung HAN  Young-Bum KOH  

     
    PAPER-Process Technology

      Vol:
    E77-C No:3
      Page(s):
    432-437

    A modified illumination technique recently developed is known to improve the resolution and DOF (depth of focus) dramatically. But, it requires substantial modification in optical projection system and has some problems such as low throughput caused by low intensity and poor uniformity. And it is very difficult to adjust illumination source according to pattern changes. To solve these problems, we developed a new illumination technique, named ATOM (Advanced Tilted illumination On Mask) which applies the same concept as quadrupole illumination technique but gives many advantages over conventional techniques. This newly inserted mask gives drastic improvements in many areas such as DOF, resolution, low illumination intensity loss, and uniformity. In our experiments, we obtained best resolution of 0.28µm and 2.0µm DOF for 0.36µm feature sizes with i-line stepper, which is two times as wide as that of conventional illumination technique. We also obtained 0.22µm resolution and 2.0µm DOF for 0.28µm with 0.45NA KrF excimer laser stepper. For complex device patterns, more than 1.5 times wider DOF could be obtained compared to conventional illumination technique. From these results, we can conclude that 2nd generation of 64M DRAM with 0.3µm design rule can be printed with this technology combined with high NA (0.5) i-line steppers. With KrF excimer laser stepper, 256M DRAM can be printed with wide DOF.

  • An Optimal Time for Software Testing under the User's Requirement of Failure-Free Demonstration before Release

    Byung Chul CHO  Kyung Soo PARK  

     
    PAPER-Reliability, Availability and Vulnerability

      Vol:
    E77-A No:3
      Page(s):
    563-570

    A new approach to the problem of optimal software testing time is described. Most models implicitly assume the testing is terminated at the end of a prescribed period of time without user's approval. It means the release time and the in-service reliability are determined unilaterally by the developer. If software developer uses and maintains it, the assumption is appropriate. But, it may be inappropriate, if a software requiring more stringent reliability is developed by second party on a contract basis. In this case, the time of release is usually determined with the user's approval. To overcome the weaknesses of the assumption, a two stage testing with failure-free release policy is proposed. A software, after being tested by the developer for some time (in-house testing), is transferred to acceptance testing performed jointly with the user. During the acceptance testing, it is released when τ units of time specified by user is observed to be failure-free for the first time. The policy may be attractive to a user because he can determine the time of release, and extend the testing time by increasing τ. A software cost model for the policy is developed. For the software developer, an optimal in-house testing time minimizing software cost, and various quantities of interests, such as expected periods of acceptance testing, are derived based on the Jelinski-Moranda software reliability model. Finally, numerical examples are shown to illustrate the results.

  • LAN Internetworking through Broadband ISDN

    Masayuki MURATA  Hideo MIYAHARA  

     
    INVITED PAPER

      Vol:
    E77-B No:3
      Page(s):
    294-305

    A local area network (LAN) can now provide high-speed data communications in a local area environment to establish distributed processing among personal computers and workstations, and the need for interconnecting LANs, which are geographically distributed, is naturally arising. Asynchronous Transfer Mode (ATM) technology has been widely recognized as a promising way to provide the high-speed wide area networks (WAN) for Broadband Integrated Services Digital Network (B-ISDN), and the commercial service offerings are expected in the near future. The ATM network seems to have a capability as a backbone network for interconnecting LANs, and the LAN interconnection is expected to be the first service in ATM networks. However, there remain some technical challenges for this purpose; one of the main difficulties in LAN interconnection is the support of connectionless traffic by the ATM network, which is basically a connection-oriented network. Another one is the way of achieving the very high-speed data transmission over the ATM network. In this paper, we first discuss a LAN internetworking methodology based on the current technology. Then, the recent deployments of LAN interconnection methods through B-ISDN are reviewed.

  • Design Rule Relaxation Approach for High-Density DRAMs

    Takanori SAEKI  Eiichiro KAKEHASHI  Hidemitu MORI  Hiroki KOGA  Kenji NODA  Mamoru FUJITA  Hiroshi SUGAWARA  Kyoichi NAGATA  Shozo NISHIMOTO  Tatsunori MUROTANI  

     
    PAPER-Device Technology

      Vol:
    E77-C No:3
      Page(s):
    406-415

    A design rule relaxation approach is one of the most important requirements for high density DRAMs. The approach relaxes the design rule of a element in comparison with the memory cell size and provides high density DRAMs with the minimum development of a scaled-down MOS structure and a fine patterning lithography process. This paper describes two design rule relaxation approaches, a close-packed folded (CPF) bit-line cell array layout and a Boosted Dual Word-Line scheme. The CPF cell array provides 1.26 times wider active area pitch and maximum 1.5 times wider isolation width. The Boosted Dual Word-Line scheme provides 2n times wider 1st Al pitch on memory cell array, double word-line driver pitch and 1.5 times larger design rule for 1st Al and contacts under 1st Al. Especially wide design rule of the Boosted Dual Word-Line scheme provides several times depth of focus (DOF) for 1st Al wiring which gives several times higher storage node and larger capacitance for capacitor over bit-line (COB) stacked capacitor cells. These approaches are successfully implemented in a 4 Mb DRAM test chip with a 0.91.8 µm2 memory cell.

  • Extraction of Glossiness of Curved Surfaces by the Use of Spatial Filter Simulating Retina Function

    Seiichi SERIKAWA  Teruo SHIMOMURA  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E77-D No:3
      Page(s):
    335-342

    Although the perception of gloss is based on human visual perception, some methods for extracting glossiness, in contrast to human ability, have been proposed involving curved surfaces. Glossiness defined in these methods, however, does not correspond with psychological glossiness perceived by the human eye over the wide range from relatively low gloss to high gloss. In addition, the obtained glossiness in these methods changes remarkably when the curvature radius of the high-gloss object becomes larger than 10mm. In reality, psychological glossiness does not change. These methods, furthermore, are available only for spherical objects. A new method for extracting glossiness is proposed in this study. For the new definition of glossiness, a spatial filter which simulates human retina function is utilized. The light intensity distribution of the curved object is convoluted with the spatial filter. The maximum value Hmax of the convoluted distribution has a high correlation with psychological glossiness Gph. From the relationship between Gph and Hmax, new glossiness Gf is defined. The gloss-extraction equipment consists of a light source, TV camera, an image processor and a personal computer. Cylinders with the curvature radii of 3-30 mm are used as the specimens in addition to spherical balls. In all specimens, a strong correlation, with a correlation coefficient of more than 0.97, has been observed between Gf and Gph over a wide range. New glossiness Gf conforms to Gph even if the curvature radius in more than 10 mm. Based on these findings, it is found that this method for extracting glossiness is useful for the extraction of glossiness of spherical and cylindrical objects over a wide range from relatively low gloss to high gloss.

  • Finding All Solutions of Piecewise-Linear Resistive Circuits Containing Neither Voltage nor Current Controlled Resistors

    Kiyotaka YAMAMURA  

     
    LETTER-Nonlinear Circuits and Systems

      Vol:
    E77-A No:3
      Page(s):
    573-576

    Recently, efficient algorithms that exploit the separability of nonlinear mappings have been proposed for finding all solutions of piecewise-linear resistive circuits. In this letter, it is shown that these algorithms can be extended to circuits containing piecewise-linear resistors that are neither voltage nor current controlled. Using the parametric representation for these resistors, the circuits can be described by systems of nonlinear equations with separable mappings. This separability is effectively exploited in finding all solutions. A numerical example is given, and it is demonstrated that all solutions are computed very rapidly by the new algorithm.

  • Minimizing the Data Transfer in Evaluating an Expression in a Distributed-Memory Parallel-Processing System

    Hiroshi OHTA  Kousuke SAKODA  Koichiro ISHIHARA  

     
    PAPER-Computer Systems

      Vol:
    E77-D No:3
      Page(s):
    288-298

    In a distributed-memory parallel-processing system, the overhead of data transfer among the processors is so large that it is important to reduce the data transfer. We consider the data transfer in evaluating an expression consisting of data distributed among the processors. We propose some algorithms which assign the operators in the expression to the processors so as to minimize the number or the cost of data transfers, on the condition that the data allocation to the processors is given. The basic algorithm is given at first, followed by some variations.

  • Total High Performance Time and Design of Degradable Real-Time Systems

    Masaharu AKATSU  Tomohiro MURATA  Kenzo KURIHARA  

     
    PAPER-Concurrent Systems, Discrete Event Systems and Petri Nets

      Vol:
    E77-A No:3
      Page(s):
    510-516

    This paper proposes the Total High Performance Time as a performance-related reliability measure in degradable/recoverable real-time systems. This measure reflects the effect of system behavior in pending states that are temporary states between the normal state and degraded states where the system operates in a degraded mode as a consequence of component failures. Such systems have to perform not only normal procedures but also error/recovery procedures in pending states, so the performance there is lower than that in the degraded states. In real-time systems, if performance is less than a lower limit, the response time for on-line transactions cannot meet the deadline. The consequences of failing to meet the deadline could be system failure. Therefore, the system reliability is affected significantly by whether the performance there is higher than the lower limit or not. A state where the level of performance is higher than the lower limit is called a High Performance State. We define the Total High Performance Time as the total time that the system spends operating in High Performance States. Moreover, this paper explains how to utilize the Total High Performance Time in system design. We model a method of controlling a system in pending states by using Extended Stochastic Petri Nets and obtain the characteristics necessary for evaluating the Total High Performance Time by analyzing the model. This approach is applied to a storage system that controls mirrored disks, and shown to be helpful for designing a method of controlling a system in pending states, which has been considered difficult because of the trade-off between performance and reliability.

21681-21700hit(22683hit)