The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

21761-21780hit(22683hit)

  • Channel-Grouping Methods on Go-Back-N ARQ Scheme in Multiple-Parallel-Channel System

    Chun-Xiang CHEN  Masaharu KOMATSU  Kozo KINOSHITA  

     
    LETTER-Communication Theory

      Vol:
    E77-B No:2
      Page(s):
    265-269

    We consider a communication system in which a transmitter is connected to a receiver through parallel channels, and the Go-Back-N ARQ scheme is used to handle transmission errors. A packet error on one channel results in retransmission of packets assigned to other channels under the Go-Back-N ARQ scheme. Therefore, the channel-grouping (a grouped-channel is used to transmit the same packet at a time), would affect the throughput performance. We analyze the throughput performance, and give a tree-algorithm to efficiently search for the optimal channel-grouping which makes the throughput to become maximum. Numerical results show that the throughput is largely improved by using the optimal channel-grouping.

  • Tantalum Dry-Etching Characteristics for X-Ray Mask Fabrication

    Akira OZAWA  Shigehisa OHKI  Masatoshi ODA  Hideo YOSHIHARA  

     
    PAPER-Integrated Electronics

      Vol:
    E77-C No:2
      Page(s):
    255-262

    Directional dry etching of Tantalum is described X-ray lithography absorber patterns. Experiments are carried out using both reactive ion etching in CBrF3-based plasma and electron-cyclotron-resonance ion-stream etching in Cl2-based plasma. Ta absorber patterns with perpendicular sidewalls cannot be obtained by RIE when only CBrF3 gas is used as the etchant. While adding CH4 to CBrF3 effectively improves the undercutting of Ta patterns, it deteriorates etching stability because of the intensive deposition effect of CH4 fractions. By adding an Ar/CH4 mixture gas to CBrF3, it is possible to use RIE to fabricate 0.2-µm Ta absorber patterns with perpendicular sidewalls. ECR ion-stream etching is investigated to obtain high etching selectivity between Ta and SiO2 (etching mask)/SiN (membrane). Adding O2 to the Cl2 etchant improves undercutting without remarkably decreasing etching selectivity. Furthermore, an ECR ion-stream etching method is developed to stably etch Ta absorber patterns finer than 0.2µm. This is successfully applied to X-ray lithography mask fabrication for LSI test devices.

  • Monte Carlo Analysis of Velocity Overshoot Effects in Bipolar Devices with and without an i-Layer

    Yoshiroh TSUBOI  Claudio FIFGNA  Enrico SANGIORGI  Bruno RICCÒ  Tetsunori WADA  Yasuhiro KATSUMATA  Hiroshi IWAI  

     
    PAPER-Device Simulation

      Vol:
    E77-C No:2
      Page(s):
    174-178

    We investigated the impact of velocity overshoot effect on collector signal delay of bipolar devices by using Monte Carlo simulation method. We found that insertion of an i-layer (lightly doped, intrinsic layer) between base and collector can increase the delay, but the strength of this effect is a function of the i-layer thickness. When the i-layer becomes thinner, the problem of increasing delay seems to disappear. This recovery of delay is realised with a mechanism which is completely different from that in drift-diffusion model.

  • Modeling and Simulation on Degradation of Submicron NMOSFET Current Drive due to Velocity-Saturation Effects

    Katsumi TSUNENO  Hisako SATO  Hiroo MASUDA  

     
    PAPER-Device Simulation

      Vol:
    E77-C No:2
      Page(s):
    161-165

    This paper describes modeling and simulation of submicron NMOSFET current drive focusing on carrier velocity-saturation effects. A new simple analytical model is proposed which predicts a significant degradation of drain current in sub- and quarter-micron NMOSFET's. Numerical two-dimensional simulations clarify that the degradation is namely caused by high lateral electric field along the channel, which leads to deep velocity-saturation of channel electrons even at the source end. Experimental data of NMOSFET's, with gate oxide thickness (Tox) of 9-20 nm and effective channel lengths (Leff) of 0.35-3.0 µm, show good agreement with the proposed model. It is found that the maximum drain current at the supply voltage of Vdd=3.3 V is predicted to be proportional to Leff0.54 in submicron NMOSFET's, and this is verified with experiments.

  • A non-Local Formulation of Impact Ionization for Silicon

    Paul G. SCROBOHACI  Ting-wei TANG  

     
    PAPER-Device Modeling

      Vol:
    E77-C No:2
      Page(s):
    134-138

    Impact ionization () in two n+-n--n+ device structures is investigated. Data obtained from self-consistent Monte-Carlo (SCMC) simulations of the devices is used to show that the average energy () of only those high energy electrons contributing to is an appropriate variable for the modeling of . A transport model allowing one to calculate is derived from the Boltzmann transport equation (BTE) and calibrated by the SCMC simulation results. The values of and the coefficient, αii, predicted by the proposed model are in good agreement with the Monte-Carlo data.

  • Algorithms for Drift-Diffusion Device Simulation Using Massively Parallel Processors

    Eric TOMACRUZ  Jagesh V. SANGHAVI  Alberto SANGIOVANNI-VINCENTELLI  

     
    PAPER-Numerics

      Vol:
    E77-C No:2
      Page(s):
    248-254

    The performance of a drift-diffusion device simulator using massively parallel processors is improved by modifying the preconditioner for the iterative solver and by improving the initial guess for the Newton loop. A grid-to-processor mapping scheme is presented to implement the partitioned natural ordering preconditioner on the CM-5. A new preconditioner called the block partitioned natural ordering, which may include fill-ins, improves performance in terms of CPU time and convergence behavior on the CM-5. A multigrid discretization to implement a block Newton initial guess routine is observed to decrease the CPU time by a factor of two. Extensions of the initial guess routine show further reduction in the final fine grid linear iterations.

  • 2 MHz Power Converter with Piezoelectric Ceramic Transformer

    Toshiyuki ZAITSU  Takeshi INOUE  Osamu OHNISHI  Yasuhiro SASAKI  

     
    PAPER-Electronic Circuits

      Vol:
    E77-C No:2
      Page(s):
    280-286

    A power converter with a new piezoelectric transformer is presented. The piezoelectric transformer, made of lead titanate solid solution ceramic, is operated with a thickness extensional vibration mode. This transformer can operate at high frequency, over several megahertz, with about 90% high efficiency. The resonant frequency for the transformer is 2 MHz. The power converter with the transformer applies the theory for a class-E switching converter using an electromagnetic transformer. Maximum output power was obtained when the switching frequency was slightly higher than the resonant frequency. 4.4 W output power was successfully obtained with 52% efficiency at 2.1 MHz switching frequency.

  • Recent Free-Space Photonic Switches

    Masayasu YAMAGUCHI  Ken-ichi YUKIMATSU  

     
    INVITED PAPER

      Vol:
    E77-B No:2
      Page(s):
    128-138

    This paper briefly reviews recent studies on free-space photonic switches, and discusses classifications, applications and technical issues to be solved. The free-space photonic switch is a switch that uses light beam interconnections based on free-space optics instead of guided-wave optics. A feature of the free-space switch is its high-density three-dimensional structure that enables compact large-scale switches to be created. In this paper, the free-space switches are classified by their various attributes such as logical network configuration, path-establishment method, number of physical stages, signal-waveform transmission form, interconnection optics and so on. The logical network configuration (topological geometry or topology) is strongly related to the advantages of the free-space switches over the guided-wave switches. The path-establishment method (path-shifting/branching-and-gating) and the number of physical stages (single-stage/multistage) are related to physical switching characteristics. Signal-waveform transmission form (analog/digital) is related to switch application. Interconnection optics (imaging system/micro-beam system) is related to the density and volume of the switching fabric. Examples of the free-space switches (single-stage, analog multistage, digital multistage and photonic ATM switches) are described. Possible applications for analog switches are subscriber-line concentrators, inter-module connectors, and switching networks for parallel or distributed computer systems. Those for digital switches include multistage space-division switches in time-division circuit-switching or packet switching systems (including asynchronous transfer mode [ATM] switching system) for both communications switching systems and parallel/distributed computer systems. Technical issues of the free-space switches (system, device, assembly technique) must be solved before creating practical systems. In particular, the assembly technique is a key issue of the free-space switches.

  • A Pattern Synthesis Method for Multibeam Reflector Antennas

    Hiroki SHOKI  Kazuaki KAWABATA  Tasuku MOROOKA  

     
    PAPER-Antennas and Propagation

      Vol:
    E77-B No:1
      Page(s):
    64-72

    A new pattern synthesis method for multibeam reflector antennas is described. The Directional Constrained Minimum Power (DCMP) method, which was developed as an adaptive array algorithm, has been applied to reflector antennas with cluster feeds. The main objective of this pattern synthesis is to optimize the excitation distribution of the cluster primary feed in order to reduce the sidelobe level and to attain a high main beam gain. A desired contour beam pattern has also been attained by modifying this method. Furthermore, this paper describes other applications of this method, such as pattern optimization taking account of the frequency characteristics and the change in the radiation pattern due to an antenna pointing system, cross-polarization reduction, and monopulse pattern synthesis for an RF sensor.

  • New Proposal and Comparison of Closure Tests--More Efficient than the CRYPTO'92 Test for DES--

    Hikaru MORITA  Kazuo OHTA  

     
    PAPER

      Vol:
    E77-A No:1
      Page(s):
    15-19

    The well-known closure tests, the cycling closure test (CCT) and the meet-in-the-middle closure test (MCT), were introduced by Kaliski, Rivest and Sherman to analyze the algebraic properties of cryptosystems, and CCT indicates that DES is not closed. Though Coppersmith presented that DES can be proved not to be closed by a particular way, the closure tests can check various kinds of cryptosystems generally. Thus, successors to MCT and CCT have been proposed at CRYPTO. This paper expands the MCT successor, the switching closure test (SCT), to apply to the DES-like cryptosystems, and shows that this SCT variant is more efficient than the closure test proposed at CRYPTO'92, because the SCT variant establishes a better relationship between the computation cost and the probability of error (the evaluation index). The MCT successors are more important than the CCTs, because the MCTs can directly break closed cryptosystemes. Therefore, if you want to detect the closure property of cryptosystems generally, the SCT variant is better.

  • Long-Term Reliability Testing of Electric Double-Layer Capacitors

    Munekazu AOKI  Kazuhiko SATO  Yoshihiro KOBAYASHI  

     
    PAPER-Evaluation of Reliability Improvement

      Vol:
    E77-A No:1
      Page(s):
    208-212

    It has been 15 years since we started producing the electric double-layer capacitors (also known as Super Capacitor) in 1978. Over the years we have introduced improvements that increased reliability and increased life. For example, after subjecting capacitors manufactured in 1984 and 1990 to load life tests (70, 5.5 V) for 2,000 hours, we discovered that the rate of change in capacitance (ΔC/C) of capacitors manufactured in 1990 was less than one-half that of capacitors manufactured in 1984. This shows that we have successfully increased the life of our electric double-layer capacitors. We conducted investigations regarding factors that contribute to volume of the electrolyte solution and better sealing properties. In the load life test, we observed that when the ratio of the weights of the electrolyte solution and the powdered activated carbon (hereinafter referred to as LB) was increased, the time it took before ΔC/C reached -30% was lengthened. This means that increasing LB also increases life. Furthermore, we also observed that when the gas permeability rate of the collector's rubber material was decreased in the load life test (70, 5.5 V), the time it took befor (ΔC/C) reached -30% was longer. Therefore life is dependent on the gas permeability rate (sealing property) of the collector rubber.

  • Abnormal Epitaxial Layer of AlGaAs/GaAs Solar Cells for Space Applications

    Sumio MATSUDA  Masato UESUGI  Susumu YOSHIDA  

     
    PAPER-Failure Physics and Failure Analysis

      Vol:
    E77-A No:1
      Page(s):
    150-157

    We found degraded output power due to discoloration of an abnormal epitaxial layer caused by supercooling of residual melt in liquid phase epitaxy (LPE) process of AlGaAs/GaAs heteroface solar cells developed to improve conversion efficiency of solar cells for satellites. We studied the discoloration mechanism and found effective methods for obtaning a good epitaxial layer. Using these results, we manufactured about 80,000 pieces of solar cells and employed them in the Japanese domestic Communication Satellite-3 (CS-3) launched by National Space Development Agency of Japan (NASDA). Five years after launch, these solar cells are still supplying the output power than predicted. This paper describes reliability improvements for the surface of epitaxial layer and successful results aftes 5 years of space operation.

  • Via Electromigration Characteristics in Aluminum Based Multilevel Interconnection

    Takahisa YAMAHA  Masaru NAITO  Tadahiko HOTTA  

     
    PAPER-Failure Physics and Failure Analysis

      Vol:
    E77-A No:1
      Page(s):
    187-194

    Via electromigration (EM) performance of aluminum based metallization (AL) systems has been investigated for vias chains of 1500-4000 vias of 1.0 micron diameter. The results show that via EM lifetime can not be enhanced by a simple increase of M2 step coverage in AL/AL vias because the EM induced voids are formed at AL/AL via interface where electrons flow from Ml to M2 even in the case of very poor M2 step coverage. The voids are induced by the boundary layer in AL/AL vias, where a temperature gradient causes discontinuity of aluminum atoms flux. The failure location is not moved though via EM lifetime can be improved by controlling stress in passivation, sputter etch removal thickness and grain size of the first metal. Next, the effect of the boundary layer are eliminated by depositing titanium under the second aluminum or depositing WSi on the first aluminum. In the both cases, via EM lifetime are improved and the failure locations are changed. Especially WSi layer suppresses the voids formation rather than titanium. Models for the failure mechanism in each metallization system are further discussed.

  • Identification of Chaotic Dynamical Systems with Back-Propagation Neural Networks

    Masaharu ADACHI  Makoto KOTANI  

     
    PAPER-Nonlinear Phenomena and Analysis

      Vol:
    E77-A No:1
      Page(s):
    324-334

    In this paper, we clarify fundamental properties of conventional back-propagation neural networks to learn chaotic dynamical systems by some numerical experiments. We train three-layers networks using back-propagation algorithm with the data from two examples of two-dimensional discrete dynamical systems. We qualitatively evaluate the trained networks with two methods analysing geometrical mapping structure and reconstruction of an attractor by the recurrent feedback of the networks. We also quantitatively evaluate the trained networks with calculation of the Lyapunov exponents that represent the dynamics of the recurrent networks is chaotic or periodic. In many cases, the trained networks show high ability of extracting mapping structures of original two-dimensional dynamical systems. We confirm that the Lyapunov exponents of the trained networks correspond to whether the reconstructed attractors by the recurrent networks are chaotic or periodic.

  • Parallel Photonic Devices and Concepts Good for Optical Interconnects

    Kenichi IGA  

     
    INVITED PAPER

      Vol:
    E77-C No:1
      Page(s):
    9-14

    In this paper, we present some novel concepts and photonic devices for use in optical interconnects. First, we review the progress of surface emitting lasers while featuring materials and performances including thresholds, power output, RIN, linewidth, and so on. Advanced technology for aiming at spontaneous emission control, photon recycling, polarization control, wavelength tuning, integration etc. will be considered. Then we touch on some other possible devices for optical interconnects. Lastly, we discuss on lightwave subsystems applying these devices and concepts.

  • Improvement of Reliability of Large-Sized Ceramic Capacitors and Dummy Resistors for the High Power Transmitter

    Tohru MIZOKAMI  Hiroki TAKAZAWA  Eiichi KAWABATA  Yuzi OGATA  Haruo OHTA  Kazuaki WAKAI  Kazuhisa HAYEIWA  

     
    PAPER-Evaluation of Reliability Improvement

      Vol:
    E77-A No:1
      Page(s):
    220-227

    This paper describes the effective countermeasures for exfoliation of large-sized ceramic capacitors, deterioration of dummy resistors and developement of a spark sensor with UVtrons at 300-500 kW transmitting stations. Cracks and exfoliation were found at the electrode of large-sized ceramic capacitors in the output circuit of the 500 kW transmitter. The exfoliation was caused by the temperature rise and the thermal fatigues at the electrode with the Nickel plating including Irons. A pure Nickel-plated electrode including no Irons and a new soldering method using disk-typed solder with a large adhesive area are employed in order to reduce the temperature rise. The temperature rise of the improved capacitor was 18 lower than the conventional one. Deterioration of ELEMA resistors of the 300 kW dummy antenna was discovered. The damage of the resistor was caused by the concentration of the electric current followed by the thermal stress cycle which made mechanical exhaustion at the electrode. Therefore, oval-shaped type resistors with much longer electric current path (20% up) to suppress the concentration of current flow and much slower temperature rise are newly developed. In case that sparks occurred at DC or RF high voltage impressed sections of the high power transmitting equipment, the discharged points could be seriously damaged by the transmitter energy itself. In orded to prevent this, a spark detector using UV (Ultra violet) trons is developed and installed at the matchign circuit of the 500 kW transmitter. Conventional UV sensors with only one UVtron could not detect feeble discharges and sparks with a duration time of less than 150 ms because of false outputs by the back ground noise. Since choosing three out of four UV trons system is employed, possibility producing a false output will be just one to 445 years theoretically. This means extremely reliable and sensitive spark detection system are constructed. These countermeasures have improved reliability of the transmitting equipment greatly. No damages have been found in the transmitters ever since.

  • Performance Enhancement in Recursive Copy Networks for Multicast ATM Switching: A Simple Flow Control Scheme

    Wen De ZHONG  Yoshikuni ONOZATO  Jaidev KANIYIL  

     
    PAPER-Switching and Communication Processing

      Vol:
    E77-B No:1
      Page(s):
    28-34

    As promising copy networks of very large multicast switching networks for Broadband ISDN, multi-stage Recursive Copy Networks (RCN) have been proposed recently. In the multicast switch structure, the RCN precedes a point-to-point switch. At an RCN, all the copies of a master cell are generated recursively, i.e., a few copies of the master cell are made initially, and by considering each of these copies to be master cells, more copies are made which, in turn, are again considered to be master cells to make still more copies, the process thus progressing recursively till all the required copies are made. By this principle of recursive generation of copies, the number of copies that can be generated is independent of the hardware size of the RCN. A limitation of RCNs is that buffer sizes at all stages except the first stage have to be large so as to keep the cell loss due to buffer overflow within desired limits. This paper inspects a flow control scheme by which the probability of buffer overflow can be kept low, even though the buffer sizes at later stages are not large. Under this flow control procedure, a cell is not transmitted from a stage to the succeeding stage, if the occupancy level of the buffer of the succeeding stage exceeds a threshold. We study by simulation the performance aspects of such a flow control scheme in RCNs under cut-through switching scheme and under store-and-forward switching scheme. At high load intensities, the overflow probability can be reduced by an order of magnitude in 2-stage RCNs and by two orders of magnitude in 3-stage RCNs. To restrict the overflow probability within a given limit, the required buffer size is less under flow control than under no flow control. The implementation of the flow control is simple and the control overhead is small, thereby making the scheme attractive for implementation in high speed switching environments. Further, the proposed flow control scheme does not disturb the cell sequence.

  • Student Modelling for Procedural Problem Solving

    Noboru MATSUDA  Toshio OKAMOTO  

     
    PAPER

      Vol:
    E77-D No:1
      Page(s):
    49-56

    This study is intended to investigate a method to diagnose the student model in the domain of procedural problem solving. In this domain, the goal of an instruction should be to understand the processes of solving given problems, and to understand the reasons why problems can be solved by using sertain knowledge; the acquisition of problem solving skills might not be the intrinsic instructional goals. The tutoring systems in this domain must understand the effect of each problem solving operators, as well as when to implement these operators in order to effectively solve given problems. We have been studying and developing a system which deals with student modelling in the domain of procedural problem solving. We believe that the two types of knowledge should be clearly defined for the diagnosing tasks; effective knowledge (EK) and principle knowledge (PK). The former is the knowledge which is explicitly applied by students throughout problem solving processes, and the latter is the one which gives the justifications of the EK. We have developed a student model diagnosing system which infers students' knowledge structure pertaining to PK, based on the precedently manipulated student model about EK. This student model diagnosing method requires knowledge which argues the relationship between the PK and the EK. This knowledge plays the very important role in our system, and it's hard to describe such knowledge properly by hand. In this paper, we provide a student model diagnosing system which has the knowledge acquiring function to learn the relationship between EK and PK. The system acquires this knowledge through its own problem solving experience. Based on the student model and the acquired relational knowledge, the system can give students proper instructions about construction of EK with explanations in terms of PK. The system has been partly implemented with CESP language on a UNIX workstation.

  • A Workbench System for Novice Prolog Programmers: Visually-Structured Interactive Tracer and Prototype-Based Programming Support

    Kohji ITOH  Makoto ITAMI  Kazuo FUKAWA  Jun MURAMATSU  Yoshitaka ENOMOTO  

     
    PAPER

      Vol:
    E77-D No:1
      Page(s):
    57-67

    The paper proposes and reports on pototyping a work bench system for novice Prolog programmers which consists of a visually-structured interactive tracer and a prototype-based programming support. The tracer actually is a simulated interpreter in Prolog. It is interpreted by a Prolog interpreter being embedded with facilities interfacing programs in Prolog and the objects programmed in C. It displays, by way of these objects, the past, current and future goals, highlights variable sharing and value substitution, and marks the current goals and backtrack choice points. It is at user's will to let the tracer show and hide subgoals as well as to let it backtrack when it failed, step back for redoing or terminate tracing. The programming support module first provides the programmer with structural prototype patterns and the roles of the constituent functions. We developed a support system for the 2 types of recursive definitions. After having selected the prototype, the user is requested to specify the data types and the names of variables to be put in the arguments, which propagate through the structure. The support module then offers a menu of primitive or user-registered constituent functions as may be useful in processing and/or obtaining user-specified types of data. Thirdly the system lets the user express his/her intention by sample input-output data instances in his/her task goals. It makes the values propagate through the structures thus motivating the user to design the constituent functions. At the goal recursion point, the user is allowed to creep into examining the definitions of the reduced versions of the instances, helping the user find the condition with which the recursion terminates. Finally the module assists the user to convert the structural descriptions into Prolog programs.

  • The Current Situations and Future Directions of Intelligent CAI Research/Development

    Toshio OKAMOTO  

     
    PAPER

      Vol:
    E77-D No:1
      Page(s):
    9-18

    This paper describes the current situations and future directions of intelligent CAI researches/development in Japan. Then necessity of intelligence in CAIs/Educational systems are thought over corresponding to the model of teaching and the cognitive model of human learning like the situated learning, knowledge construction and so on. Originally, the main aims of ITSs/ICAIs are to tealize the high level environment of individual teaching/learning. So it is the most important to incorporate the intellectual function of teaching into the system. Whatever kinds of teaching purposes ITSs have, they have the quite complex structure which consists of the domain knowledge base (Expert system), student model, the tutoring knowledge base, the powerful human interface, and sophisticated inference engine with plural functions by artificial intelligence technology. In this paper, the technological and educational points of view are discussed, surveyed and summarized based on intelligent teaching functions of ITSs/ICAIs. Moreover, the meaning of new paradigm from ITSs to ILE are mentioned under the new technology of networking and multi-media.

21761-21780hit(22683hit)