The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

261-280hit(22683hit)

  • Pairs of Ternary Perfect Sequences with Three-Valued Cross-Correlation

    Chenchen LIU  Wenyi ZHANG  Xiaoni DU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/08/08
      Vol:
    E106-A No:12
      Page(s):
    1521-1524

    The calculation of cross-correlation between a sequence with good autocorrelation and its decimated sequence is an interesting problem in the field of sequence design. In this letter, we consider a class of ternary sequences with perfect autocorrelation, proposed by Shedd and Sarwate (IEEE Trans. Inf. Theory, 1979, DOI: 10.1109/TIT.1979.1055998), which is generated based on the cross-correlation between m-sequence and its d-decimation sequence. We calculate the cross-correlation distribution between a certain pair of such ternary perfect sequences and show that the cross-correlation takes three different values.

  • A Note on the Confusion Coefficient of Boolean Functions

    Yu ZHOU  Jianyong HU  Xudong MIAO  Xiaoni DU  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/05/24
      Vol:
    E106-A No:12
      Page(s):
    1525-1530

    Low confusion coefficient values can make side-channel attacks harder for vector Boolean functions in Block cipher. In this paper, we give new results of confusion coefficient for f ⊞ g, f ⊡ g, f ⊕ g and fg for different Boolean functions f and g, respectively. And we deduce a relationship on the sum-of-squares of the confusion coefficient between one n-variable function and two (n - 1)-variable decomposition functions. Finally, we find that the confusion coefficient of vector Boolean functions is affine invariant.

  • A Strongly Unlinkable Group Signature Scheme with Matching-Based Verifier-Local Revocation for Privacy-Enhancing Crowdsensing

    Yuto NAKAZAWA  Toru NAKANISHI  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/06/29
      Vol:
    E106-A No:12
      Page(s):
    1531-1543

    A group signature scheme allows us to anonymously sign a message on behalf of a group. One of important issues in the group signatures is user revocation, and thus lots of revocable group signature (RGS) schemes have been proposed so far. One of the applications suitable to the group signature is privacy-enhancing crowdsensing, where the group signature allows mobile sensing users to be anonymously authenticated to hide the location. In the mobile environment, verifier-local revocation (VLR) type of RGS schemes are suitable, since revocation list (RL) is not needed in the user side. However, in the conventional VLR-RGS schemes, the revocation check in the verifier needs O(R) cryptographic operations for the number R of revoked users. On this background, VLR-RGS schemes with efficient revocation check have been recently proposed, where the revocation check is just (bit-string) matching. However, in the existing schemes, signatures are linkable in the same interval or in the same application-independent task with a public index. The linkability is useful in some scenarios, but users want the unlinkability for the stronger anonymity. In this paper, by introducing a property that at most K unlinkable signatures can be issued by a signer during each interval for a fixed integer K, we propose a VLR-RGS scheme with the revocation token matching. In our scheme, even the signatures during the same interval are unlinkable. Furthermore, since used indexes are hidden, the strong anonymity remains. The overheads are the computational costs of the revocation algorithm and the RL size. We show that the overheads are practical in use cases of crowdsensing.

  • A System Architecture for Mobility as a Service in Autonomous Transportation Systems

    Weitao JIAN  Ming CAI  Wei HUANG  Shichang LI  

     
    PAPER-Intelligent Transport System

      Pubricized:
    2023/06/26
      Vol:
    E106-A No:12
      Page(s):
    1555-1568

    Mobility as a Service (MaaS) is a smart mobility model that integrates mobility services to deliver transportation needs through a single interface, offering users flexible and personalizd mobility. This paper presents a structural approach for developing a MaaS system architecture under Autonomous Transportation Systems (ATS), which is a new transition from the Intelligent Transportation Systems (ITS) with emerging technologies. Five primary components, including system elements, user needs, services, functions, and technologies, are defined to represent the system architecture. Based on the components, we introduce three architecture elements: functional architecture, logical architecture and physical architecture. Furthermore, this paper presents an evaluation process, links the architecture elements during the process and develops a three-layer structure for system performance evaluation. The proposed MaaS system architecture design can help the administration make services planning and implement planned services in an organized way, and support further technical deployment of mobility services.

  • Continuous Similarity Search for Dynamic Text Streams

    Yuma TSUCHIDA  Kohei KUBO  Hisashi KOGA  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2023/09/21
      Vol:
    E106-D No:12
      Page(s):
    2026-2035

    Similarity search for data streams has attracted much attention for information recommendation. In this context, recent leading works regard the latest W items in a data stream as an evolving set and reduce similarity search for data streams to set similarity search. Whereas they consider standard sets composed of items, this paper uniquely studies similarity search for text streams and treats evolving sets whose elements are texts. Specifically, we formulate a new continuous range search problem named the CTS problem (Continuous similarity search for Text Sets). The task of the CTS problem is to find all the text streams from the database whose similarity to the query becomes larger than a threshold ε. It abstracts a scenario in which a user-based recommendation system searches similar users from social networking services. The CTS is important because it allows both the query and the database to change dynamically. We develop a fast pruning-based algorithm for the CTS. Moreover, we discuss how to speed up it with the inverted index.

  • Adaptive Regulation of a Chain of Integrators under Unknown and Time-Varying Individual State Delays

    Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Pubricized:
    2023/06/12
      Vol:
    E106-A No:12
      Page(s):
    1577-1579

    In this letter, we study the adaptive regulation problem for a chain of integrators in which there are different individual delays in measured feedback states for a controller. These delays are considered to be unknown and time-varying, and they can be arbitrarily fast-varying. We analytically show that a feedback controller with a dynamic gain can adaptively regulate a chain of integrators in the presence of unknown individual state delays. A simulation result is given for illustration.

  • Optimal (r, δ)-Locally Repairable Codes from Reed-Solomon Codes

    Lin-Zhi SHEN  Yu-Jie WANG  

     
    LETTER-Coding Theory

      Pubricized:
    2023/05/30
      Vol:
    E106-A No:12
      Page(s):
    1589-1592

    For an [n, k, d] (r, δ)-locally repairable codes ((r, δ)-LRCs), its minimum distance d satisfies the Singleton-like bound. The construction of optimal (r, δ)-LRC, attaining this Singleton-like bound, is an important research problem in recent years for thier applications in distributed storage systems. In this letter, we use Reed-Solomon codes to construct two classes of optimal (r, δ)-LRCs. The optimal LRCs are given by the evaluations of multiple polynomials of degree at most r - 1 at some points in Fq. The first class gives the [(r + δ - 1)t, rt - s, δ + s] optimal (r, δ)-LRC over Fq provided that r + δ + s - 1≤q, s≤δ, s

  • Integration of Network and Artificial Intelligence toward the Beyond 5G/6G Networks Open Access

    Atsushi TAGAMI  Takuya MIYASAKA  Masaki SUZUKI  Chikara SASAKI  

     
    INVITED PAPER

      Pubricized:
    2023/07/14
      Vol:
    E106-B No:12
      Page(s):
    1267-1274

    Recently, there has been a surge of interest in Artificial Intelligence (AI) and its applications have been considered in various fields. Mobile networks are becoming an indispensable part of our society, and are considered as one of the promising applications of AI. In the Beyond 5G/6G era, AI will continue to penetrate networks and AI will become an integral part of mobile networks. This paper provides an overview of the collaborations between networks and AI from two categories, “AI for Network” and “Network for AI,” and predicts mobile networks in the B5G/6G era. It is expected that the future mobile network will be an integrated infrastructure, which will not only be a mere application of AI, but also provide as the process infrastructure for AI applications. This integration requires a driving application, and the network operation is one of the leading candidates. Furthermore, the paper describes the latest research and standardization trends in the autonomous networks, which aims to fully automate network operation, as a future network operation concept with AI, and discusses research issues in the future mobile networks.

  • Mechanisms to Address Different Privacy Requirements for Users and Locations

    Ryota HIRAISHI  Masatoshi YOSHIKAWA  Yang CAO  Sumio FUJITA  Hidehito GOMI  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2023/09/25
      Vol:
    E106-D No:12
      Page(s):
    2036-2047

    The significance of individuals' location information has been increasing recently, and the utilization of such data has become indispensable for businesses and society. The possible uses of location information include personalized services (maps, restaurant searches and weather forecast services) and business decisions (deciding where to open a store). However, considering that the data could be exploited, users should add random noise using their terminals before providing location data to collectors. In numerous instances, the level of privacy protection a user requires depends on their location. Therefore, in our framework, we assume that users can specify different privacy protection requirements for each location utilizing the adversarial error (AE), and the system computes a mechanism to satisfy these requirements. To guarantee some utility for data analysis, the maximum error in outputting the location should also be output. In most privacy frameworks, the mechanism for adding random noise is public; however, in this problem setting, the privacy protection requirements and the mechanism must be confidential because this information includes sensitive information. We propose two mechanisms to address privacy personalization. The first mechanism is the individual exponential mechanism, which uses the exponential mechanism in the differential privacy framework. However, in the individual exponential mechanism, the maximum error for each output can be used to narrow down candidates of the actual location by observing outputs from the same location multiple times. The second mechanism improves on this deficiency and is called the donut mechanism, which uniformly outputs a random location near the location where the distance from the user's actual location is at the user-specified AE distance. Considering the potential attacks against the idea of donut mechanism that utilize the maximum error, we extended the mechanism to counter these attacks. We compare these two mechanisms by experiments using maps constructed from artificial and real world data.

  • Analysis and Identification of Root Cause of 5G Radio Quality Deterioration Using Machine Learning

    Yoshiaki NISHIKAWA  Shohei MARUYAMA  Takeo ONISHI  Eiji TAKAHASHI  

     
    PAPER

      Pubricized:
    2023/06/02
      Vol:
    E106-B No:12
      Page(s):
    1286-1292

    It has become increasingly important for industries to promote digital transformation by utilizing 5G and industrial internet of things (IIoT) to improve productivity. To protect IIoT application performance (work speed, productivity, etc.), it is often necessary to satisfy quality of service (QoS) requirements precisely. For this purpose, there is an increasing need to automatically identify the root causes of radio-quality deterioration in order to take prompt measures when the QoS deteriorates. In this paper, a method for identifying the root cause of 5G radio-quality deterioration is proposed that uses machine learning. This Random Forest based method detects the root cause, such as distance attenuation, shielding, fading, or their combination, by analyzing the coefficients of a quadratic polynomial approximation in addition to the mean values of time-series data of radio quality indicators. The detection accuracy of the proposed method was evaluated in a simulation using the MATLAB 5G Toolbox. The detection accuracy of the proposed method was found to be 98.30% when any of the root causes occurs independently, and 83.13% when the multiple root causes occur simultaneously. The proposed method was compared with deep-learning methods, including bidirectional long short-term memory (bidirectional-LSTM) or one-dimensional convolutional neural network (1D-CNN), that directly analyze the time-series data of the radio quality, and the proposed method was found to be more accurate than those methods.

  • Secure Enrollment Token Delivery Mechanism for Zero Trust Networks Using Blockchain Open Access

    Javier Jose DIAZ RIVERA  Waleed AKBAR  Talha AHMED KHAN  Afaq MUHAMMAD  Wang-Cheol SONG  

     
    PAPER

      Pubricized:
    2023/06/01
      Vol:
    E106-B No:12
      Page(s):
    1293-1301

    Zero Trust Networking (ZTN) is a security model where no default trust is given to entities in a network infrastructure. The first bastion of security for achieving ZTN is strong identity verification. Several standard methods for assuring a robust identity exist (E.g., OAuth2.0, OpenID Connect). These standards employ JSON Web Tokens (JWT) during the authentication process. However, the use of JWT for One Time Token (OTT) enrollment has a latent security issue. A third party can intercept a JWT, and the payload information can be exposed, revealing the details of the enrollment server. Furthermore, an intercepted JWT could be used for enrollment by an impersonator as long as the JWT remains active. Our proposed mechanism aims to secure the ownership of the OTT by including the JWT as encrypted metadata into a Non-Fungible Token (NFT). The mechanism uses the blockchain Public Key of the intended owner for encrypting the JWT. The blockchain assures the JWT ownership by mapping it to the intended owner's blockchain public address. Our proposed mechanism is applied to an emerging Zero Trust framework (OpenZiti) alongside a permissioned Ethereum blockchain using Hyperledger Besu. The Zero Trust Framework provides enrollment functionality. At the same time, our proposed mechanism based on blockchain and NFT assures the secure distribution of OTTs that is used for the enrollment of identities.

  • Architecture for Beyond 5G Services Enabling Cross-Industry Orchestration Open Access

    Kentaro ISHIZU  Mitsuhiro AZUMA  Hiroaki YAMAGUCHI  Akihito KATO  Iwao HOSAKO  

     
    INVITED PAPER

      Pubricized:
    2023/07/27
      Vol:
    E106-B No:12
      Page(s):
    1303-1312

    Beyond 5G is the next generation mobile communication system expected to be used from around 2030. Services in the 2030s will be composed of multiple systems provided by not only the conventional networking industry but also a wide range of industries. However, the current mobile communication system architecture is designed with a focus on networking performance and not oriented to accommodate and optimize potential systems including service management and applications, though total resource optimizations and service level performance enhancement among the systems are required. In this paper, a new concept of the Beyond 5G cross-industry service platform (B5G-XISP) is presented on which multiple systems from different industries are appropriately organized and optimized for service providers. Then, an architecture of the B5G-XISP is proposed based on requirements revealed from issues of current mobile communication systems. The proposed architecture is compared with other architectures along with use cases of an assumed future supply chain business.

  • Antennas Measurement for Millimeter Wave 5G Wireless Applications Using Radio Over Fiber Technologies Open Access

    Satoru KUROKAWA  Michitaka AMEYA  Yui OTAGAKI  Hiroshi MURATA  Masatoshi ONIZAWA  Masahiro SATO  Masanobu HIROSE  

     
    INVITED PAPER

      Pubricized:
    2023/09/19
      Vol:
    E106-B No:12
      Page(s):
    1313-1321

    We have developed an all-optical fiber link antenna measurement system for a millimeter wave 5th generation mobile communication frequency band around 28 GHz. Our developed system consists of an optical fiber link an electrical signal transmission system, an antenna-coupled-electrode electric-field (EO) sensor system for 28GHz-band as an electrical signal receiving system, and a 6-axis vertically articulated robot with an arm length of 1m. Our developed optical fiber link electrical signal transmission system can transmit the electrical signal of more than 40GHz with more than -30dBm output level. Our developed EO sensor can receive the electrical signal from 27GHz to 30GHz. In addition, we have estimated a far field antenna factor of the EO sensor system for the 28GHz-band using an amplitude center modified antenna factor estimation equation. The estimated far field antenna factor of the sensor system is 83.2dB/m at 28GHz.

  • Non-Contact PIM Measurement Method Using Balanced Transmission Lines for Impedance Matched PIM Measurement Systems

    Ryunosuke MUROFUSHI  Nobuhiro KUGA  Eiji HANAYAMA  

     
    PAPER

      Pubricized:
    2023/08/16
      Vol:
    E106-B No:12
      Page(s):
    1329-1336

    In this paper, a concept of non-contact PIM evaluation method using balanced transmission lines is proposed for impedance-matched PIM measurement systems. In order to evaluate the PIM characteristics of a MSL by using its image model, measurement system using balanced transmission line is introduced. In non-contact PIM measurement, to reduce undesirable PIM generation by metallic contact and the PIM-degradation in repeated measurements, a non-contact connector which is applicable without any design changes in DUT is introduce. The three-dimensional balun composed of U-balun and balanced transmission line is also proposed so that it can be applicable to conventional unbalanced PIM measurement systems. In order to validate the concept of the proposed system, a sample using nickel producing high PIM is introduced. In order to avoid the effect of the non-contact connection part on observed PIM, a sample-configuration that PIM-source exists outside of the non-contact connection part is introduced. It is also shown using a sample using copper that, nickel-sample can be clearly differentiated in PIM characteristics while it is equivalent to low-PIM sample in scattering-parameter characteristics. Finally, by introducing the TRL-calibration and by extracting inherent DUT-characteristics from whole-system characteristics, a method to estimate the PIM characteristics of DUT which cannot be taken directly in measurement is proposed.

  • Deep Neural Networks Based End-to-End DOA Estimation System Open Access

    Daniel Akira ANDO  Yuya KASE  Toshihiko NISHIMURA  Takanori SATO  Takeo OHGANE  Yasutaka OGAWA  Junichiro HAGIWARA  

     
    PAPER

      Pubricized:
    2023/09/11
      Vol:
    E106-B No:12
      Page(s):
    1350-1362

    Direction of arrival (DOA) estimation is an antenna array signal processing technique used in, for instance, radar and sonar systems, source localization, and channel state information retrieval. As new applications and use cases appear with the development of next generation mobile communications systems, DOA estimation performance must be continually increased in order to support the nonstop growing demand for wireless technologies. In previous works, we verified that a deep neural network (DNN) trained offline is a strong candidate tool with the promise of achieving great on-grid DOA estimation performance, even compared to traditional algorithms. In this paper, we propose new techniques for further DOA estimation accuracy enhancement incorporating signal-to-noise ratio (SNR) prediction and an end-to-end DOA estimation system, which consists of three components: source number estimator, DOA angular spectrum grid estimator, and DOA detector. Here, we expand the performance of the DOA detector and angular spectrum estimator, and present a new solution for source number estimation based on DNN with very simple design. The proposed DNN system applied with said enhancement techniques has shown great estimation performance regarding the success rate metric for the case of two radio wave sources although not fully satisfactory results are obtained for the case of three sources.

  • Sparse Reconstruction and Resolution Improvement of Synthetic Aperture Radar with Low Computational Complexity Using Deconvolution ISTA

    Masanori GOCHO  

     
    PAPER

      Pubricized:
    2023/07/27
      Vol:
    E106-B No:12
      Page(s):
    1363-1371

    Synthetic aperture radar (SAR) is a device for observing the ground surface and is one of the important technologies in the field of microwave remote sensing. In SAR observation, a platform equipped with a small-aperture antenna flies in a straight line and continuously radiates pulse waves to the ground during the flight. After that, by synthesizing the series of observation data obtained during the flight, one realize high-resolution ground surface observation. In SAR observation, there are two spatial resolutions defined in the range and azimuth directions and they are limited by the bandwidth of the SAR system. The purpose of this study is to improve the resolution of SAR by sparse reconstruction. In particular, we aim to improve the resolution of SAR without changing the frequency parameters. In this paper, we propose to improve the resolution of SAR using the deconvolution iterative shrinkage-thresholding algorithm (ISTA) and verify the proposed method by carrying out an experimental analysis using an actual SAR dataset. Experimental results show that the proposed method can improve the resolution of SAR with low computational complexity.

  • Heuristic-Based Service Chain Construction with Security-Level Management

    Daisuke AMAYA  Takuji TACHIBANA  

     
    PAPER

      Pubricized:
    2023/07/27
      Vol:
    E106-B No:12
      Page(s):
    1380-1391

    Network function virtualization (NFV) technology significantly changes the traditional communication network environments by providing network functions as virtual network functions (VNFs) on commercial off-the-shelf (COTS) servers. Moreover, for using VNFs in a pre-determined sequence to provide each network service, service chaining is essential. A VNF can provide multiple service chains with the corresponding network function, reducing the number of VNFs. However, VNFs might be the source or the target of a cyberattack. If the node where the VNF is installed is attacked, the VNF would also be easily attacked because of its security vulnerabilities. Contrarily, a malicious VNF may attack the node where it is installed, and other VNFs installed on the node may also be attacked. Few studies have been done on the security of VNFs and nodes for service chaining. This study proposes a service chain construction with security-level management. The security-level management concept is introduced to built many service chains. Moreover, the cost optimization problem for service chaining is formulated and the heuristic algorithm is proposed. We demonstrate the effectiveness of the proposed method under certain network topologies using numerical examples.

  • IGDM: An Information Geometric Difference Mapping Method for Signal Detection in Non-Gaussian Alpha-Stable Distributed Noise

    Jiansheng BAI  Jinjie YAO  Yating HOU  Zhiliang YANG  Liming WANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2023/08/25
      Vol:
    E106-B No:12
      Page(s):
    1392-1401

    Modulated signal detection has been rapidly advancing in various wireless communication systems as it's a core technology of spectrum sensing. To address the non-Gaussian statistical of noise in radio channels, especially its pulse characteristics in the time/frequency domain, this paper proposes a method based on Information Geometric Difference Mapping (IGDM) to solve the signal detection problem under Alpha-stable distribution (α-stable) noise and improve performance under low Generalized Signal-to-Noise Ratio (GSNR). Scale Mixtures of Gaussians is used to approximate the probability density function (PDF) of signals and model the statistical moments of observed data. Drawing on the principles of information geometry, we map the PDF of different types of data into manifold space. Through the application of statistical moment models, the signal is projected as coordinate points within the manifold structure. We then design a dual-threshold mechanism based on the geometric mean and use Kullback-Leibler divergence (KLD) to measure the information distance between coordinates. Numerical simulations and experiments were conducted to prove the superiority of IGDM for detecting multiple modulated signals in non-Gaussian noise, the results show that IGDM has adaptability and effectiveness under extremely low GSNR.

  • Analysis and Design of Class-Φ22 Wireless Power Transfer System

    Weisen LUO  Xiuqin WEI  Hiroo SEKIYA  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2023/09/01
      Vol:
    E106-B No:12
      Page(s):
    1402-1410

    This paper presents an analysis-based design method for designing the class-Φ22 wireless power transfer (WPT) system, taking its subsystems as a whole into account. By using the proposed design method, it is possible to derive accurate design values which can make sure the class-E Zero-Voltage-Switching/Zero-Derivative-Switching (ZVS/ZDS) to obtain without applying any tuning processes. Additionally, it is possible to take the effects of the switch on resistance, diode forward voltage drop, and equivalent series resistances (ESRs) of all passive elements on the system operations into account. Furthermore, design curves for a wide range of parameters are developed and organized as basic data for various applications. The validities of the proposed design procedure and derived design curves are confirmed by LTspice simulation and circuit experiment. In the experimental measurements, the class-Φ22 WPT system achieves 78.8% power-transmission efficiency at 6.78MHz operating frequency and 7.96W output power. Additionally, the results obtained from the LTspice simulation and laboratory experiment show quantitative agreements with the analytical predictions, which indicates the accuracy and validity of the proposed analytical method and design curves given in this paper.

  • Power Allocation with QoS and Max-Min Fairness Constraints for Downlink MIMO-NOMA System Open Access

    Jia SHAO  Cong LI  Taotao YAN  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2023/09/06
      Vol:
    E106-B No:12
      Page(s):
    1411-1417

    Non-orthogonal multipe access based multiple-input multiple-output system (MIMO-NOMA) has been widely used in improving user's achievable rate of millimeter wave (mmWave) communication. To meet different requirements of each user in multi-user beams, this paper proposes a power allocation algorithm to satisfy the quality of service (QoS) of head user while maximizing the minimum rate of edge users from the perspective of max-min fairness. Suppose that the user who is closest to the base station (BS) is the head user and the other users are the edge users in each beam in this paper. Then, an optimization problem model of max-min fairness criterion is developed under the constraints of users' minimum rate requirements and the total transmitting power of the BS. The bisection method and Karush-Kuhn-Tucher (KKT) conditions are used to solve this complex non-convex problem, and simulation results show that both the minimum achievable rates of edge users and the average rate of all users are greatly improved significantly compared with the traditional MIMO-NOMA, which only consider max-min fairness of users.

261-280hit(22683hit)